Multifunctional Polyelectrolytes Bearing Pendant ...

5 downloads 0 Views 7MB Size Report
Aug 29, 2017 - Christine Jérôme (promoter) and. Dr. Christophe Detrembleur (co-promoter) has not been previously submitted at any other. University for any ...
Multifunctional Polyelectrolytes Bearing Pendant Catechol / Quinone for Energy and Environmental Applications

Metal substrate

Lithium Storage

Protein Fouling

Protein Antifouling

Center for Education and Research on Macromolecules CESAM Research Unit Department of Chemistry – Faculty of Sciences University of Liege – Belgium

Nagaraj Patil PhD Thesis August 2017

Multifunctional Polyelectrolytes Bearing Pendant Catechol / Quinone for Energy and Environmental Applications A dissertation submitted to the

UNIVERSITY OF LIEGE, BELGIUM

For the degree of

DOCTOR IN SCIENCES

Presented by NAGARAJ PATIL Under the supervision of Prof. Christine Jérôme, promoter Dr. Christophe Detrembleur, co-promoter

Academic year 2016-2017

Thesis defended on August 29, 2017 before a jury consisting of:

Prof. Christine JÉRÔME

University of Liege (Promoter)

Dr. Christophe DETREMBLEUR

University of Liege (Co-promoter)

Dr. Antoine DEBUIGNE

University of Liege (Secretary)

Prof. Loïc QUINTON

University of Liege (President)

Prof. David MECERREYES

University of the Basque Country, Spain

Prof. Patrice WOISEL

Lille University of Science and Technology

Dr. Michaël ALEXANDRE

Symbiose Biomaterials

Declaration DECLARATION

I declare that the thesis hereby submitted for the Doctor in Sciences degree at University of Liege, Belgium is my own work under supervision of Prof. Christine Jérôme (promoter) and Dr. Christophe Detrembleur (co-promoter) has not been previously submitted at any other University for any degree. I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work.

Nagaraj Patil 07/07/2017 Liege-BE

Summary SUMMARY The discovery of 3,4-dihydroxyphenyl-L-alanine (L-DOPA), a catechol-functionalized amino acid as major component in mussel adhesion proteins, has triggered enormous interest in musselmimetic adhesives. The design of innovative bioinspired polymers-containing catechols has rapidly gained widespread utility in the (bio)material field, ascribed to the versatility of the catechol chemistry that allows anchoring (bio)polymers, biomolecules, nanoparticles (metals and metal oxides) and other compounds onto almost any kind of surfaces without any pre-treatment. Amongst the various synthetic protocols to incorporate catechol functionalities into (bio)polymers, the radical polymerization of catechol-bearing vinyl monomers in their protected form has proven to be a versatile technique to impart intrinsic physico–chemical properties of the catechol pendants to polymers after appropriate deprotection. Importantly, the scope of applications of catechol-bearing polymers can potentially be drastically increased by developing controlled radical polymerization (CRP) techniques of their protected vinyl monomers. Indeed, these techniques will enable to precisely design the polymer with the appropriate structure, molar mass and functionality that fit at best the target application. When this thesis started in 2013, only very limited examples of functional catechol-bearing polymers prepared by CRP were reported. The aim of this PhD thesis was to develop well-defined innovative catechol-containing (co)polymers that find applications in energy storage and environmental fields by employing function-oriented macromolecular engineering approaches. In this work, numerous catecholprotected monomers have been prepared and their CRP investigated to afford well-defined (co)polymers with controlled and tunable molar masses, compositions, functionalities, and architectures (homopolymers, statistical and block copolymers). The potential of these innovative catechol-containing (co)polymers was then explored for applications in energy storage (as activematerial in lithium-ion half-cells) and environment (as protein fouling/antifouling coatings). This work was performed in the frame of the ITN Marie-Curie programme “RENAISSANCE” (grant number 289347) entitled “TRAINING NETWORK IN INNOVATIVE POLYELECTROLYTES FOR ENERGY AND ENVIRONMENT”.

Summary RÉSUMÉ La 3,4-dihydroxyphényl-L-alanine (L-DOPA), un acide aminé fonctionnalisé par un catéchol, est considéré comme la fonction principale responsable des propriétés d'adhésion dans les protéines des moules. La découverte de cet acide aminé a suscité un énorme intérêt pour les adhésifs biomimétiques. Grace à la polyvalence de la chimie du catéchol, la conception de polymères innovants contenant des fonctions catéchols a rapidement trouvé son utilité dans différents domaines ((bio)matériaux, catalyse, énergie…). Certains dérivés de la dopamine offrent la possibilité de générer des polymères parfaitement définis, la polymérisation de monomères vinyliques présentant un catéchol protégé en utilisant des techniques de polymérisation radicalaire contrôlée (PRC) a permis, après déprotection, la production de polymères présentant les propriétés physico-chimiques intrinsèques des fonctions catéchol. Il est important de noter que la PRC de ce type de monomères permet de générer avec précision le polymère avec la structure appropriée, la masse molaire et la fonctionnalité qui correspond au mieux à l'application cible. Lorsque cette thèse a commencé en 2013, seuls quelques exemples très limités de polymères fonctionnels à base de catéchol préparés par CRP ont été rapportés dans la littérature. L'objectif de cette thèse de doctorat était d'utiliser l’ingénierie macromoléculaire pour développer des (co)polymères novateurs et bien définis contenant des catéchols pour des applications dans les domaines de stockage de l'énergie et de l’environnement. Plusieurs monomères présentant des fonctions catéchols protégées ont été synthétisés puis polymérisés par PRC. Cela nous a permis de produire des (co)polymères bien définis avec différentes architectures (homopolymères, copolymères statistiques et séquencés). Le potentiel de ces (co)polymères inédits contenant des catéchols a ensuite été exploré en tant que cathode dans les demi-cellules au lithium-ion pour le stockage de l'énergie et comme revêtement anti-fouling dans le domaine de l’environnement. Ce travail a été réalisé dans le cadre du programme ITN Marie-Curie "RENAISSANCE" (numéro de

subvention

289347)

intitulé

“TRAINING

NETWORK

POLYELECTROLYTES FOR ENERGY AND ENVIRONMENT”.

IN

INNOVATIVE

Acknowledgements ACKNOWLEDGEMENTS I express my heartfelt gratitude to all the people who have helped me in various manners during this project and without whom I would not have been able to finish this thesis in that form. I earnestly thank each and every one of them for supporting me throughout. First and foremost, the financial supports, including Marie Curie Association-European Commission (people FP7 programme) and University of Liege for the completion of my PhD program are greatly appreciated. It is my very pleasant duty to thank Prof. Christine Jérôme for accepting me as her student and directing, supporting and supervising me during – as it turned out – many years. She always seemed to believe in my abilities (even though I prolonged my thesis beyond the project deadline) and was thus vital in motovating me finish the work I had started. She is like a second mother to me. Also, it would be unfair, if I do not thank her for introducing “BELGIAN BEER” and “ITALIAN WINE” to me. I would like to express my deepest appreciation to my co-supervisor, Dr. Christophe Detrembleur for his constructive expert supervision of my PhD thesis. He gave me the unique opportunity to realize my ideas in a PhD project by putting them into a realistic frame. His expertise on subject similar to the ones discussed in this thesis was a very valuable source of knowledge, which he generously shared, about everything related to catechol chemistry. With his incredible patience and thoroughness Chris provided much needed constructive criticism. He always asked me first what fits best for me instead of letting me know what would fit him best. Thank you both Chris and Christine for many hours of interesting discussions, which were often cheered by your unique humor. I also would like to thank Prof. Olle Inganas and Dr. Shimelis Admassie who provided me very kind supervision during my visit to IFM, Linkoping university, Linkoping-Sweden. I believe that their constructive supervision and the discussion I had with them triggered a great deal of interest on ENERGY STORAGE in me and would be quite beneficial for my future academic life. I do not think I will find another programme like “RENAISSANCE” ITN Marie-Curie programme. The progress meetings and workshops we had in different places and in different countries created a great awareness in various research areas in me. I will have to thank a bunch

Acknowledgements of big scientist in this research field, Prof. Christine Jérôme, Prof. Olle Inganas, Prof. Markus Antonietti, Prof. David Mecerreyes, Prof. Daniel Taton, Dr. Cristophe Detrembleur, Dr. Rebeca Marcilla, Dr. Mónica Moreno, Dr. Niclas Solin, Dr. Jiayin Yuan for fruitful discussions we had throughout this project, and also for your kind support and guidance on my thesis. I am very much glad for being a part of the CERM family!! It was a homeaway from home for me. I have spent more time with the CERM members than my own family. This work would never be possible without a big bunch of great help from a big bunch of great people in the CERM family. The lovely and always cooperative atmosphere in our lab was certainly inspired by Sophie, Enza, Valérie, Martine, Laetitia, Charlotte, Grégory. Always-ready to help mentality of yours will remain in my heart forever, and will be respected incessantly. Many, many thanks to Philip2, Antoine, Raphael, Jean Michel, Bruno, Abdel, Farid, Kavita, Ian, Florence, David, Denise, Cedric, Phuong, Zyenep, Stephanie, Ji, Daniela, Mathilde3, Thomas, Kevin, Jeremy, Sandro, Satya, Stephan, Walid, Hirotaka, Mohammed2, Rehmet, Assala, Maxime, Jamal, Urmil, Vidya for an excellent working environment, help in practical and personal matter, and many interesting discussions about all the possible topics. All of you are truly unique, and it is hard to find people like you in some other places. With all of you lab was really fun and always filled with positive working energy. Special thanks goes to Abdel, Mohammed, Jamal, Martine, for the working space we shared, and you are like immediate family to me. Abdel, you are the real inspiration to me and took care of me more than a mentor. A warm hug and sweet kiss to Daniela for being an aesthetic sister to me!!! You were there always with me in the REINASSANCE meetings, and even while working late nights in the lab. You and Rehmet showered a lot of care upon me, and that one sentence “BE CAREFUL” will always linger in my ears. Thanks for being so special!! Satya, I do not need to speak anything about you, for sure you will not agree with it!! Thanks for helping to complete my thesis, even though you had very tight schedule. I always deeply admire and appreciate my previous teachers (specially, Bhat madam and Hegade sir), lecturers (Late. Bhagade sir), professors (Prof. De) for everything you taught me. You have immense contributions in shaping my student career, and made me what I am today. The biggest inspiration to me are my childhood friends. I do not need to thank them formally, they know it!! Still, I thank you Pradeep, Veerseh, Kitta, Kiran, Girish, Madesh, Mahesh2, Santhosh2, Shankar2, Shanmukh, Shambu, Panchkshari, Kumar2, Shantu, for being a

Acknowledgements beautiful part of my childhood days. We all together form the best group of buddies and we will continue to live like this. I am particularly thankful to my college friends: Shreekant, Ramachandra, Vasant, Aravind, Chandru2, Shivu2, Sukanya, MG, Sushila, Chaitra, Praveen, Mahesh, Keerti, Naidu, Sunirmal, Kamal, Saswati, Ramesh, for the things we shared and the fun we had together. Last but not least, I would like to thank the Jury members: Prof. Christine Jérôme, Dr. Christophe Detrembleur, Dr. Aantoine Debuigne, Prof. Loïc Quinton, Prof. David Mecerreyes, Prof. Patrice Woisel, Dr. Michaël Alexandre for accepting to evaluate my thesis and being a part of the defense. I am sure there are some names missing in the list, but they will forever remain alive in my heart and memory!!!

Thank you very much …. Merci beaucoup….

ಹೃತ್ಪೂ ರ್ವಕ ಧನ್ಯ ವಾದಗಳು....

This thesis is dedicated to my beautiful family and Naganna

My family is everything to me, specially my sweet little brother Puttu and sister Avi My all-time best friend late. Naganna, this is for you. You will be in my heart until my last breath

If not here, then where? If not now, then when? If not you, then who? -

John Lewis

Table of Contents TABLE OF CONTENTS Chapter I: Recent Advances in the Synthesis of Catechol-Derived (Bio)Polymers for Applications in Energy and Environment………………………………………………… 1 I.1. General Introduction and Motivation ……………………………………………...… 1 I.2. Physico–Chemical Properties……………………………………………….......……... 4 I.3. General Design Features towards Mussel-Inspired (Bio)Macromolecules.……….... 7 I.3.1. Side chain precursors via peptide synthesis and ring-opening polymerization of N-carboxyanhydride-type monomers………………………………………………. 8 I.3.2. Main chain precursors via oxidative polymerization: poly(dopamine), a gold standard bio-mimetic adhesive material…………………………………..……....... 9 I.3.3. Side- or end-chain precursors via direct chemical ligation of catechol-derivatives onto preformed (bio)polymers…………………………………..……………….... 10 I.3.4. End chain precursors via controlled and electrochemical polymerizations techniques…………………………...…………………………..……………….... 20 I.3.4.1. Catechol end-functionalized polymer brushes modified surfaces via “grafting from” approaches…………………………………………..…………...….... 20 I.3.4.2. Catechol end-functionalized polymer modified surfaces via “grafting to” approaches………………..………………………………..……………….... 24 I.3.4.3. Stimuli responsive polymer assemblies by coupling reactions with catecholend functionalized polymers…………………………………..…….....…..... 27 I.3.5. Side chain precursors via polymerization of pendant catechol-containing monomers…………………………………..…………………………...……….... 29 I.3.5.1. Radical polymerization of (un)protected catechol-derived vinyl monomers. 29 I.3.5.1.1. Radical polymerization of unprotected catechol-bearing vinyl monomers…………………………………………………………...…. 29 I.3.5.1.2. Radical polymerization of protected catechol-bearing vinyl monomers…………………………………………………………...…. 36 I.3.5.2. Polymerization of (un)protected catechol-derived monomers via miscellaneous approaches………………………………………………...…. 40 I.4. Applications………………………………………………………………….......……. 44 I.4.1. Adhesives……………………………………………………………………...…. 44

Table of Contents I.4.1.1. Adhesive hydrogels……………………………………………………...…. 45 I.4.1.2. Adhesive polymer films…………………………………………….…...…. 48 I.4.1.3. Coacervated adhesive polymers…………………………………….…...…. 49 I.4.2. Micro-/nanoscopic surface functionalization……………………………..…...…. 51 I.4.2.1. Colloidal stabilization………………………………………………........…. 51 I.4.2.2. Nanocomposites………………………………………………..................... 52 I.4.2.3. Microreactors……………………………………………………..……...…. 53 I.4.3. Macroscopic surface functionalization………………………………………...…. 53 I.4.3.1. Antimicrobial coatings…………………………………………...……...…. 53 I.4.3.2. Antibiofilm, antiadhesion and antifouling coatings……………………..…. 57 I.4.3.3. Hydrophilic/hydrophobic coatings…………………………………………. 59 I.4.3.4. Anti-corrosion coatings………………………………..………………...…. 59 I.4.4. Biomedical applications……………………………………..………………...…. 60 I.4.5. Applications in energy storage………………………………………………...…. 62 I.4.5.1. Lithium-ion batteries…………………………..………………………...…. 62 I.4.5.2. Electrochemical capacitors………….…………………………………...…. 70 I.5. Conclusions………………………………………………………………….......….…. 74 I.6. References…………………………………………………...……………….......……. 75

Aim of the thesis……………………………………………………………….…………......... 91

Chapter II: Mussel-Inspired Protein-Repelling Ambivalent Block Copolymers: Controlled Synthesis and Characterization…………………………………………………………... 95 II.1. Introduction………………………………………………………………………...... 96 II.2. Experimental Section…………………………………………………………........... 99 II.2.1. Materials………….…………………………………………………………...… 99 II.2.2. Synthesis of dopamine acrylamide (DA) ………….………………………...…. 99 II.2.3. Synthesis of acetonide-protected dopamine acrylamide (ADA)………………. 100 II.2.4. RAFT polymerization of ADA……………………………………...…………. 101 II.2.5. Synthesis of P(PEGAm-b-ADAn) block copolymers………………...…...……. 101

Table of Contents II.2.6. Acetonide deprotection………………...………………………………………. 102 II.2.7. Micellization………………………………………………………………....… 102 II.2.8. Characterization methods…………………………………………………….… 102 II.3. Results and Discussion……………………………………………………………... 104 II.3.1. Synthesis of monomers……………………………………………………….... 104 II.3.2. RAFT polymerization of ADA and ADMA………………………………….…105 II.3.3. RAFT polymerization of PEGA and PEGMA………………………………..... 108 II.3.4. Synthesis and characterization of block copolymers………………………..…. 108 II.3.5. Acetonide deprotection……………………………………………………….... 114 II.3.6. Self-assembly of amphiphilic block copolymers……………………………..... 115 II.3.7. Surface-immobilization of polymers and antifouling experiments…………..… 117 II.4. Conclusions………………………………………………………………………….. 122 II.5. References………………………………………………………………………….... 124 II.6. Supporting Information…………………………………………………………..... 128

Chapter III: Surface- and Redox-Active Multi-Functional Polyphenol-Derived Poly(ionic liquid)s: Controlled Synthesis and Characterization………………………………….. 150 III.1. Introduction………………………………………………………………………... 151 III.2. Experimental Section………………………………………………….…….…...... 153 III.2.1. Materials……………………………………………………………...……...... 153 III.2.2. Typical procedure for the homopolymerization of 1-vinyl-3-alkylimidazolium (VImX)-type monomers………………………………………………...……...... 154 III.2.3. A representative P(VIm-pyr-Cl)-b-P(VIm-et-Br) diblock copolymer synthesis………………………………………………………………...…...…... 155 III.2.4. A representative P(VIm-pyr-Cl)-b-P(VIm-et-Br)-b-P(VIm-pyr-Cl) triblock copolymer synthesis………………………………………………...……............ 156 III.2.5. General procedure for the deprotection of polymers………………..……….... 156 III.2.6. Anion metathesis………………………………………………...…….…......... 156 III.2.7. Characterization methods……………………………………….……...……... 157 III.3. Results and Discussion……………………………………………………..…….... 158 III.3.1. Synthesis of Monomers……………………………………….…...…….…..... 158

Table of Contents III.3.2. Synthesis of polyphenol-derived poly(ionic liquid)s by OMRP……….……... 161 III.3.2.1. OMRP of VIm-cat/cat=o/pyr-Cl and VIm-phe-Br monomers...... 161 III.3.2.2. Synthesis of P(VIm-pyr-Cl)-b-P(VIm-et-Br) by sequential OMRP, followed by CMRC to yield P(VIm-pyr-Cl)-b-P(VIm-et-Br)-b-P(VImpyr-Cl) symmetric triblock copolymer…………………….…...……...... 164 III.3.2.3. Polymer O-debenzylation…………………….…...…….......................... 166 III.3.2.4. Diphenyl-dioxole cleavage………………….…...……............................ 169 III.3.2.5. Anion Exchange………………….…...……............................................. 171 III.3.3. Redox activity of polyphenol-derived PILs.……............................................... 172 III.3.4. Surface-immobilization of polyphenol-derived PILs and subsequent protein adsorption/inhibition experiments by QCM-D.…….............................................. 175 III.4. Conclusions…………………………………………………………………….…... 178 III.5. References………………………………………………………………….…......... 180 III.6. Supporting Information……………………………………………………....…... 186

Chapter IV: Bioinspired Redox-Active Catechol-Bearing Polymers as Ultra-Robust Organic Cathodes for Lithium Storage…………………………………………..…….. 223 IV.1. Introduction…………………………………………………………….………….. 224 IV.2. Results and Discussion………………………………………...……….………….. 225 IV.2.1. Electrochemical performance of P(DA)100 and P(DA87-stat-LiAMPS13)…...… 227 IV.2.2. Electrochemical performance of P(4VC)100 and P(4VC86-stat-LiSS14) .........… 232 IV.2.3. Electrochemical performance of buckypaper and P(LiSS) modified buckypaper………………………………………………………………………. 233 IV.2.4. Locating the presented RAPs among the state-of-the-art cathode materials in LIB…………………………………………………………………………….…. 234 IV.3. Conclusions…………………………………………………………………….…... 234 IV.4. References………………………………………………………………….…......... 235 IV.5. Supporting Information……………………………………………………....…... 238

General Conclusions and Perspectives…………………………………………………....... 276

Chapter: I Recent Advances in the Synthesis of Catechol-Derived (Bio)Polymers for Applications in Energy and Environment

I.1. General Introduction and Motivation ……………………………………………...… 1 I.2. Physico–Chemical Properties……………………………………………….......……... 4 I.3. General Design Features towards Mussel-Inspired (Bio)Macromolecules.……….... 7 I.3.1. Side chain precursors via peptide synthesis and ring-opening polymerization of

N-

carboxyanhydride-type monomers…………………………………………….……. 8 I.3.2. Main chain precursors via oxidative polymerization: poly(dopamine), a gold standard bio-mimetic adhesive material…………………………………..……....... 9 I.3.3. Side- or end-chain precursors via direct chemical ligation of catechol-derivatives onto preformed (bio)polymers…………………………………..………………… 10 I.3.4. End chain precursors via controlled and electrochemical polymerizations techniques…………………………...…………………………..………………… 20 I.3.4.1. Catechol end-functionalized polymer brushes modified surfaces via “grafting from” approaches…………………………………………..…………...……. 20

I.3.4.2. Catechol end-functionalized polymer modified surfaces via “grafting to” approaches………………..………………………………..……………….... 24 I.3.4.3. Stimuli responsive polymer assemblies by coupling reactions with catecholend functionalized polymers…………………………………..……......…..... 27 I.3.5. Side chain precursors via polymerization of pendant catechol-containing monomers…………………………………..…………………………...…….….... 29 I.3.5.1. Radical polymerization of (un)protected catechol-derived vinyl monomers. 29 I.3.5.1.1. Radical polymerization of unprotected catechol-bearing vinyl monomers…………………………………………………………....…. 29 I.3.5.1.2. Radical polymerization of protected catechol-bearing vinyl monomers…………………………………………………………....…. 36 I.3.5.2. Polymerization of (un)protected catechol-derived monomers via miscellaneous approaches………………………………………………...…. 40 I.4. Applications…………………………………………………………………........……. 44 I.4.1. Adhesives………………………………………………………………….…...…. 44 I.4.1.1. Adhesive hydrogels……………………………………………….……...…. 45 I.4.1.2. Adhesive polymer films……………………………………………..…...…. 48 I.4.1.3. Coacervated adhesive polymers………………………………….….…...…. 49 I.4.2. Micro-/nanoscopic surface functionalization………………………….…..…...…. 51 I.4.2.1. Colloidal stabilization………………………………………………........…. 51 I.4.2.2. Nanocomposites………………………………………………...................... 52 I.4.2.3. Microreactors……………………………………………………..……...…. 53 I.4.3. Macroscopic surface functionalization………………………………………...…. 53 I.4.3.1. Antimicrobial coatings…………………………………………...……...…. 53 I.4.3.2. Antibiofilm, antiadhesion and antifouling coatings……………………..…. 57 I.4.3.3. Hydrophilic/hydrophobic coatings…………………………………………. 59 I.4.3.4. Anti-corrosion coatings………………………………..………………...…. 59 I.4.4. Biomedical applications……………………………………..………………...… 60 I.4.5. Applications in energy storage………………………………………………...…. 62 I.4.5.1. Lithium-ion batteries…………………………..………………………...…. 62 I.4.5.2. Electrochemical capacitors………….…………………………………...…. 70 I.5. Conclusions………………………………………………………………….......….…. 74 I.6. References…………………………………………………...………………...........…. 75

Aim of the Thesis

Chapter: II Mussel-Inspired Protein-Repelling Ambivalent Block Copolymers: Controlled Synthesis and Characterization

Nagaraj Patil, Céline Falentin-Daudré, Christine Jérôme and Christophe Detrembleur, Polym. Chem. 2015, 6 (15), 2919–2933.

Chapter II: Mussel-Inspired Protein-Repelling Ambivalent Block Copolymers: Controlled Synthesis and Characterization………………………………………………………....... 95 II.1. Introduction………………………………………………………………………...... 96 II.2. Experimental Section…………………………………………………………........... 99 II.2.1. Materials………….…………………………………………………………...… 99 II.2.2. Synthesis of dopamine acrylamide (DA) ………….………………………...…. 99 II.2.3. Synthesis of acetonide-protected dopamine acrylamide (ADA)………………. 100 II.2.4. RAFT polymerization of ADA……………………………………...…………. 101 II.2.5. Synthesis of P(PEGAm-b-ADAn) block copolymers………………...…...……. 101 II.2.6. Acetonide deprotection………………...………………………………………. 102 II.2.7. Micellization…………………………………………………………………… 102 II.2.8. Characterization methods……………………………………………………… 102 II.3. Results and Discussion……………………………………………………………... 104 II.3.1. Synthesis of monomers………………………………………………………... 104 II.3.2. RAFT polymerization of ADA and ADMA……………………………………105 II.3.3. RAFT polymerization of PEGA and PEGMA………………………………... 108 II.3.4. Synthesis and characterization of block copolymers…………………………. 108 II.3.5. Acetonide deprotection……………………………………………………….. 114 II.3.6. Self-assembly of amphiphilic block copolymers……………………………... 115 II.3.7. Surface-immobilization of polymers and antifouling experiments…………… 117 II.4. Conclusions……………………………………………………………………..….. 122 II.5. References………………………………………………………………………….. 124 II.6. Supporting Information…………………………………………………………... 128

Chapter: III Surface- and Redox-Active Multi-Functional Polyphenol-Derived Poly(ionic liquid)s: Controlled Synthesis and Characterization

Nagaraj Patil, Daniela Cordella, Abdelhafid Aqil, Antoine Debuigne, Shimelis Admassie, Christine Jérôme and Christophe Detrembleur, Macromolecules 2016, 49, 7676−7691.

Chapter III: Surface- and Redox-Active Multi-Functional Polyphenol-Derived Poly(ionic liquid)s: Controlled Synthesis and Characterization……………….….. 150 III.1. Introduction………………………………………..…………………………... 151 III.2. Experimental Section………………………………..…………….…….…...... 153 III.2.1. Materials……………………………………...…………………...……...... 153 III.2.2. Typical procedure for the homopolymerization of 1-vinyl-3-alkylimidazolium (VImX)-type monomers……………………………...……………...……...... 154 III.2.3. A representative P(VIm-pyr-Cl)-b-P(VIm-et-Br) diblock copolymer synthesis………………………………………………………...…...…...…... 155 III.2.4. A representative P(VIm-pyr-Cl)-b-P(VIm-et-Br)-b-P(VIm-pyr-Cl) triblock copolymer synthesis…………………………………………............ 156 III.2.5. General procedure for the deprotection of polymers…………………….... 156 III.2.6. Anion metathesis…………………………………………….…….…......... 156 III.2.7. Characterization methods…………………………………………...……... 157 III.3. Results and Discussion………………………………………………....…….... 158 III.3.1. Synthesis of Monomers……………………………………….…...……..... 158 III.3.2. Synthesis of polyphenol-derived poly(ionic liquid)s by OMRP…………... 161 III.3.2.1. OMRP of VIm-cat/cat=o/pyr-Cl and VIm-phe-Br monomers. 161 III.3.2.2. Synthesis of P(VIm-pyr-Cl)-b-P(VIm-et-Br) by sequential OMRP, followed by CMRC to yield P(VIm-pyr-Cl)-b-P(VIm-et-Br)-b-P(VImpyr-Cl) symmetric triblock copolymer……………………...……...... 164 III.3.2.3. Polymer O-debenzylation…………………….…...……..................... 166 III.3.2.4. Diphenyl-dioxole cleavage………………….…...……....................... 169 III.3.2.5. Anion Exchange………………….…...……....................................... 171 III.3.3. Redox activity of polyphenol-derived PILs.……......................................... 172 III.3.4. Surface-immobilization of polyphenol-derived PILs and subsequent protein adsorption/inhibition experiments by QCM-D.……........................................ 175 III.4. Conclusions………………………………………………………..……….…... 178 III.5. References…………………………………………………………..….…......... 180 III.6. Supporting Information……………………………………………….......…... 186

Chapter: IV Bioinspired Redox-Active Catechol-Bearing Polymers as Ultra-Robust Organic Cathodes for Lithium Storage

Nagaraj Patil, Abdelhafid Aqil, Farid Ouhib, Shimelis Admassie, Olle Inganas, Christine Jérôme, Christophe Detrembleur, Adv. Mater. Submitted.

Chapter IV: Bioinspired Redox-Active Catechol-Bearing Polymers as Ultra-Robust Organic Cathodes for Lithium Storage………………………………...………….... 223 IV.1. Introduction…………………………………………………………….…...…. 224 IV.2. Results and Discussion………………………………………...……….….…... 225 IV.2.1. Electrochemical performance of P(DA)100 and P(DA87-stat-LiAMPS13)…. 227 IV.2.2. Electrochemical performance of P(4VC)100 and P(4VC86-stat-LiSS14) ..…. 232 IV.2.3. Electrochemical performance of buckypaper and P(LiSS) modified buckypaper……………………………………………………………............ 233 IV.2.4. Locating the presented RAPs among the state-of-the-art cathode materials in LIB………………………………………………………………………...…. 234 IV.3. Conclusions……………………………………………………………………... 234 IV.4. References…………………………………………………………………......... 235 IV.5. Supporting Information……………………………………………………...... 238

General Conclusions and Perspectives

Publications PUBLICATIONS1234

(1)

Patil, N.; Falentin-Daudré, C.; Jérôme, C.; Detrembleur, C. Mussel-Inspired Protein-

Repelling Ambivalent Block Copolymers: Controlled Synthesis and Characterization. Polym. Chem. 2015, 6 (15), 2919–2933.

(2)

Ajjan, F. N.; Ambrogi, M.; Tiruye, G. A.; Cordella, D.; Fernandes, A. M.; Grygiel, K.; Isik,

M.; Patil, N.; Porcarelli, L.; Rocasalbas, G.; Vendramientto, G.; Zeglio, E.; Antonietti, M.; Detrembleur, C.; Inganäs, O.; Jérôme, C.; Marcilla, R.; Mecerreyes, D.; Moreno, M.; Taton, D.; Solin, N.; Yuan, J. Innovative Polyelectrolytes/poly(ionic Liquid)s for Energy and the Environment. Polym. Int. 2017, No. November 2016.

(3)

Patil, N.; Cordella, D.; Aqil, A.; Debuigne, A.; Admassie, S.; Jérôme, C.; Detrembleur, C.

Surface- and Redox-Active Multifunctional Polyphenol-Derived Poly(ionic Liquid)s: Controlled Synthesis and Characterization. Macromolecules 2016, 49 (20), 7676–7691. This work appeared as cover art in Macromolecules Vol. 49, Iss. 20.

(4)

Nagaraj Patil, Abdelhafid Aqil, Farid Ouhib, Shimelis Admassie, Olle Inganas, Christine

Jérôme, C. D. Bioinspired Redox-Active Catechol-Bearing Polymers as Ultra-Robust Organic Cathodes for Lithium Storage. Adv. Mater. SUBMITTED.

Curriculum Vitae

Nagaraj Patil CERM, Dept. of Chemistry B6a, Allée du Six Août, 13 Sart-Tilman, Liege, Belgium – 4000

[email protected] +32493322947 PROFILE

Synthetic polymer chemist with o 6 years of experience in academia, managing multiple research projects in the field of polymer chemistry, material science and applied electrochemical technologies o Proven track record of publication in international peer-reviewed journals, project management, and excellent communication skills in both oral and written media o Excellent teamwork skills, strong independent work style, able to adapt new research environments quickly, well-organized, passionate, and last but not least willing to undertake researcher mobility for fruitful collaborations. EDUCATION PhD in polymer science, University of Liege, Belgium;

2013 – 2017

Thesis: Multifunctional Polyelectrolytes Bearing Pendant Catechol/Quinone for Energy and Environmental Applications Supervisors: Prof. Christine Jerome and Dr. Christophe Detrembleur MS in chemical science, IISER-Kolkata, India;

2010 – 2012

Thesis: Swelling Induced Optical Anisotropy of Thermoresponsive Hydrogel: Deswelling Kinetics Studies probed by Quantitative Mueller Matrix Polarimetry Supervisor: Prof. Priyadarsi De BSc in science, Karnataka Science College, Dharwad, India;

2007 – 2010

RESEARCH EXPERIENCE CERM, University of Liege, Belgium;

PhD candidate, 2013 – 2017

 Controlled synthesis of catechol-based polymers Structurally well-defined macromolecular architectures (linear, statistical, block, and crosslinked, etc.) with tunable macromolecular properties are engineered through the RAFT and CMRP of various catechol functionalized monomers  Synthesis of conducting polymers Synthesis and characterization of PEDOT and polyaniline via both the chemical and electrochemical oxidative polymerization pathways.

 Applications of these multifunctional polymers in o Bio-medical: Coatings based on catechol functional (co)polymers virtually stick to all type of surfaces without prior surface modifications; exhibiting an efficient antibacterial activity towards broad spectrum of bacterial strains o Environment: Adsorption/inhibition of proteins on the catechol (co)polymer modified surfaces o Energy: Function-oriented macromolecular engineering of surface- and redox-active catechol pendants exhibit simultaneous high-capacity, superior active-material utilization, ultra-long cyclability and excellent rate performances towards lithium storage when combined to carbon nanotubes in a flexible, binder- and metal current collector-free buckypaper design. IFM, Linkoping University, Sweden;

Secondment during PhD tenure, 2015 (2 months)

The fundamental electrochemistry of catechol-based redox-active polymers and their incorporation into PEDOT matrix for application in electrochemical energy storage devices. BIPoL, IISER-Kolkata, India;

MS thesis, 2010 – 2012

Synthesis of non-linear poly(ethylene glycol)-based organic hydrogels and quantum dots doped hybrid hydrogels by RAFT polymerization and studying their macroscopic volume phase transition behavior probed by quantitative Mueller Matrix Polarimetry.

o

o

o

o

CONFERENCE PRESENTATIONS Patil, N., Aqil, A., Jérôme, C. & Detrembleur, C. (2016). Polymers bearing pendant catechol for organic electrode-active materials in Lithium-ion batteries. Oral presentation at the 11th annual meeting of Belgian Polymer Group, Hasselt, Belgium. Patil, N., Aqil, A., Jérôme, C. & Detrembleur, C. (2015). Controlled synthesis of multifunctional polymers bearing pendant catechols for surface modifications. Poster presentation at the closing meeting of European Polymer Association: FP6 program, Lacanau, France. Patil, N., Jérôme, C. & Detrembleur, C. (2014). Surface-immobilized anti-fouling blockcopolymers: synthesis and characterization. Oral presentation at the 15th annual University of Liege Research Day, Liege, Belgium. Patil, N., Jérôme, C. & Detrembleur, C. (2014). Surface-immobilized anti-fouling blockcopolymers: synthesis and characterization. Poster presentation at the 9th annual meeting of Belgian Polymer Group, Ghent, Belgium.