NOx CH

1 downloads 0 Views 52MB Size Report
0.0950. 0.0101. 0.0105. 0.0742. 0.0089. 0.0090. 26. 1/m [Ln (1/(1-x))]. NO. NOx. 185. ) ...... (20) ml NaCl 3N solution for 24 hours at room temperature . The ion.
CH

NOx

CH, NOx, NO

NO – NOx – CH

NO – NOx – CH

1

I CH NO, NOx [4-1] 1 I 1 1 I

CH NO, NOx

CH

NO, NOx

2 1 I

NO, NOx, CH 2

CH

1

NO, NOx 71 2 1

3 1 I 1

1 2

2

2

3 4

4 (B)

5 (A)

6 7 8 9 10 11 12 13 14 15 16 17 4 1 I

CH, NOx, NO [7-5] dm

1

n 1

vg

vg dm

PA

2 atm-1

n (1) 3

KA

[8]

KA

vA (2)

(3)

(sec-1) k

3

(4)

4 (5)

4

dn/n 5

n (6)

t

X 1

(t) (7)

4

F

4

m 6

7

t

5

(8)

2

8

KA

VA = vA m

6

8

5

9

F

5 1 I (SIGMA – ALDRICH)

1

(Alumina Oxide 90, Merck)

2

(Z)

3

(ZJ)

4 (B)

5 6 1 I

(Seouential ARL 8410) X.R.F.

1

(P W 1830 PHILIS X. R. X.R.D.

2 D)

(DTG-60H SHIMADZU) D.T.A.

3

(Micromeritics Gemini 3) BET (Kane)

4 5 6

(Carbolite)

7 8 7 1 I 1 2

6

3 3 2 1 0.3 0.2

4

5 3

5 7 6

6 5

6

°550

7 8 1 I

100

10

8

2

1

1

2 3

4

3

(A)

3

(B)

11

(A)

10

4

9

8

12 13 5

(B)

(A)

(B)

5

9 7 (A)

(B)

(A)

10

9

6 8 13

12 5

7

7

9 1 I 1

ZB-Ag2O, Al2O3-Ag2O

1

88.33

46.91

50

166.78 4 5

400 400 111

110

9 1 I 9 1 I

1 2 3

550

4

(B)

400

1

(B)

0.075 400 0.075

2

333

3

(Z) 0.6

1 2 3

5 2 5

550

3

8

4 5 6

2 1 2

9 1 I

2 2

9 1 I

1 2 2

9 1 I

2 2 2

9 1 I

3 2 2

9 1 I

IR

3 2

Adsorption of Nitrogen 1

9 1 I 2

9 1 I

1 2

9 1 I

BET BET

II

9 1 I

4

1

5 4

[9]

(ZB-Ag2O, Al2O3-Ag2O)

2 2

9 1 I

1 2 2

9 1 I

NO, NOx 200

2

NO, NOx 9

NO, NOx (ZB-Ag2O, Al2O3-Ag2O) 196.3688

211.1097 238.5045 203.1487

6

6 200

h-1

3

150 250

272.17

283.0085

7

7 200

298.1306

200 -

274.5508

h-1

4

150 250 200 [14-10] 2 2 2

9 1 I [5]

1/m [Ln (1/(1-X))] = 1/F0 KA

F0

5

Ln

X

150 10

m k 8

5 NO, NOx 10 NO KAk 22.4

KAk = / 22.4 KAk = 0.081 / 22.4 = 0.00361 (m mol)/ gr. sec atm NOx KAk 22.4 KAk = / 22.4 KAk = 0.082 / 22.4 = 0.00366 (m mol)/ gr. sec atm 10

(KAk) 1

2

[15] 1 9 1 I

3 2 2

Log {1/m [Ln (1/(1-x))]} =  (1/T)

R

R x 2.3 x 10

ZB-Ag2O, Al2O3-Ag2O

IR IR

3 2

9 1 I

1 3 2

9 1 I 9

IR

2 3 2

10

9 1 I

10 6

ZB-Ag2O, Al2O3-Ag2O

IR 10 1 I ZB-Ag2O, Al2O3-MoO3- Ag2O

1

88.33

6.66

1

46.91

2 3

50

4

166.78

4 5

110 550 11

10 1 I

5 6 7

400

(B)

393.34

(B)

400 0.075

1

393.34

2

0.075 111

(Z)

333

3

0.6 1 2 5

3 2 5

4 5

550

3

6 2 1 2 :2 2

IR

12

10 1 I

10 1 I 10 1

:1-2 2

10 1 I

:2-2 2

10 1 I

:3-2 2

10 1 I

:3 2

I

10 1 I

Adsorption of Nitrogen 7

2

10 1 I

1 2

10 1 I

BET BET

11

12 11 II [9]

II

10 1 I

:2 2

:1-2 2

(ZB-Ag2O,

10 1 I

NO, NOx, CH 150

Al2O3-MoO3 - Ag2O)

NO, NOx, CH 8 NO, NOx, CH (ZB-Ag2O, Al2O3-MoO3 - Ag2O) h-1 222.2170 - 217.5772 - 249.9523 13 9 h-1 270.2766 – 287.1702 – 268.8831 14 13 14 10 185

13

:2-2 2

10 1 I

[5] 1/m [Ln (1/(1-X))] = 1/F0 KA

F0

11

Ln

150 16

X

m k

12

185

15

10

12

(KAK)

11 NO, NOx

13

185 150 [15]

10

:3-2 2

10 1 I

Log {1/m [Ln (1/(1-x))]} =  (1/T)

R

R x 2.3 x 185

3

150

6.5156 7.2247 7.3288 17 19.4129 18.8347

3

135

7.9247

14

NOx NO

8.4201 7.8839 18 22.8972

21.8060

15

NOx NO [16] IR IR

:3 2

10 1 I

1 3 2

10 1 I

19

14

IR

2 3 2

10 1 I

20

16 (ZB-Ag2O, Al2O3-MoO3 - Ag2O) IR 11 1 I ZJB-Ag2O, Al2O3-Ag2O

88.33 50

1

46.91 166.78

4 5

11 1 I

1 2

110 550

3 4

400

(B)

400 0.075

1

400

(B)

400 0.075 333 0.6

2

111

(ZJ)

3

1

15

2 3

5 2 5

4 5 6

550

3

IR

:2

11 1 I

1 2

11 1 I

:2 2

11 1 I

:1-2 2

11 1 I

:2-2 2

11 1 I

:3-2 2

11 1 I

:3 2

11 1 I :2

Adsorption of Nitrogen 17

1 2

11 1 11 1 I

BET BET

21

22 21 II [9] :2 2

16

11 1 I

:1-2 2

(ZJB-Ag2O, Al2O3-

11 1 I

NO, NOx 150

18

Ag2O)

NO, NOx NO, NOx

23

23 200 150

h-1 347.1557

19

351.8485

24

(ZJB-Ag2O, Al2O3-Ag2O)

359.1284

355.0448

24

20

200

150 250

185 :2-2 2

11 1 I

[5] 1/m [Ln (1/(1-X))] = 1/F0 KA 185

F0 150

Ln

25

X

21

m k

150

10

21 NO, NOx

26

22

185

10

22

(KAK)

NO, NOx 23

185

150

10 [15] :3-2 2

Log {1/m [Ln (1/(1-x))]} =  (1/T) 17

11 1 I

24

R

R x 2.3 x IR IR

:3 2

11 1 I

:1-3 2

11 1 I 27

IR

:2-3 2

11 1 I

28 25 ZJB-Ag2O, Al2O3-Ag2O

IR 12 1 I ZB-Cr2O3, Al2O3- Cr2O3

88.33

1

110.48 166.78

4 5

400

12 1 I

1 2 3 4 5

110 550

(B)

400

1

400

2

0.075 400

(B) 0.075

18

111

(Z)

333

3

0.6

1 2 5

3 2 5

4 5

550

3

6

IR

BET

BET

19

12 1 I

1 2

12 1 I

:2 2

12 1 I

:1-2 2

12 1 I

:2-2 2

12 1 I

:3-2 2

12 1 I

:3 2

Adsorption of Nitrogen 26

:2

12 1 I :2

12 1 I

1 2

12 1 I

30 29 II

29 [9] :2 2

:1-2 2

(ZB-Cr2O3, Al2O3-

12 1 I

12 1 I

CH 310

27

Cr2O3)

CH CH (ZB-Cr2O3, Al2O3- Cr2O3)

214.5841

211.1097

31

198.2497

31 400

249.9523

h-1

28

310

248.7588

32

216.3712

32

247.1841

249.9523 h-1

29

400 [17-19] :2-2 2

12 1 I

[5] 1/m [Ln (1/(1-X))] = 1/F0 KA

F0

30

Ln

X

310 10

30

m k 33

CH CH 20

(KAk)

KAk 22.4 KAk = / 22.4 KAk = 0.068 / 22.4 = 0.00303 (m mol)/ gr. sec atm [15]

:3-2 2

12 1 I

Log {1/m [Ln (1/(1-x))]} =  (1/T)

R

R x 2.3 x 400

6 2919

6 1899

5 8128

7. 2476

260 3

31

9.5514 7.2938

310

6 3442 34

7.3288

355

CH

7.3288 35

3

32

21.6145

CH IR IR

:3 2

12 1 I

:1-3 2

12 1 I 36

IR

:2-3 2

37

37 33

ZB-Cr2O3, Al2O3- Cr2O3

IR

21

12 1 I

13 1 I 1-13

ZB-Cr2O3, Al2O3-Cr2O3-MoO3

88.33

6.66

1

110.4 166.78

2 3

4

4 5

5

400

1 I

110 550

6

(B)

400

1

393.3

2

333

3

0.075 393.3

(B) 0.075

111

(Z) 0.6

1 2 3

5 2 5

550

3 22

4 5 6

2 1 2

13 1 I

:2 2

13 1 I

:1-2 2

13 1 I

:2-2 2

13 1 I

:3-2 2

13 1 I

IR

:3 2

Adsorption of Nitrogen 34

13 1 I

13 1 I 2

13 1 I

1 2

13 1 I

:2 2

13 1 I

BET

BET

39 38 II [9]

38

:1-2 2

(ZB-Cr2O3,Al2O3-

CH 310

13 1 I

Cr2O3-MoO3)

CH 35 23

CH (ZB-Cr2O3, Al2O3-Cr2O3-MoO3) 204.7453

209.4101

40

40 400

344.8561

41 400

h-1

36

310

352.6421

41

208.2946 209.1289

347.1557

347.1557 h-1

37

355 [19-17] 260 :2-2 2

13 1 I

[5] 1/m [Ln (1/(1-X))] = 1/F0 KA

F0

38

Ln

X

m k 42

310 10

38 CH CH

(KAk) KAk 22.4

KAk = / 22.4 KAk = 0.078 / 22.4 = 0.00348 (m mol)/ gr. sec atm [15] :3-2 2

13 1 I

Log {1/m [Ln (1/(1-x))]} =  (1/T)

R

R x 2.3 x 400

24

355

310

260

6 0033

6 1401

6 1318

6 1318 43 14.2840

10.3397

10.1789

3

39 CH

10.1789 44

3

40

31.9910

10.1115

CH IR

:3 2

:1-3

IR

2

13 1 I 13 1 I 45

IR 41

:2-3

2

13 1 I

46

ZBCr2O3, Al2O3-Cr2O3-MoO3

IR

CH NO

CH

NO – NOx

43 42

25

II

1

26

1

2

27

3

ZB-Ag2O, Al2O3-Ag2O

Z

B

BET

1 ZB

ZB-Ag2O, Al2O3-Ag2O ZB-Ag2O, Al2O3Ag2O

ZB

27.1070

Z

B

52.6014

49.3041

51.7946

42.5744

81.9353

76.2058

82.1938

2.8837

9.5036

13.3858

0.4878

24.2233

43.0978

35.9183

51.3067

0.0013

0.0047

0.0069

0.0001

0.0425

0.0631

0.0515

0.0620

62.6644

48.0197

41.7892

47.8927

28

2

BET

2

2 2 3

3

P/P0

4

ZB-Ag2O, Al2O3-Ag2O

5

ZB-Ag2O, Al2O3Ag2O

29

NO, NOx 200

2 (ZB-Ag2O, Al2O3-Ag2O)

h-1 211.1097 200 NOx

NO

0

0

0

78.0822

77.1429

60

78.0822

77.1429

120

80.8219

80.0000

180

h-1 283.0085 200 NOx

0 82.9060 84.6154 84.6154 86.3248 86.3248

30

NO

0 84.0708 84.0708 84.0708 85.8407 85.8407

0 60 120 180 240 300

h-1 367.5768 200 NOx

NO

0 74.5763 77.9661 77.9661

0 73.6842 77.1930 77.1930

0 60 120 180

h-1 519.0041 200 NOx

NO

0 69.9531 70.8920 71.8310 72.7700 74.6479 74.6479 75.5869 h-1 589.5094

0 69.6078 70.5882 71.5686 72.5490 74.5098 74.5098 75.4902

0 60 120 180 240 300 360 420

200 NOx

NO

0

0

0

62.3932

62.8319

60

62.3932

62.8319

120

62.3932

62.8319

180

31

3 (ZB-Ag2O, Al2O3-Ag2O) h-1

% NOx

% NO

203.1487

72.9730

72.9730

°150

238.5045

57.8947

57.8947

°175

211.1097

80.8219

80.0000

°200

196.3688

47.8261

48.3146

°250

6 NO, NOx

(ZB-Ag2O, Al2O3-Ag2O) 4

(ZB-Ag2O, Al2O3-Ag2O) h-1

% NOx

% NO

274.5508

69.2308

68.2540

°150

298.1306

56.3636

54.7170

°175

283.0085

86.3248

85.8407

°200

272.17

37.0787

36.4706

°250

32

7 NO, NOx NO –

(ZB-Ag2O, Al2O3-Ag2O)

10

5

(ZB-Ag2O, Al2O3-Ag2O)

150

NOx

NOx 1/m [Ln (1/(1-x))]

NO 1/m [Ln (1/(1-x))]

1/ F0

0.0121 0.0115 0.0095 0.0061 0.0046 0.0026

0.0121 0.0111 0.0093 0.0060 0.0045 0.0027

0.1679 0.1242 0.1013 0.0738 0.0567 0.0295

1/m [Ln (1/(1-x))]

8

(ZB-Ag2O, Al2O3-Ag2O)

150

33

NOx NO

IR

9

IR

34

10

6 ZB-Ag2O, Al2O3-Ag2O

OH

AL-OH Si-OH

cm-1

cm-1

cm-1

1051.01

1456.96

3445.21

1045.23

1426.10

3450.03

Z

B

7

BET ZB

ZB-Ag2O, Al2O3-MoO3-Ag2O ZB-Ag2O, Al2O3MoO3Ag2O

ZB

Z

B

2

34.4682

52.6014

49.3041

51.7946

54.4739

81.9353

76.2058

82.1938

1.3130

9.5036

13.3858

0.4878

33.1553

43.0978

35.9183

51

0.00046

0.0047

0.0069

0.000017

0.0489

0.0631

0.0515

0.0620

56.7551

48.0197

41.7892

47.8927

35

BET

2 2 2 3

3

P/P0

11

ZB-Ag2O, Al2O3-MoO3Ag2O

12

ZB-Ag2O, Al2O3-MoO3Ag2O

36

(ZB-

NO, NOx

8

150

Ag2O, Al2O3-MoO3 - Ag2O)

246.4030 h-1

217.5772h-1

°150

°150

Removal of NOx %

Removal of NO %

Removal of CH %

Time

Removal of NO %

Removal of CH %

Time

Sec

Removal of NOx %

0.0000 62.1622 64.8649 67.5676 67.5676 67.5676

0.0000 61.1111 63.8889 66.6667 66.6667 66.6667

0.0000 31.8841 33.3333 34.0580 32.6087 32.6087

0.0000 40 71 132 188 248

0.0000 69.2308 73.0769 73.0769 75.0000 75.0000

0.0000 68.0000 72.0000 72.0000 74.0000 74.0000

0.0000 47.0968 52.2581 56.1290 53.5484 56.1290

0.0000 60 120 180 240 300

328.8841 h-1

287.1702 h-1

°150

°150

Removal of NOx %

Removal of NO %

Removal of CH %

Time

0 37.8378 48.6486 51.3514 51.3514

0 38.8889 47.2222 50.0000 50.0000

0.0000 18.6567 22.3881 23.8806 26.1194

0 60 120 180 240

Sec

Sec

Removal of NOx %

Removal of NO %

Removal of CH %

Time

0.0000 48.0000 61.3333 66.6667 66.6667 68.0000 69.3333

0.0000 47.2222 61.1111 66.6667 66.6667 68.0556 69.4444

0.0000 25.0000 35.5263 37.5000 37.5000 38.8158 38.8158

0.0000 60 120 180 240 300 360

37

Sec

929.8820h-1

491.2594 h-1

°150

°150

Removal of NOx %

Removal of NO %

Removal of CH %

Time

0.0000 22.7273 22.7273 20.4545

0.0000 21.4286 21.4286 19.0476

0.0000 -

0.0000 60 120 180

Sec

Removal of NOx %

Removal of NO %

Removal of CH %

Time

0.0000 34.2105 34.2105 31.5789 31.5789

0.0000 35.1351 35.1351 32.4324 32.4324

0.0000 18.5714 14.2857 14.2857 8.5714

0.0000 71 131 191 251

38

Sec

9 (ZB-Ag2O, Al2O3-MoO3 - Ag2O)

% CH

h-1

% NOx

NO

249.9523

48

61.111

61.111

°135

217.5772

56.1290

75.0000

74.0000

°150

222.2170

78.8890

82.6920

82.0000

°185

13 NO, NOx, CH

(ZB-Ag2O, Al2O3-MoO3 - Ag2O) 10

(ZB-Ag2O, Al2O3-MoO3 - Ag2O) NO h-1

% CH

% NOx

268.8831

7.6923

50.0000

50.0000

°135

287.1702

38.8158

69.3333

69.4444

°150

270.2766

45.0549

78.5714

77.5000

°185

39

14 NO, NOx, CH NO –

(ZB-Ag2O, Al2O3-MoO3 - Ag2O)

10

11

(ZB-Ag2O, Al2O3-MoO3 - Ag2O)

150

NOx 1/m [Ln (1/(1-x))]

NO 1/m [Ln (1/(1-x))]

0.0138 0.0112 0.0118 0.0072 0.0038 0.0023

0.0134 0.0120 0.0118 0.0069 0.0039 0.0021

1/m [Ln (1/(1-x))]

NOx

1/ F0 0.1568 0.1384 0.1188 0.1037 0.0694 0.0367

15

(ZB-Ag2O, Al2O3-MoO3 - Ag2O)

150

40

NOx NO

NO –

10

12

(ZB-Ag2O, Al2O3-MoO3 - Ag2O)

185

NOx 1/m [Ln (1/(1-x))]

NO 1/m [Ln (1/(1-x))]

0.0175 0.0154 0.0107 0.0107 0.0044 0.0016

0.0171 0.0149 0.0103 0.0103 0.0043 0.0017

NOx

1/ F0 0.1535 0.1262 0.1044 0.0845 0.0443 0.0186

1/m [Ln (1/(1-x))]

16

(ZB-Ag2O, Al2O3-MoO3 - Ag2O) 10

185

KAk

NOx NO

13

de-NO

de-NOx

KAk

KAk

m mol/ gr. sec atm

m mol/ gr. sec atm

0.00361

0.0037

150°

0.00495

0.00513

185°

41

C

(ZB-Ag2O, Al2O3-MoO3 - Ag2O)

14

Log {1/m [Ln (1/(1-x))]}

F0 K-1

3

NOx

NO

-2.0259

-2.0259

0.0025

7.3288

-1.9496

-1.9603

0.0024

7.2247

-1.7571

-1.7669

0.0022

6.5156

(ZB-Ag2O, Al2O3-MoO3 - Ag2O)

17

(ZB-Ag2O, Al2O3-MoO3 - Ag2O)

15

Log {1/m [Ln (1/(1-x))]}

F0 K-1

3

NOx

NO

-2.1603

-2.1603

0.0025

7.8839

-1.9285

-1.9272

0.0024

8.4201

-1.8135

-1.8275

0.0022

7.9247

42

(ZB-Ag2O, Al2O3-MoO3 - Ag2O)

18

IR

43

19

IR

20

16 (ZB-Ag2O, Al2O3-MoO3 - Ag2O) OH

AL-OH Si-OH

cm-1

cm-1

cm-1 1424.17

1043.30

3451.96 1639.20 1468.53

1033.66

3373.85 1508.06

44

ZJ

B

BET

17 ZJB

ZJB-Ag2O, Al2O3-Ag2O ZJB-Ag2O, Al2O3Ag2O

ZJB

23.2847

59.5029

ZJ

B

51.4587

51 7946 2

36.5823

92.7012

78.6582

82.1938

2.7801

10.5466

20.0431

0.4878

20.5046

48.9563

31.4156

51.3067

0.001265

0.005249 0.010510

0.000017

0.036630

0.067492 0.045336

0.0620

62.9256

45.3706

47.8927

35.2406

2 2 2 3

3

P/P0

21

ZJB-Ag2O, Al2O3-Ag2O 45

BET

22

ZJB-Ag2O, Al2O3Ag2O

NO, NOx 150

18 (ZJB-Ag2O, Al2O3-Ag2O)

h-1 211.6815 150 NOx

0 90.9091 90.9091 90.9091

46

NO

0 90.4762 90.4762 90.4762

0 60 120 180

h-1 241.4539 150 NOx

NO

0 87.7551 87.7551 87.7551

0 87.2340 87.2340 87.2340

0 60 120 180

h-1 282.4961 150 NOx

NO

0 85.7143 85.7143 85.7143

0 85.1852 85.1852 85.1852

0 60 120 180

h-1 355.0448 150 NOx

0 82.3529 82.3529 82.3529

47

NO

0 81.8182 81.8182 81.8182

0 60 120 180

h-1 437.5915 150 NOx

NO

0 80.6452 78.4946 76.3441 76.3441

0 79.7753 77.5281 75.2809 75.2809

0 60 120 180 240

19 (ZJB-Ag2O, Al2O3-Ag2O) h-1

% NOx

NO

211.6815

90.9091

90.4762

°150

211.1097

84.9057

84.3137

°185

243.2448

84.6154

84.6154

°200

205.014

46.1538

46.1538

°250

23 NO, NOx

(ZJB-Ag2O-Al2O3-Ag2O)

48

20 (ZJB-Ag2O, Al2O3-Ag2O) h-1

% NOx

% NO

355.0448

82.3529

81.8182

°150

359.1284

64.1509

62.7451

°185

351.8485

68.8889

67.4419

°200

347.1557

48.2759

464286

°250

24 NO, Nox

NO –

(ZJB-Ag2O, Al2O3-Ag2O)

10

21

(ZJB-Ag2O, Al2O3-Ag2O)

150

NOx 1/m [Ln (1/(1-x))]

NO 1/m [Ln (1/(1-x))]

0.0238 0.0208 0.0193 0.0172 0.0150

0.0233 0.0204 0.0189 0.0169 0.0146

49

NOx

1/F0 0.1611 0.1413 0.1207 0.0961 0.0779

1/m [Ln (1/(1-x))]

25

(ZJB-Ag2O, Al2O3-Ag2O)

150

NOx NO

10

22

(ZJB-Ag2O, Al2O3-Ag2O) 185

NO – NOx

NOx 1/m [Ln (1/(1-x))]

NO 1/m [Ln (1/(1-x))]

0.0187 0.0157 0.0133 0.0105 0.0090

0.0184 0.0154 0.0130 0.0101 0.0089

1/m [Ln (1/(1-x))]

1/F0 0.1616 0.1375 0.1175 0.0950 0.0742

26

(ZJB-Ag2O, Al2O3-Ag2O)

185

50

NOx NO

10

KAk

23

de-NO

de-NOx

KAk

KAk

m mol/ gr. sec atm

m mol/ gr. sec atm

0.006875

0.00701

150°

0.005

0.00509

185°

(T)

C

NO – NOx

24

(ZJB-Ag2O, Al2O3-Ag2O) de-NOx

de-NO

KAk

KAk

T

m mol/ gr. sec atm

m mol/ gr. sec atm

0.00701

0.006875

423

0.00509

0.005

458

0.0054

0.00537

473

0.00209

0.00205

523

IR 51

27

IR

28

25 (ZJB-Ag2O, Al2O3-Ag2O) OH

AL-OH Si-OH

cm-1

cm-1

cm-1

1063.55

1458.89

3447.13

1049.09

1422.24

3446.17

52

Z

B

BET

26

(ZB-Cr2O3, Al2O3- Cr2O3) ZB-Cr2O3, Al2O3Cr2O3

ZB

ZB

Z

B

43.8431

52.7564

50.3678

51.7946

69.1211

82.1931

77.6223

82.1938

3.1516

9.3874

14.2969

0.4878

40.6915

43.3690

36.0710

51.3067

0.001308

0.004654 0.007487

0.000017

0.062081

0.063976 0.047057

0.0620

56.6395

48.5065

47.8927

37.3709

53

2

BET

2

2

2

3

3

P/P0

29

ZB-Cr2O3, Al2O3- Cr2O3

30

ZB-Cr2O3, Al2O3- Cr2O3

54

CH

27

310 h-1 198.2497

(ZB-Cr2O3, Al2O3- Cr2O3) h-1 186.8550

310

310

CH

CH

0 76.7123 78.0822 79.4521

0 76.6667 75.0000 70.0000

0 60 120 180

h-1 308.7349

h-1 247.1841

310

310

CH

CH

0 33.3333 40.6250 43.7500

0 60 120 180

0 60 120 180

0 37.3333 65.3333 69.3333

55

0 60 120 180

h-1 347.1557 310 CH

0 19.5767 32.2751 37.5661 34.3915

0 60 120 180 240

28 (ZB-Cr2O3, Al2O3- Cr2O3) h-1 216.3712 198.2497 211.1097 214.5841

% CH 63.2911 79.4521 76.4706 79.5455

56

°260 °310 °355 °400

31 CH

(ZB-Cr2O3, Al2O3- Cr2O3)

29 (ZB-Cr2O3, Al2O3- Cr2O3) h-1

% CH

249.9523 247.1841 248.7588 249.9523

52.9412 69.3333 85.1351 84.9057

°260 °310 °355 °400

32 CH

(ZB-Cr2O3, Al2O3- Cr2O3)

57

CH

10

30

(ZB-Cr2O3, Al2O3- Cr2O3)

CH

310

CH 1/m [Ln (1/(1-x))]

1/F0

0.0133

0.1825

0.0151

0.1720

0.0085

0.1380

0.0049

0.1105

0.0037

0.0982

1/m [Ln (1/(1-x))]

33

(ZB-Cr2O3, Al2O3- Cr2O3)

58

310

31

ZB-Cr2O3, Al2O3- Cr2O3

Log {1/m [Ln (1/(1-x))]}

F0 K-1

3

-2.0024

0.0019

6.3442

-1.8221

0.0017

5.8128

-1.8261

0.0016

6.1899

-1.8028

0.0015

6.2919

CH

ZB-Cr2O3, Al2O3- Cr2O3

34

ZB-Cr2O3, Al2O3- Cr2O3

32

Log {1/m [Ln (1/(1-x))]}

F0 K-1

3

-2.1570

0.0019

7.3288

-2.0731

0.0017

7.2476

-1.7501

0.0016

7.2938

-1.7546

0.0015

7.3288

CH

59

35

ZB-Cr2O3, Al2O3- Cr2O3

IR

60

36

IR

37

33 ZB-Cr2O3, Al2O3- Cr2O3

OH

AL-OH Si-OH

cm-1

cm-1

cm-1

3448.10 1049.09

1422.24 2365.26 3448.10

1049.09

1457.92 2517.61

61

Z

B

BET

34

(ZB-Cr2O3, Al2O3-Cr2O3-MoO3) ZB-Cr2O3, Al2O3Cr2O3MoO3

33.6362

ZB

52.7564

ZB

Z

B

50.3678

51.7946 2

52.9426

82.1931

77.6223

BET

82.1938 2

3.1309

9.3874

14.2969

0.4878

30.5053

43.3690

36.0710

51.3067

0.001368

0.004654 0.007487

0.000017

0.047712

0.063976 0.047057

0.0620

2

2 3

3

56.7393

48.5065

37.3709

P/P0

47.8927

38

ZB-Cr2O3, Al2O3-Cr2O3-MoO3

62

39

ZB-Cr2O3, Al2O3-Cr2O3MoO3

CH 310

35 (ZB-Cr2O3, Al2O3-Cr2O3-MoO3)

h-1 208.2946

h-1 188.4453

310

310

CH

CH

0 79.7872 81.9149 79.7872

0 80.1105 82.3204 80.1105

0 60 120 180

63

0 60 120 180

h-1 278.9655

h-1 233.8616

310

310

CH

CH

0 43.2990 47.4227 47.4227

0 57.0681 60.2094 66.4921

0 60 120 180

0 60 120 180

h-1 347.1557 310 CH 0 41.2371 39.1753 41.2371 43.2990

64

0 60 120 180 240

36 (ZB-Cr2O3, Al2O3-Cr2O3-MoO3) h-1 209.1289 208.2946 209.4101 204.7453

CH 58.8235 79.7872 81.4433 79.6296

°260 °310 °355 °400

40 CH

(ZB-Cr2O3, Al2O3-Cr2O3-MoO3) 37

(ZB-Cr2O3, Al2O3-Cr2O3-MoO3) h-1

% CH

347.1557

25.9740

°260

347.1557

43.2990

°310

352.6421

73.2143

°355

344.8561

74.6032

°400

65

41 CH CH

(ZB-Cr2O3, Al2O3-Cr2O3-MoO3)

10

38

(ZB-Cr2O3, Al2O3-Cr2O3-MoO3)

CH

310

CH 1/m [Ln (1/(1-x))]

1/F0

0.0164 0.0162 0.0094 0.0061 0.0053

0.1810 0.1637 0.1458 0.1223 0.0982

1/m [Ln (1/(1-x))]

42

(ZB-Cr2O3, Al2O3-Cr2O3-MoO3)

66

310

39 F0

Log {1/m [Ln (1/(1-x))]} CH

K-1

3

-2.0560 -1.7907 -1.7681 -1.7685

0.0019 0.0017 0.0016 0.0015

6.1318 6.1318 6.1401 6.0033

43

ZB-Cr2O3, Al2O3-Cr2O3-MoO3

40 Log {1/m [Ln (1/(1-x))]} K-1

CH -2.4772

0.0019

-2.2785

0.0017

-1.8844

0.0016

-1.8672

0.0015

67

3

10.1789 10.1789 10.3397 10.1115

44

ZB-Cr2O3, Al2O3-Cr2O3-MoO3

IR

68

45

IR

46

41 ZB-Cr2O3, Al2O3-Cr2O3-MoO3

AL-OH

OH

Si-OH cm-1

cm-1

cm-1

1060.66

1513.85

2371.05

1634.38 3450.99 1052.94

1472.38 2344.05 1426.10

69

NO - NOx

42

ZJB-Ag2O, Al2O3-Ag2O 1

ZJB-Ag2O, Al2O3-Ag2O

NOx

NO

NOx

NO 3

-

-

% 76.3441

% 75.2809

437.5915

150

% 80

% 80

-

-

421.0787

175

CH

43

ZB-Cr2O3,Al2O3-Cr2O3-MoO3 2

CH %

ZB-Cr2O3,Al2O3-Cr2O3-MoO3

3

CH %

3

347.1557

°250

% 25.9740

347.1557

°260

%43.8914

301.002

°350

% 73.7705

287.1702

355

%46.9320

339.6102

400

%74.6032

344.8561

400

70

71

1 NO, NOx, CH 1

3 1 I 2 2 4 1

I 3

CH NO, NOx 71 1

9 1 I

4

ZB-Ag2O, Al2O3-Ag2O

11 8 I

ZB-Ag2O, Al2O3-MoO3- Ag2O

15 11 1

11 1 I

1

10 1

ZJB-Ag2O, Al2O3-Ag2O

18 15 1

12 1 I

ZB-Cr2O3, Al2O3- Cr2O3

21 18 1 I

ZB-Cr2O3, Al2O3-Cr2O3-MoO3

25 22

72

1-13

NO – NOx – CH

NO – NOx – CH

73

[1] Coq, B., Mauvezin, M., Delahay, G., Butet and J. B., Kieger, S., 2000, The simultaneous catalytic reduction of NO and N2O by NH3 using an Fe-zeolite-beta catalyst. Appl. Catal., B Vol. 27 pp. 193-198. [2] Burch, R., Breen, J. P., and Meunier, F. C., 2002, A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and Platinum group metal catalysts. Appl. Catal. B, Vol. 39 pp. 283-303. [3] Subbiah, A., Cho, B. K., Blint, R. J., Gujar, A., Price, G. L. and Yie, J. E., 2003, NOx reduction over metal-ion exchanged novel zeolite under lean conditions: activity and hydrothermal stability. Appl. Catal. B, Vol. 42 pp. 155-178 [4] Pieterse, J. A. Z., Brink, R. W., Booneveld, S. and Bruijn, F. A., 2003, Influence of Zeolite structure on the activity and durability of Co-Pd-Zeolite catalyst in the reduction of NOx with methane. Appl. Catal. B, Vol. 46 pp. 239-250. [5] Bassed, D. W. and Habgood, H. W., 1959, A gas chromatographic study of the catalytic isomerization of cyclopropane. Jour. Phys. Chem., Vol. 64 pp. 769-773. [6] K. V. Topchieva, B. V. Romanovskii, L. I. Thoang, Y. W. Bizreh, Procc. 4th Inter. Cong. Catal. 2 (1971) 135. [7] Bizreh, Y. W. and Gates, B. C., 1984, Butane cracking catalyzed by the zeolite HZSM-5. Jour. Catal., Vol. 88 pp. 240-243. [8] Ya. Girasimov and others, Phys. Chem. 1 (1974) 534. [9] H. A. De Boer, Proc. X Symp. Colston Research Sco. Unvi. Bristol, (Eds. Everttd, N., Stone, F. S. and Butterw Orths), Sci. Bull. London (1958) 68-94. [10] Kooten, W. E. J., Krijsen, H. C., Bleek, C. M. and Calis, H. P. A., 2000, Deactivation of zeolite catalysts used for NOx removal. Appl. Catal. B, Vol. 25 pp. 125-135. [11] Ohtsuka, H. and Tabata, T., 2001, Roles of palladium and platinum in the selective catalytic reduction of nitrogen oxides by methane on palladium-platinum-loaded sulfated zirconia. Appl. Catal. B, Vol. 29 pp. 177-183. [12] Shi, C., Cheng, M., Qu, Z., Yang, X. and Bao, X., 2002, On the selectively catalytic reduction of NOx with methane over Ag-ZSM-5 catalysts. Appl. Catal. B, Vol. 36 pp. 173182. [13] Zhu, Z., Liu, Z., Liu, S., Niu, H., Hu, T., Liu, T. and Xie, Y., 2000, NO reduction with NH3 over an activated carbon-supported cooper oxide catalysts at low temperatures. Appl. Catal. B, Vol. 26 pp. 25-35. [14] Moreno-Tost, R., Castellon, E. R. and Jimenez-Lopez, A., 2006, Cobalt-iridium impregnated zirconium-doped mesoporous silica as catalysts for the selective catalytic reduction of NO with ammonia. Jour. Molec. Catal. A Chem., Vol. 248 pp. 126-134.

74

[15] Serra, R., Vecchietti, M. J., Miro, E. and Boix, A., 2008, In, Fe-zeolites: Active and stable catalysts for SCR of NOx-Kinetics, characterization and deactivation studies. Catal. Today Vol. 133-135 pp. 480-486. [16] Richter, M., Bentrup, U., Eckelt, R., Schneider, M., Pohl, M. M. and Fricke, R., 2004, The effect of hydrogen on the selective catalytic reduction of NO in excess Oxygen over Ag/Al2O3. Appl. Catal. B, Vol. 51 pp. 261-274. [17] Mccabe, R. W. and Mitchell, P. J., 1986, Exhaust catalyst development for methanolfueled vehicles: 1. A comparative study of methanol oxidation over alumina-supported catalysts containing group 9, 10, and 11 metals. Appl. Catal. B, Vol. 27 NO. 1 pp. 83-98. [18] Xanthopoulou, G. and Vekinis, G., 1998, Investigation of catalytic oxidation of carbon monoxide over a Cu–Cr-oxide catalyst made by self-propagating high-temperature synthesis. Appl. Catal. B, Vol. 19 NO.1 pp. 37-44. [19] Mescia, D., Cauda, E., Russo, N., Fino , D., Saracco, G. and Specchia,V., 2006, Towards practical application of lanthanum chromite catalysts for diesel particulate combustion. Catal. Today, Vol. 117 NO.1-3 pp. 369-375.

75

1 2

I

2 2

1 I

2

1 1 I

2

2 1 I

2

3 1 I

3

4 1 I

6

5 1 I

6

6 1 I

6

7 1 I

7

8 1 I

8

9 1 I

8 8

1

ZB-Ag2O, Al2O3-Ag2O

1

9 1 I 9 1 I

9

2

9 1 I

9

1 2

9 1 I

9

2 2

9 1 I

76

9

1 2 2

9 1 I

10

2 2 2

9 1 I

11

3 2 2

9 1 I

3 2

9 1 I

1 3 2

9 1 I

11

IR

11

IR

11

IR

11

11

2 3 2

1

ZB-Ag2O,

1

9 1 I

10 1 I

10 1 I

Al2O3-MoO3- Ag2O

13

2

10 1 I

13

1 2

10 1 I

13

2 2

10 1 I

13

1 2 2

10 1 I

14

2 2 2

10 1 I

77

14 14

IR

14

IR

15

IR

3 2 2

10 1 I

3 2

10 1 I

1 3 2

10 1 I

2 3 2

15 15

10 1 I

11 1 I ZJB-Ag2O, Al2O3-

1

11 1 I Ag2O

16

2

11 1 I

16

1 2

11 1 I

16

2 2

11 1 I

17

1 2 2

11 1 I

17

2 2 2

11 1 I

17

3 2 2

11 1 I

3 2

11 1 I

18

IR

78

18

IR

18

IR

1 3 2

2 3 2

18 18

11 1 I

11 1 I

12 1 I ZB-Cr2O3, Al2O3- Cr2O3

1

12 1 I

19

2

12 1 I

19

1 2

12 1 I

20

2 2

12 1 I

20

1 2 2

12 1 I

20

2 2 2

12 1 I

21

3 2 2

12 1 I

3 2

12 1 I

1 3 2

12 1 I

21

IR

21

IR

21

IR

79

2 3 2

12 1 I

22 22

13 1 I ZB-Cr2O3, Al2O3-

1

13 1 I

Cr2O3-MoO3

23

2

13 1 I

23

1 2

13 1 I

23

2 2

13 1 I

23

1 2 2

13 1 I

24

2 2 2

13 1 I

24

3 2 2

13 1 I

3 2

13 1 I

1 3 2

13 1 I

25

IR

25

IR

25

IR

25

2 3 2

CH NO

26

80

13 1 I

II

71 72 73 73 74

81

A New Developed Flow Micropulse- Like Catalytic Pilot Plant For Testing And Determination The Catalytic Activity And Kinetics For de-NOx or de-CH From Car Exhaust Gas Emissions By Use Of Catalysts From Metal Oxides Supported By Matrixs From –Syrian Natural Zeolite And Bentonite-And Alumina Theoretical Of The Innovated Developed Pilot Plant For Kinetics Of Catalytic Removal Of NO, NOx, And CH Pollutants From Gases Emitted From Car Exhausts

Prof. YAHYA WALID AL BIZREH LUBNA AL HAMOUD Prof. MALAK AL JOUBEH Key Words: Matrixes of Syrian and Jordanian zeolites and Syrian bentonite for catalytic removal of NO – NOx and CH emitted with car exhaust gases. Flow micro pulse- like device for testing and measuring catalytic activity and kinetics for removal of NO – NOx and CH emitted with exhaust gases.

1

I- Technical Description of the invention A- Former technical condition: Removal of NO, NOx and CH from car exhaust gases have been the main issue among numerous researches on air pollutants. The current work is a mere contribution to the global efforts in this field of scientific investigations [1-4]. B- I-1- Technical Description of the invention: The detailed explanation of the invention: I – 1 – 1 Innovation: a) We have constructed a micro pulse flow catalytic pilot plant for researches and tests on catalytic activity and determination of kinetic parameters concerning the de-NOx, de-NO and de-CH catalysts. b) Preparation of matrixes of Syrian and Jordanian zeolites and Syrian bentonite for use as supports of metal oxides catalyzing the deNOx, de-NO and de-CH processes. I – 1 – 2 Innovation step and industrial capability : a) Development of anew catalytic micro pulse –like flow pilot plant for use as a device for measuring the interaction between the car exhaust pollutants such as NO, NOx and CH and the catalyst to be used for the first time in the field of car exhaust between catalysis (Figs. 1, 2). b) Use of the car exhaust gas as a substitute for a carrier gas. c) Use of the catalyst in its industrial form with in relatively large size and quantities. d) Preparation of matrixes of Syrian and Jordanian zeolites and Syrian bentonite for use as supports of metal oxides catalyzing the deNOx, de-NO and de-CH processes (p. 70 ) I – 1 – 3 Technical description of the pilot plant: The invention is a pilot plant constuents of which are represented in the scheme of Figs. 1, 2: 1- A motor car with internal combustion engine. 2- Gases emitted from car exhaust passing through a condensate of water vapors. 2

3- Car exhaust gas compressor attached with a gas regulator. 4- Three way gas velocity controlling valve. 5- Pass by flow gas tube through the heating system with a valve B. 6- Flow gas tube with valve A for the reacting gas in the catalytic reactor. 7- A glass cylinder for the passing by gas analysis. 8- Catalytic pilot plant reactor. 9- Electric heater. 10-

The catalyst layer on a bed.

11-

Three way valve.

12-

Velocity foam bubble gas meter.

13-

A glass cylinder for the out coming gas from the reactor.

14-

Barometer.

15-

Thermo couple connected with a thermostat.

16-

Thermometer for relatively high temperatures.

17- Gas Analyzer (detector) I – 1 – 4: Theoretical of the innovated development pilot plant for kinetics of catalytic removal of NO, NOx and CH pollutants from gases emitted from car exhausts Dependence of conversion rate on flow rate for car exhaust gas at different temperatures was determined by means of micro pulse flow method that already was used for isomerization and cracking of light hydrocarbons [5-7] and it has been modified and suggested for the first time in our work and reviewed to fit the current innovation. The rate constant equation is derived as following: 1- When a volume of gas with the reacting material passes through the catalytic reactor containing dm gr. of the catalyst at an instant, m moles of the reactant will be distributed between the gas phase of the volume vg dm where vg is the volume of the gas space at the sector of the catalytic reactor that contains 1 gr. catalyst, and the adsorbed phase where the reaction takes place. 3

2- Assuming that PA is the partial pressure of the reactant, and KA is the adsorption equilibrium constant for 1 gr. of the catalyst, then we may write the total mole number n as the following: (1) 3- The adsorption equilibrium constant KA is related with the adsorbed volume of the reactant gas by one gram of the catalyst vA with the equation [8]: (2) and the value of n will be (3) 4- Since the surface reaction controls the reaction rate and k (sec-1) is the first order real rate constant of the surface reaction, the rate of reaction of the adsorbed reactant in the related section of catalyst is:

(4) Rearranging (4) we get the following equation: (5) and the conversion rate is independent on the pressure. 5- If n in equation (4) is replaced with the whole reacting moles in the space of reaction, then the integration of equation (5) will lead to: (6) Where X is the conversion rate and t is the time of stayment of the reacting moles on the surface of the catalyst

4

6- When F (ml sec-1) is the flow rate of the gases mixture in the reacting molecules at the reactor temperature and the mean pressure. The time of stayment (t) of the reactant in the reacting space is: (7) where m is the whole mass of the catalyst 7- Substituting (7) in the equation (6) is

(8) Replacing KA in equation (8) with its value from equation (2) we receive:

where the VA is the adsorbed volume of the reactant on the surface of the catalyst (VA = vA m) 8- The flow rate (F) in an experiment is measured at room temperature and mean pressure and the then corrected to zero C° to become:

If (9) is taken into account, the equation (8) will have the form

5

The apparent activation energy of the considered reaction can be determined from

I – 1 – 5: The invented catalysts components are: 1- Metal nitrates (SIGMA – ALDRICH). 2- Aluminum oxide (Alumina Oxide 90, Merck). 3- Syrian zeolite (Z). 4- Jordanian zeolite (ZJ). 5- Syrian bentonite (B). I – 1 – 6: Equipments used in the work: 1- X-Ray Fluorescence X.R.F. (Seouential ARL 8410). 2- X-Ray diffraction (P W 1830 PHILIS). 3- Differential Thermal Analysis D.T.A. (DTG-60H SHIMADZU). 4- The Surface Area device (Micromeritics Gemini 3). 5- GAS Analyzer (Kane). 6- Compressor 7- Furnace (Carbolite). 8- The new developed micro pulse -like flow catalytic pilot plant. I – 1 – 7: General Method: 1- Impregnation of the metal nitrate on alumina. 2- Impregnation of the metal nitrate on the Syrian or Jordanian zeolite. 3- Impregnation of the metal nitrate on the bentonite. 4- Finishing the matrix by mixing the peats resulting in the above mentioned 1-2 and 3 steps until being homogenized. 5- Formation of cylindrical tablets of 3-5 cm and internal diameter of 0.2 – 0.3 cm. 6

6- Leaving in shade to dry within 6-7 days. 7- Heating at 550°C for 5-6 hours. I – 1 – 8: Method of Experiment: 1- Inserting 100 g. of the catalyst (10) into the reactor (8). 2- Transmitting the car exhaust gas from the vehicle (1) via rubber tubes (2) and water vapor condenser (2) to gas compressor (3). 3- The reacting gas passes from the compressor (3) to a three way gas velocity controlling valve (4). 4- In order to start the measurements valve (B) is closed simultaneously with valve (A) opened to make the car exhaust gas pass through to the catalytic reactor (8) heated by the heater (9). The reacted with the contact mass (10) moves through the three way valve (11) to the bubble gas velocity meter (12) for the out put gas. 5- Valve (A) is closed and valve (B) is opened to make the gas flow from valve (B) through the tube (5) via heater (9) passing by the catalyst to be analyzed after being catalyzed in a glass cylinder (7), the result of analyses provide the structure of the passby gas exhaust heated to the same temperature of the heated catalyst in the reactor 6- The next step is to open valve (A) and shut the valve (B) at the same moment in order to make three minutes gas pulse pass through in the reactor (8) and get reacted in the catalyst layer (10). The resulting gas and products of the catalytic reaction pass to the three way valve (11) to be collected in the glass cylinder (13) and analyzed by means of the KANE GAS ANALZER. 7- Step (5) is to be repeated to make sure that the structure of the initial reacting car exhaust gas before the catalytic measurements is identical to the structure of the initial gas after measuring the catalytic activity at the same temperature and mean pressure.

7

I – 1 – 9: Preparation and the experiments of the catalysts: I – 1 – 9: Preparation and the experiments of the Syrian Silver catalysts I – 1 –9-1: Preparation of The catalyst ZB-Ag2O, Al2O3-Ag2O: was prepared in the following stages: Stage A: Preparation of the alumina supported metal oxide: 1A- 46.91 gr. of silver nitrate were dissolved in 88.3 ml of hot distillated water (solution I). 2A- Solution I was impregnated with 166.78 gr. of alumina to form a paste, more than 50 ml of distillated water were added and mixed with the paste, the paste was put to dry in the shade. 3A- The dried product was heated at 110°C for 4 hours. 4A- The resulting mass was heated at 550°C in the oven for 5 hours. Stage B: impregnation of Syrian bentonite (B) and Syrian zeolite (Z) with silver nitrate solution: 1B- 400 gr. of Syrian bentonite (B) were impregnated with 400 ml of 0.075 N silver nitrate solution. 2B- 400 gr. of Syrian bentonite (B) were impregnated with 400 ml of 0.075 N silver nitrate solution. 3B- 333 gr. of natural Syrian zeolite (Z) from (Sis) deposit was mixed with 111 ml of 0.6 N silver nitrate solution. Stage C: 1C- The produced powder of stage A was divided into three parts, each of them was added to each one of the masses 1B, 2B, 3B of stage B respectively. 2C- The paste was formed in cylinder of 5 cm. length and internal diameter of 2 mm. 3C- The received tubes were dried at room temperature in shade for 7 days. 4C- The dried tubes were heated in the Carbolite oven at 550°C for 5 hours.

8

5C- The prepared catalyst was used after cooling in the same oven till the next day (Fig. 3). I – 1 – 9-2: Experimental Results: I – 1 – 9-2-1:N2 adsorption – desorption measurements I – 1 – 9-2-2:Results of the catalytic study: I – 1 – 9-2-2-1: Dependence of conversion rate and time on different temperatures and flow rates. I – 1 – 9-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures on the parameters of equation for micro pulse-like flow reaction I – 1 – 9-2-2-3: Calculation of the kinetic parameters. I – 1 – 9-2-3: IR characteristics diagrams. I – 1 – 9-2: Experimental Results: I – 1 – 9-2-1:N2 adsorption – desorption measurements: surface area of the catalyst was measured by means of Micromeritics Gemini 3 device data of which are listed in table (1). The Table (1) indicates a sharp decrease of surface area in the direction bentonite-zeolite-ZB-Ag2O, Al2O3-Ag2O, whereas the pore diameter average increased in the same direction. Plots for N2 adsorption the ZB-Ag2O, Al2O3-Ag2O catalyst and pore distribution are shown in Figs (4-5). The adsorption desorption isotherm may be classified as type II of De Bore's classification of capillary condensation hysteresis loops [9] . I – 1 – 9-2-2:Results of the catalytic study: I – 1 – 9-2-2-1: Dependence of conversion rate on time at different temperatures and flow rates: Dependence of the de-NO, de-NOx conversion on time and different flow rate at 200°C are shown in the flowing tables and curves. These results and curves show increasing conversion rates at first, to reach a stationary state and consequently a constant conversion rate later (Table 2). -Dependence of the de-NO, de-NOx reaction on temperature at close flow rates for the Syrian sliver catalyst ZB-Ag2O, Al2O3-Ag2O at the flowing space velocities: - Result for the space velocities: 203.1487- 238.5045-211.1097196.3688h-1 (Table 3 and Fig. 6). The Fig. 6 indicates maximum for 9

de-NO and de-NOx at 150°C and 200°C, whereas decrease of the deNO and de-NOx catalytic activity is observed over 200°C till 250°C. - Results for the space velocities: 274.5508 - 298.1306 - 283.0085 272.17h-1 (Table 4 and Fig. 7). The Fig. 7 indicates maximum for de-NO and de-NOx at 150°C and 200°C, whereas decrease of the de-NO and de-NOx catalytic activity is observed over 200°C till 250°C [10-14]. I – 1 – 9-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures on the parameters of equation for micro pulse-like flow reaction: The related kinetic equation used in [5] is: 1/m [Ln (1/(1-X))] = 1/F0 Where: m: is the mass of the catalyst, X: conversion rate for the de-NO, de- NOx reaction, KA: the adsorption equilibrium constant, k: the real rate constant as for the NO and NOx reagents. The results for 150°C are represented in the Table 5 and Fig. 8. The Results in table 5 show good agreement with the equation (10) indicating a pseudo first order reaction as for de-NO, de-NOx conversion in conditions of our experiments. Values of KAk by means of the equation (10):

1- For NO: Slope = KAk 22.4 KAk = Slope / 22.4 KAk = 0.081 / 22.4 = 0.00361 (m mol)/ gr. sec atm

2- For NOx: Slope = KAk 22.4 KAk = Slope / 22.4 KAk = 0.082 / 22.4 = 0.00366 (m mol)/ gr. sec atm Those results are generally in accord with the results obtained by [15] using another method, where a fractional order for de-NO, as observed for a catalyst different from our catalysts. The satisfaction of first order equation, however depends on the nature of used catalyst, the contents of the car exhaust gases, and reaction temperature .

10

I – 1 – 9-2-2-3: Calculation activation energy: The activation energy were calculated by means of equation: Log {1/m [Ln (1/(1-x))]} = 

(1/T) Activation energy = slope 2.303 R constant.

where

R

is

universal

gases

The data received was not in accord with equation (10) . I – 1 – 9-2-3:IR characteristics diagrams: The characteristic IR diagrams of the catalyst before and after the catalytic reaction are shown in Figs. 9 and 10, respectively. The distinguished wave numbers are listed in Table (6) the resulting wave numbers may be attributed to Valence vibrations' listed in that table. Heat treatment and chemical structure of the catalyst have the mean impact on the resulting IR diagrams. I – 1 – 10: Preparation and the experiments of the Syrian sliver and molybdenum ZB-Ag2O, Al2O3-MoO3 - Ag2O: I – 1 –10-1 Preparation of the catalyst ZB-Ag2O, Al2O3-MoO3 - Ag2O it was prepared as the following stages: Stage A: Preparation of the alumina supported metal oxide: 1A- 6.66 gr. of ammonium molibdate were dissolved in 88.3 ml of hot distillated water, 46.92gr. of silver nitrate were added and dissolved to the solution (solution I). 2A- Solution (I) was impregnated with 166.78 gr. of alumina to form a paste, more than 50 ml of distillated water were added and mixed with the paste, the paste was put to dry in the shade. 3A- The dried product was heated at 110°C for 4 hours. 4A- The outcomming mass was heated at 550°C in the oven for 5 hours. Stage B: impregnation of Syrian bentonite (B) and Syrian zeolite (Z) with silver nitrate solution: 1B- 400 gr. of Syrian bentonite (B) were impregnated with 400 ml of 0.075 N silver nitrate solution. 2B- 393 gr. of Syrian bentonite (B) were impregnated with 393 ml of 0.075 N silver nitrate solution. 3B- 333 gr. of natural Syrian zeolite (Z) from Sis deposit was mixed with 111 ml of 0.6 N silver nitrate solution. 11

Stage C: 1C- The produced powder of stage A was divided into three parts, each of them was added to each one of the masses 1B, 2B, 3B of stage B respectively. 2C- The paste was formed in cylinder of 5 cm. length and internal diameter of 2 mm. 3C- The received tubes were dried at room temperature in shade for 7 days. 4C- The dried tubes were heated in the Carbolite oven at 550°C for 5 hours. 5C- The prepared catalyst was used after cooling in the very oven till the next day (Fig. 3). I – 1 – 10-2: Experimental Results: I – 1 – 10-2-1:N2 adsorption – desorption measurements I – 1 – 10-2-2:Results of the catalytic study: I – 1 –10-2-2-1: Dependence of conversion rate and time on different temperatures and flow rates. I – 1 – 10-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures on the parameters of equation for micro pulse-like flow reaction I – 1 – 10-2-2-3: Calculation of the kinetic parameters I – 1 – 10-2-3:IR characteristics diagrams. I – 1 – 10-2: Experimental Results: I – 1 – 10-2-1:N2 adsorption – desorption measurements: surface area of the catalyst was measured by means of Micromeritics Gemini 3 device data of which are listed in table (7). The Table (7) indicates a sharp decrease of surface area in the direction bentonite-zeolite-ZBAg2O,Al2O3-MoO3-Ag2O, whereas the pore diameter average increased in the same direction. Plots for N2 adsorption the ZB-Ag2O, Al2O3-MoO3Ag2O catalyst and pore distribution are shown in Figs. (11-12). The adsorption desorption isotherm may be classified as type II of De Bore's classification of capillary condensation hysteresis loops [9]. I – 1 – 10-2-2:Results of the catalytic study: 12

I – 1 – 10-2-2-1: Dependence of conversion rate on time at different temperatures and flow rates: Dependence of the de-NO, de-NOx conversion on time and different flow rate at 150°C are shown in the flowing tables and curves. These results and curves show increasing conversion rates at first, to reach a stationary state and consequently a constant conversion rate later (Table 8). - Dependence of the de-NO, de-NOx, de-CH reaction on temperature at close flow rates for the Syrian sliver catalyst ZB-Ag2O, Al2O3-MoO3Ag2O at the flowing space velocities: -

Result for the space velocities: 249.9523- 217.5772- 222.2170h-1 (Table 9 and Fig. 13). The Fig. 13 indicates maximum for de-NO, de-NOx and de-CH at 185°C, whereas decrease of the de-NO, deNOx and de-CH catalytic activity is observed at 135°C.

-

Result for the space velocities: 268.8831- 287.1702 - 270.2766 h1 (Table 10 and Fig. 14). The Fig. 14 indicates maximum for deNO, de-NOx and de-CH at 185°C, whereas decrease of the de-NO, de-NOx and de-CH catalytic activity is observed at 135°C.

I – 1 – 10-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures on the parameters of equation for micro pulse-like flow reaction: The related kinetic equation used in [5] is: 1/m [Ln (1/(1-X))] = 1/F0 Where: m: is the mass of the catalyst, X: conversion rate for the de-NO, de- NOx reaction, KA: the adsorption equilibrium constant, k: the real rate constant as for the NO and NOx reagents. The result for 150°C (Table 11 and Fig. 15) and 185°C (Table 12 and Fig. 16). Results in Tables 11 and 12 show good agreement with the equation (10) indicating a pseudo first order reaction as for de-NO, de-NOx conversion in conditions of our experiments. Values of KAk by means of the equation (10) are listed in table 13. Those results are generally in accord with the results obtained by [15] where a fractional order for de-NO , as observed for a catalyst different from our catalysts. I– 1– 10-2-2-3: Calculation activation energy: The activation energy were calculated by means of equation: Log {1/m [Ln (1/(1-x))]}=  (1/T) Activation energy = slope 2.303 R constant

where

R

is

universal

gases

The activation energy was calculated with data of 135°C – 150°C - 185°C 13

- Group A: The activation energy at flow rates of 7.3288- 7.22476.5156 cm3/sec (Table 14 and Fig. 17). The calculated apparent activation energy for group A is 18.8347 and 19.4129 K Jol/mol for NO and NOx respectively. - Group B: The activation energy at flow rates of 7.8839- 8.42017.9247 cm3/sec (Table 15 and Fig. 18). The calculated apparent activation energy for group B is 21.8060 and 22.8972K Jol/mol for NO and NOx respectively. The received values of activation energy are in accordance with those obtained in [16] I – 1 – 10-2-3:IR characteristics diagrams: The characteristic IR diagrams of the catalyst before and after the catalytic reaction are shown in Figs. 19 and 20 respectively. The distinguished wave numbers are listed in Table (16) the resulting wave numbers may be attributed to Valence vibrations' listed in that table. Heat treatment and chemical structure of the catalyst have the mean impact on the resulting IR diagrams.

I – 1 – 11: Preparation and the experiments of the Jordanian silver catalyst: I – 1 –11-1:The catalyst ZJB-Ag2O, Al2O3-Ag2O: was prepared in the following stages: Stage A: Preparation of the alumina supported metal oxide: 1A- 46.91 gr. of silver nitrate were dissolved in 88.3 ml of hot distillated water (solution I). 2A- Solution I was impregnated with 166.78 gr. of alumina to form a paste, more than 50 ml of distillated water were added and mixed with the paste, the paste was put to dry in the shade. 3A- The dried product was heated at 110°C for 4 hours. 4A- The resulting mass was heated at 550°C in the oven for 5 hours. Stage B: impregnation of Syrian bentonite (B) and Syrian zeolite (Z) with silver nitrate solution:

14

1B- 400 gr. of Syrian bentonite (B) were impregnated with 400 ml of 0.075 N silver nitrate solution. 2B- 400 gr. of Syrian bentonite (B) were impregnated with 400 ml of 0.075 N silver nitrate solution. 3B- 333 gr. of natural Jordanian zeolite (ZJ) was mixed with 111 ml of 0.6 N silver nitrate solution. Stage C: 1C- The produced powder of stage A was divided into three parts, each of them was added to each one of the masses 1B, 2B, 3B of stage B respectively. 2C- The paste was formed in cylinder of 5 cm. length and internal diameter of 2 mm. 3C- The received tubes were dried at room temperature in shade for 7 days. 4C- The dried tubes were heated in the Carbolite oven at 550°C for 5 hours. 5C- The prepared catalyst was used after cooling in the same oven till the next day (Fig. 3). I – 1 – 11-2: Experimental Results: I – 1 – 11-2-1:N2 adsorption – desorption measurements I – 1 – 11-2-2:Results of the catalytic study: I – 1 –11-2-2-1: Dependence of conversion rate and time on different temperatures and flow rates. I – 1 – 11-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures on the parameters of equation for micro pulse-like flow reaction I – 1 – 11-2-2-3: Calculation of the kinetic parameters I – 1 – 11-2-3:IR characteristics diagrams. I – 1 – 11-2: Experimental Results: I – 1 – 11-2-1:N2 adsorption – desorption measurements: surface area of the catalyst was measured by means of Micromeritics Gemini 3 device data of which are listed in table (17). The Table (17) indicates a sharp 15

decrease of surface area in the direction bentonite-zeolite-ZJB-Ag2O, Al2O3-Ag2O, whereas the pore diameter average increased in the same direction. Plots for N2 adsorption the ZJB-Ag2O, Al2O3-Ag2O catalyst and pore distribution are shown in Figs (21-22). The adsorption desorption isotherm may be classified as type II of De Bore's classification of capillary condensation hysteresis loops [9]. I – 1 – 11-2-2:Results of the catalytic study: I – 1 – 11-2-2-1: Dependence of conversion rate on time at different temperatures and flow rates: Dependence of the de-NO, de-NOx conversion on time and different flow rate at 150°C are shown in the flowing tables and curves. These results and curves show increasing conversion rates at first, to reach a stationary state and consequently a constant conversion rate later (Table 18). -Dependence of the de-NO, de-NOx reaction on temperature at close flow rates for the Jordanian sliver catalyst ZJB-Ag2O, Al2O3-Ag2O at the flowing space velocities: - Result for the space velocities: 211.6815- 211.1097 - 243.2448 205.014 h-1 (Table 19 and Fig. 23). The Fig. 23 indicates approximately constant de-NO and de-NOx at (150-200)°C flow by decreasing conversion with increasingly higher temperatures. -

Result for the space velocities: 355.0448- 359.1284 - 351.8485347.1557 h-1 (Table 20 and Fig. 24). The Fig. 24 indicates maximum de-NO and de-NOx at 150°C and 200°C, respectively, accompanied with decreasing de-NO and de-NOx catalytic conversion is 185°C and 250°C, respectively.

I – 1 – 11-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures on the parameters of equation for micro pulse-like flow reaction: The related kinetic equation used in [5] is: 1/m [Ln (1/(1-X))] = 1/F0 Where: m: is the mass of the catalyst, X: conversion rate for the de-NO, de- NOx reaction, KA: the adsorption equilibrium constant, k: the real rate constant as for the NO and NOx reagents. The result for 150°C (Table 21 and Fig. 25) and 185°C (Table 22 and Fig. 26). The results in tables 21 and 22 show good agreement with the equation (10) indicating a pseudo first order reaction as for de-NO, de-NOx conversion in conditions of our experiments. Values of KAk by means of the equation (10) are listed in Table 23. The results in Table 23 are generally in accord with the results 16

obtained by [15] where a fractional order for de-NO , as observed for a catalyst different from our catalysts. I – 1 – 11-2-2-3: Calculation activation energy: The activation energy were calculated by means of equation: Log {1/m [Ln (1/(1-x))]} =  (1/T) Activation energy = slope 2.303 R where R is universal gases constant (Table 24). The results listed in Table 24 indicate a decrease in the value of apparent rate calculated for the de-NO, de-NOx reactions with increasing temperature that may be attributed to the NO and NOx adsorption decrease with increasing temperature, leading to conclusion that the rate limiting step in the de-NO,de-NOx catalyst should be the adsorption of NO and NOx. I – 1 – 11-2-3:IR characteristics diagrams: The characteristic IR diagrams of the catalyst before and after the catalytic reaction are shown in Figs. 27 and 28. The distinguished wave numbers are listed in Table (25) the resulting wave numbers may be attributed to Valence vibrations' listed in that table. Heat treatment and chemical structure of the catalyst have the mean impact on the resulting IR diagrams. I – 1 – 12: Preparation and the experiments of the Syrian chromium catalyst: I – 1 –12-1: The catalyst ZB-Cr2O3, Al2O3-Cr2O3: it was prepared as the following stages: Stage A: Preparation of the alumina supported metal oxide: 1A- 110.48 gr. of hydrous Cr3+ nitrate were dissolved in 188.78 ml of hot distillated water (solution I). 2A- Solution I was impregnated with 166.78 gr. of alumina to form a paste, the paste was put to dry in the shade. 3A- The dried product was heated at 110°C for 4 hours. 4A- The outcomming mass was heated at 550°C in the oven for 5 hours. Stage B: impregnation of Syrian bentonite (B) and Syrian zeolite (Z) with hydrous chromium solution: 1B- 400 gr. of Syrian bentonite were impregnated (B) with 400 ml of 0.075 N hydrous chromium nitrate solution. 2B- 400 gr. of Syrian bentonite were impregnated (B) with 400 ml of 0.075 N hydrous chromium nitrate solution. 17

3B- 333 gr. of natural Syrian zeolite (Z) from Sis deposit was mixed with 111 ml of 0.6 N hydrous chromium nitrate solution. Stage C: 1C- The produced powder of stage A was divided into three parts, each of them was added to each one of the masses 1B, 2B, 3B of stage B respectively. 2C- The paste was formed in cylinder of 5 cm. length and internal diameter of 2 mm. 3C- The received tubes were dried at room temperature in shade for 7 days. 4C- The dried tubes were heated in the Carbolite oven at 550°C for 5 hours. 5C- The prepared catalyst was used after cooling in the very oven till the next day (Fig. 3). I – 1 – 12-2: Experimental Results: I – 1 – 12-2-1:N2 adsorption – desorption measurements I – 1 – 12-2-2:Results of the catalytic study: I – 1 – 12-2-2-1: Dependence of conversion rate and time on different temperatures and flow rates. I – 1 – 12-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures on the parameters of equation for micro pulse-like flow reaction I – 1 – 12-2-2-3: Calculation of the kinetic parameters. I – 1 – 12-2-3:IR characteristics diagrams. I – 1 – 12-2: Experimental Results: I – 1 – 12-2-1:N2 adsorption – desorption measurements: surface area of the catalyst was measured by means of Micromeritics Gemini 3 device data of which are listed in Table (26). The Table (26) indicates a decrease as for the catalyst area and slight differences in the direction bentonitezeolite-ZB-Cr2O3,Al2O3-Cr2O3, whereas the pore diameter average increased slightly after the addition Cr2O3. Plots for N2 adsorption the ZB-Cr2O3, Al2O3- Cr2O3 catalyst and pore distribution are shown in Figs (29-30). The adsorption desorption isotherm may be classified as type II of De Bore's classification of capillary condensation hysteresis loops [9]. 18

I – 1 – 12-2-2:Results of the catalytic study: I – 1 – 12-2-2-1: Dependence of conversion rate on time at different temperatures and flow rates: Dependence of the de-CH conversion on time and different flow rate at 310°C are shown in the flowing tables and curves. These results and curves show increasing conversion rates at first, to reach stationary state and consequently a constant conversion rate later Table 27). - Dependence of the de- CH reaction on temperature at close flow rates for the catalyst ZB-Cr2O3, Al2O3- Cr2O3 at the flowing space velocities: -Result for the space velocities: 216.3712- 198.2497-211.1097214.5841 h-1 (Table 28 and Fig. 31). The Fig. 30 indicates maximum deCH at 310°C and 400°C. -Result for the space velocities: 249.9523- 247.1841-248.7588249.9523 h-1 (Table 29 and Fig. 32). The Fig. 32 indicates maximum deCH at 355°C and 400°C [17-19]. I – 1 – 12-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures on the parameters of equation for micro pulse-like flow reaction: As in Habgood and Basset work equation [5] 1/m [Ln (1/(1-X))] = 1/F0 Where: m: is the mass of the catalyst, X: conversion rate for the de-CH, reaction, KA: the adsorption equilibrium constant, k: the real rate constant as for the CH reagent. The result for 310°C (Table 30 and Fig. 33). The results in Table 30 show good agreement with the equation (10) indicating a tendency to a pseudo first order reaction as for de-CH conversion in conditions of our experiments. Values of KAk by means of the equation (10) for CH: Slope = KAk 22.4 KAk = Slope / 22.4 KAk = 0.068 / 22.4 = 0.00303 (m mol)/ gr. sec atm Those results are generally in accord with the results obtained by [15] where a fractional order for de-NO as observed on a different catalyst from ours. I – 1 – 12-2-2-3: Calculation activation energy: The activation energy were calculated by means of equation: Log {1/m [Ln (1/(1-x))]} =  (1/T) 19

Activation energy = slope 2.303 R constant

where

R

is

universal

gases

The activation energy was calculated with data of 260°C – 310°C - 355°C - 400°C and flow rates of at tow groups (A & B) - Group A: Flow rates of at 6.3442 - 5.8128 - 6.1899 - 6.2919 cm3/sec (Table 31 and Fig. 34). The calculated apparent activation energy for group A is 9.5514 K Jol/mol. - Group B: Flow rates of at 7.3288 - 7.2476 - 7.2938 - 7.3288 cm3/sec (Table 32 and Fig. 35). The calculated apparent activation energy for group B is 21.6145 K Jol/mol. I – 1 – 12-2-3:IR characteristics diagrams: The characteristic IR diagrams of the catalyst before and after the catalytic reaction are shown in Figs. 36 and 37 respectively. The distinguished wave numbers are listed in Table (33) the resulting wave numbers may be attributed to Valence vibrations' listed in that table. Heat treatment and chemical structure of the catalyst have the mean impact on the resulting IR diagrams. I – 1 – 13: Preparation and the experiments of the Syrian chromium and molybdenum catalyst: I – 1 –13-1: The catalyst ZB-Cr2O3, Al2O3-Cr2O3-MoO3: it was prepared as the following stages: Stage A: Preparation of the alumina supported metal oxide: 1A- 6.66 gr. of ammonium molybdenum were dissolved in 88.3 ml of hot distillated water, 110.48 gr. of hydrous chromium nitrate were added and dissolved to the solution (solution I). 2A- Solution (I) was impregnated with 166.78 gr. of alumina to form a paste, the paste was put to dry in the shade. 3A- The dried product was heated at 110°C for 4 hours. 4A- The outcomming mass was heated at 550°C in the oven for 5 hours. Stage B: impregnation of Syrian bentonite (B) and Syrian zeolite (Z) with silver nitrate solution: 1B- 400 gr. of Syrian bentonite (B) were impregnated with 400 ml of 0.075 N hydrous chromium nitrate solution.

20

2B- 393 gr. of Syrian bentonite (B) were impregnated with 393 ml of 0.075 N hydrous chromium nitrate solution. 3B- 333 gr. of natural Syrian zeolite (Z) from Sis deposit was mixed with 111 ml of 0.6 N hydrous chromium nitrate solution. Stage C: 1C- The produced powder of stage A was divided into three parts, each of them was added to each one of the masses 1B, 2B, 3B of stage B respectively. 2C- The paste was formed in cylinder of 5 cm. length and internal diameter of 2 mm. 3C- The received tubes were dried at room temperature in shade for 7 days. 4C- The dried tubes were heated in the Carbolite oven at 550°C for 5 hours. 5C- The prepared catalyst was used after cooling in the very oven till the next day (Fig. 3). I – 1 – 13-2: Experimental Results: I – 1 – 13-2-1:N2 adsorption – desorption measurements I – 1 – 13-2-2:Results of the catalytic study: I – 1 – 13-2-2-1: Dependence of conversion rate and time on different temperatures and flow rates. I – 1 – 13-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures on the parameters of equation for micro pulse-like flow reaction I – 1 – 13-2-2-3: Calculation of the kinetic parameters. I – 1 – 13-2-3:IR characteristics diagrams. I – 1 – 13-2: Experimental Results: I – 1 – 13-2-1:N2 adsorption – desorption measurements: surface area of the catalyst was measured by means of Micromeritics Gemini 3 device data of which are listed in Table (34). The Table (34) indicates a sharp decrease of surface area in the direction bentonite-zeolite-ZB-Cr2O3, Al2O3-Cr2O3-MoO3, whereas the pore diameter average increased in the same direction. Plots for N2 adsorption the ZB-Cr2O3, Al2O3-Cr2O3-MoO3 21

catalyst and pore distribution are shown in Figs (38-39). The adsorption desorption isotherm may be classified as type II of De Bore's classification of capillary condensation hysteresis loops [9]. I – 1 – 13-2-2:Results of the catalytic study: I – 1 – 13-2-2-1: Dependence of conversion rate on time at different temperatures and flow rates: Dependence of the de-CH conversion on time and different flow rate at 310°C are shown in the flowing tables and curves. These results and curves show increasing conversion rates at first, to reach stationary state and consequently a constant conversion rate later (Table 35). -Dependence of the de- CH reaction on temperature at close flow rates for the catalyst ZB-Cr2O3, Al2O3-Cr2O3-MoO3 at the flowing space velocities: -Result for the space velocities: 209.1289 - 208.2946 - 209.4101204.7453h-1 (Table 36 and Fig. 40). The Fig. 40 indicates maximum deCH at 310°C till 400°C. -Result for the space velocities: 347.1557 - 347.1557 - 352.6421 344.8561 h-1 (Table 37 and Fig. 41). The Fig. 41 indicates maximum deCH at 355°C and 400°C decrease at 260°C [17-19]. I – 1 – 13-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures on the parameters of equation for micro pulse-like flow reaction: As in Habgood and Basset work equation [5] 1/m [Ln (1/(1-X))] = 1/F0 Where: m: is the mass of the catalyst, X: conversion rate for the de-CH, reaction, KA: the adsorption equilibrium constant, k: the real rate constant as for the CH reagent. The result for 310°C (Table 38 and Fig. 42). The results in Table 38 show good agreement with the equation (10) indicating a tendency to a pseudo first order reaction as for de-CH conversion in conditions of our experiments. Values of KAk by means of the equation (10) for CH: Slope = KAk 22.4 KAk = Slope / 22.4 KAk = 0.078 / 22.4 = 0.00348 (m mol)/ gr. sec atm

22

Those results are generally in accord with the results obtained by [15] where a fractional order for de-NO as observed on a different catalyst from ours. I – 1 – 13-2-2-3: Calculation activation energy: The activation energy were calculated by means of equation: Log {1/m [Ln (1/(1-x))]} =  (1/T) Activation energy = slope 2.303 R where R is universal gases constant The activation energy was calculated with data of 260°C – 310°C - 355°C - 400°C and flow rates of at two groups (A & B) -Group A: Flow rates of at 6.1318 - 6.1318 - 6.1401 - 6.0033 cm3/sec (Table 39 and Fig. 43). The calculated apparent activation energy for group A is 14. 2840 K Jol/mol. - Group B: Flow rates of at 10.1789 - 10.1789 - 10.3397 - 10.1115 cm3/sec (Table 40 and Fig. 44). The calculated apparent activation energy for group B is 31.9910 K Jol/mol. I – 1 – 13-2-3:IR characteristics diagrams: The characteristic IR diagrams of the catalyst before and after the catalytic reaction are shown in Figs. 45 and 46, respectively. The distinguished wave numbers are listed in Table (41) the resulting wave numbers may be attributed to Valence vibrations' listed in that table. Heat treatment and chemical structure of the catalyst have the mean impact on the resulting IR diagrams. II- A comparative study was conducted between our catalyst ZJBAg2O, Al2O3-Ag2O and a commercial catalyst manufactured for use in gasoline vehicles: The experimental measurement were carried out with our developed rig in almost close conditions. Results of NO, NOx and CH removal catalyzed by our catalysts ZJB-Ag2O, Al2O3-Ag2O and ZB-Cr2O3, Al2O3-Cr2O3-MoO3 are in close agreement with those received when the commercial catalyst was applied in the same rig (Tables 42 and 43).

23

Figures, Tables and Plots:

Fig. 1: scheme of the gas measurement unit

24

Fig. 2: A photo graph of the related developed to Fig. (1) rig.

25

Fig. 3: Fractions of silver catalyst ZB-Ag2O, Al2O3-Ag2O Table (1): Data surface properties for bentonite (B), zeolite (Z), the combined bentonite and zeolite (ZB) and the catalyst ZB-Ag2O, Al2O3-Ag2O ZB-Ag2O, Al2O3Ag2O

Combined ZB

Zeolite

Bentonite

(Z)

(B)

Sample of sliver Syrian catalyst Surface area

27.1070

52.6014

49.3041

51.7946

42.5744

81.9353

76.2058

82.1938

2.8837

9.5036

13.3858

0.4878

Micropore area m2/gr.

24.2233

43.0978

35.9183

51.3067

External surface area m2/gr.

0.0013

0.0047

0.0069

0.000017

Micropore value cm3/gr.

0.0425

0.0631

0.0515

0.0620

Overall micropore area a certain value P/P0 cm3/gr.

62.6644

48.0197

41.7892

47.8927

Average pore diameter A0

(m2/gr. BET) Surface area

26

(m2/gr. Langmure)

Fig. 4: N2 adsorption – desorption isotherms for the catalyst ZB-Ag2O, Al2O3-Ag2O

Fig. 5: Pore volume distribution as a function of diameters in case of adsorption for the catalyst ZB-Ag2O, Al2O3-Ag2O

27

Table (2): Results and curves for conversion rate of the de-NO and de-NOx, reactions at 150°C and different space velocities for ZBAg2O, Al2O3-Ag2O

211.1097 h-1

Space Velocity

°200

Temperature

Removal of NOx %

Removal of NO %

0

0

Sec 0

78.0822

77.1429

60

78.0822

77.1429

120

80.8219

80.0000

180

283.0085 h-1

Space Velocity

°200

Temperature

Syrian sliver catalyst

Removal of NOx %

Removal of NO %

0

0

Sec 0

82.9060

84.0708

60

84.6154

84.0708

120

84.6154

84.0708

180

86.3248

85.8407

240

86.3248

85.8407

300

28

Syrian sliver catalyst Time

Time

367.5768 h-1

Space Velocity

°200

Temperature

Removal of NOx %

Syrian sliver catalyst

Removal of NO %

Time

0 74.5763 77.9661 77.9661

0 73.6842 77.1930 77.1930

0 60 120 180

519.0041 h-1

Space Velocity

°200

Temperature

Syrian sliver catalyst

Removal of NOx %

Removal of NO %

Time

0 69.9531 70.8920 71.8310 72.7700 74.6479 74.6479 75.5869

0 69.6078 70.5882 71.5686 72.5490 74.5098 74.5098 75.4902

0 60 120 180 240 300 360 420

29

Sec

Sec

589.5094 h-1

Space Velocity

°200

Temperature

Removal of NOx %

Syrian sliver catalyst

Removal of NO %

Time

0

0

0

62.3932

62.8319

60

62.3932

62.8319

120

62.3932

62.8319

180

Sec

Table (3): Dependence of de-NO, de-NOx Conversion at different temperatures at close space velocities for ZB-Ag2O, Al2O3-Ag2O

Space Velocity h-1

de-NOx (%)

de-NO (%)

Temperature C°

203.1487

72.9730

72.9730

°150

238.5045

57.8947

57.8947

°175

211.1097

80.8219

80.0000

°200

196.3688

47.8261

48.3146

°250

30

Fig. 6: Curves of de-NO, de-NOx as a function of temperatures for ZB-Ag2O, Al2O3-Ag2O

Table (4): Dependence of de-NO, de-NOx Conversion at different temperatures at close space velocities for ZB-Ag2O, Al2O3-Ag2O

Space Velocity h-1

de-NOx (%)

de-NO (%)

Temperature C°

274.5508

69.2308

68.2540

°150

298.1306

56.3636

54.7170

°175

283.0085

86.3248

85.8407

°200

272.17

37.0787

36.4706

°250

Fig. 7: Curves of de-NO, de-NOx as a function of temperatures for ZB-Ag2O, Al2O3-Ag2O 31

Table (5): Dependence of 1/m [ln (1/(1-X))] on 1/F0 for de-NO, deNOx at 150°C for ZB-Ag2O, Al2O3-Ag2O

NOx

NO

1/m [Ln (1/(1-X))]

1/m [Ln (1/(1-X))]

0.0121

0.0121

0.1679

0.0115

0.0111

0.1242

0.0095

0.0093

0.1013

0.0061

0.0060

0.0738

0.0046

0.0045

0.0567

0.0026

0.0027

0.0295

1/F0

Fig. 8: 1/m [ln (1/(1-X))] as a function of 1/F0 for de-NO, de-NOx catalytic reaction for ZB-Ag2O, Al2O3-Ag2O

32

Fig. 9: IR Characteristic diagram of the catalyst before catalytic reaction

Fig. 10: IR characteristic diagram of the catalyst after catalytic reaction

33

Table (6): The observed Valence vibrations' wave numbers characteristic for ZB-Ag2O, Al2O3-Ag2O before and after the catalytic reaction Bonds

AL-OH

O-Me…OAds

OH Hydrogen bonds with metal oxide

Valence vibrations' Wave Number

cm-1

cm-1

cm-1

1051.01

1456.96

3445.21

Valence vibrations' Wave Number Before Catalytic Reaction

1045.23

1426.10

3450.03

Valence vibrations' Wave Number After Catalytic Reaction

Si-OH

Catalyst

Table (7): Data surface properties for bentonite (B), zeolite (Z), the combined bentonite and zeolite (ZB) and the catalyst ZB-Ag2O, Al2O3-MoO3 - Ag2O ZB-Ag2O, Al2O3MoO3Ag2O

Combined ZB

Zeolite

Bentonite

(Z)

(B)

34.4682

52.6014

49.3041

51.7946

Sample of Molybdenum and Silver Syrian catalyst

Surface area (m2/gr. BET) Surface area 54.4739

81.9353

76.2058

82.1938

1.3130

9.5036

13.3858

0.4878

Micropore area m2/gr.

33.1553

43.0978

35.9183

51.3067

External surface area m2/gr.

0.00046

0.0047

0.0069

0.000017

Micropore value cm3/gr.

0.0489

0.0631

0.0515

0.0620

Overall micropore area a certain value P/P0 cm3/gr.

56.7551

48.0197

41.7892

47.8927

Average pore diameter A0

34

(m2/gr. Langmure)

Fig. 11: N2 adsorption – desorption isotherms for the catalyst ZB-Ag2O, Al2O3-MoO3- Ag2O

Fig. 12: Pore volume distribution as a function of diameters in case of adsorption for the catalyst ZB-Ag2O, Al2O3-MoO3- Ag2O

35

Table (8): Results and curves for conversion rate of the de-NO, deNOx and de-CH reactions at 150°C and different space velocities for ZB-Ag2O, Al2O3-MoO3- Ag2O 246.4030 h-1

Space Velocity

°150

Temperature

Syrian Molybdenum and Silver catalyst

Removal of NOx %

Removal of NO %

Removal of CH %

Time

0.0000 62.1622 64.8649 67.5676 67.5676 67.5676

0.0000 61.1111 63.8889 66.6667 66.6667 66.6667

217.5772h-1

Space Velocity

°150

Temperature

Syrian Molybdenum and Silver catalyst

Removal of NO %

Removal of CH %

Time

Sec

Removal of NOx %

0.0000 31.8841 33.3333 34.0580 32.6087 32.6087

0.0000 40 71 132 188 248

0.0000 69.2308 73.0769 73.0769 75.0000 75.0000

0.0000 68.0000 72.0000 72.0000 74.0000 74.0000

0.0000 47.0968 52.2581 56.1290 53.5484 56.1290

0.0000 60 120 180 240 300

328.8841 h-1

Space Velocity

287.1702 h-1

Space Velocity

°150

Temperature

Syrian Molybdenum and Silver catalyst

°150

Temperature

Syrian Molybdenum and Silver catalyst

Removal of NOx %

Removal of NO %

Removal of CH %

Time

0 37.8378 48.6486 51.3514 51.3514

0 38.8889 47.2222 50.0000 50.0000

0.0000 18.6567 22.3881 23.8806 26.1194

0 60 120 180 240

Sec

Sec

Removal of NOx %

Removal of NO %

Removal of CH %

Time

0.0000 48.0000 61.3333 66.6667 66.6667 68.0000 69.3333

0.0000 47.2222 61.1111 66.6667 66.6667 68.0556 69.4444

0.0000 25.0000 35.5263 37.5000 37.5000 38.8158 38.8158

0.0000 60 120 180 240 300 360

36

Sec

929.8820h-1

Space Velocity

°150

Temperature

Syrian Molybdenum and Silver catalyst

Removal of NOx %

Removal of NO %

Removal of CH %

Time

0.0000 22.7273 22.7273 20.4545

0.0000 21.4286 21.4286 19.0476

0.0000 2.3256 -

0.0000 60 120 180

Sec

491.2594 h-1

Space Velocity

°150

Temperature

Syrian Molybdenum and Silver catalyst

Removal of NOx %

Removal of NO %

Removal of CH %

Time

0.0000 34.2105 34.2105 31.5789 31.5789

0.0000 35.1351 35.1351 32.4324 32.4324

0.0000 18.5714 14.2857 14.2857 8.5714

0.0000 71 131 191 251

37

Sec

Table 9: Dependence of de-NO, de-NOx, de-CH Conversion at different temperatures at close space velocities for ZB-Ag2O, Al2O3-MoO3- Ag2O Space Velocity h-1

de-NOx (%)

de-NO (%)

249.9523

61.111

61.111

48.5714

°135

217.5772

75.0000

74.0000

56.1290

°150

222.2170

82.6920

82.0000

78.8890

°185

de-CH (%)

Temperature C°

Fig. 13: Curves of de-NO, de-NOx, de-CH as a function of temperatures for ZB-Ag2O, Al2O3-MoO3 - Ag2O Table 10: Dependence of de-NO, de-NOx, de-CH Conversion at different temperatures at close space velocities for ZB-Ag2O, Al2O3-MoO3- Ag2O Space Velocity h-1

de-NOx (%)

de-NO (%)

de-CH (%)

Temperature C°

268.8831

50.0000

50.0000

7.6923

°135

287.1702

69.3333

69.4444

38.8158

°150

270.2766

78.5714

77.5000

45.0549

°185

38

Fig. 14: Curves of de-NO, de-NOx, de-CH as a function of temperatures for ZB-Ag2O, Al2O3-MoO3- Ag2O Table 11: Dependence of 1/m [ln (1/(1-X))] on 1/F0 for de-NO, deNOx at 150°C for ZB-Ag2O, Al2O3-MoO3- Ag2O

NOx

NO

1/m [Ln (1/(1-X))]

1/m [Ln (1/(1-X))]

0.0138

0.0134

0.1568

0.0112

0.0120

0.1384

0.0118

0.0118

0.1188

0.0072

0.0069

0.1037

0.0038

0.0039

0.0694

0.0023

0.0021

0.0367

1/F0

Fig. 15: 1/m [ln (1/(1-X))] as a function of 1/F0 for de-NO, de-NOx catalytic reaction at 150°C for ZB-Ag2O, Al2O3-MoO3 - Ag2O 39

Table 12: Dependence of 1/m [ln (1/(1-X))] on 1/F0 for de-NO, deNOx at 185°C for ZB-Ag2O, Al2O3-MoO3- Ag2O NOx

NO

1/m [Ln (1/(1-X))]

1/m [Ln (1/(1-X))]

0.0175 0.0154 0.0107 0.0107 0.0044 0.0016

0.0171 0.0149 0.0103 0.0103 0.0043 0.0017

1/F0

0.1535 0.1262 0.1044 0.0845 0.0443 0.0186

Fig. 16: 1/m [ln (1/(1-X))] as a function of 1/F0 for de-NO, de-NOx catalytic reaction at 185°C for ZB-Ag2O, Al2O3-MoO3- Ag2O

Table 13: Values of KAk by means of the equation (10) de-NO

de-NOx Temperatures

KAk

KAk

m mol/ gr. sec atm

m mol/ gr. sec atm

0.00361

0.0037

150°

0.00495

0.00513

185°

40

C

Table 14: The kinetic parameters for group A for the activation energy for ZB-Ag2O, Al2O3-MoO3- Ag2O

NOx

NO

K-1

F0 Flow Rate cm3/sec

-2.0259

-2.0259

0.0025

7.3288

-1.9496

-1.9603

0.0024

7.2247

-1.7571

-1.7669

0.0022

6.5156

Log {1/m [Ln (1/(1-X))]}

1/T

Fig. 17: Diagrams for Log {1/m [Ln (1/(1-X))]} =  (1/T) for group A for ZB-Ag2O, Al2O3-MoO3- Ag2O

Table 15: The kinetic parameters for group B for the activation energy for ZB-Ag2O, Al2O3-MoO3- Ag2O F0

Log {1/m [Ln (1/(1-X))]}

1/T -1

K

Flow Rate cm3/sec

NOx

NO

-2.1603

-2.1603

0.0025

7.8839

-1.9285

-1.9272

0.0024

8.4201

-1.8135

-1.8275

0.0022

7.9247

41

Fig. 18: Diagrams for Log {1/m [Ln (1/(1-X))]} =  (1/T) for group B for ZB-Ag2O, Al2O3-MoO3- Ag2O

Fig. 19: IR characteristic diagram of the catalyst before catalytic reaction

42

Fig. 20: IR characteristic diagram of the catalyst after catalytic reaction Table 16: The observed Valence vibrations' wave numbers characteristic for ZB-Ag2O, Al2O3-MoO3- Ag2O before and after the catalytic reaction Bonds

AL-OH

O-Me…OAds

OH Hydrogen bonds with metal oxide

cm-1

cm-1

cm-1

Si-OH

Catalyst

3451.96

Valence vibrations' Wave Number Before Catalytic Reaction

3373.85

Valence vibrations' Wave Number After Catalytic Reaction

1424.17 1043.30

Valence vibrations' Wave Number

1639.20 1468.53 1033.66 1508.06

43

Table 17: Data surface properties for bentonite (B), zeolite (ZJ), the combined bentonite and zeolite (ZJB) and the catalyst ZJB-Ag2O, Al2O3Ag2O

ZJB-Ag2O, Combined Al2O3ZJB Ag2O

Zeolite

Bentonite

Sample of Silver

(ZJ)

(B)

Jordanian catalyst Surface area

23.2847

59.5029

51.4587

51.7946

36.5823

92.7012

78.6582

82.1938

2.7801

10.5466

20.0431

0.4878

Micropore area m2/gr.

20.5046

48.9563

31.4156

51.3067

External surface area m2/gr.

0.001265

0.005249

0.010510

0.000017

Micropore value cm3/gr.

0.036630

0.067492

0.045336

0.0620

Overall micropore area a certain value P/P0 cm3/gr.

62.9256

45.3706

35.2406

47.8927

Average pore diameter A0

(m2/gr. BET) Surface area (m2/gr. Langmure)

Fig. 21: N2 adsorption – desorption isotherms for the catalyst ZJB-Ag2O, Al2O3Ag2O

44

Fig. 22: Pore volume distribution as a function of diameters in case of adsorption for the catalyst ZJB-Ag2O, Al2O3-Ag2O

Table 18: Results and curves for conversion rate of the de-NO and de-NOx, reactions at 150°C and different space velocities for ZJBAg2O, Al2O3-Ag2O

211.6815 h-1

Space Velocity

°150

Temperature

Removal of NOx %

Removal of NO %

0

0

Sec 0

90.9091

90.4762

60

90.9091

90.4762

120

90.9091

90.4762

180

45

Jordanian sliver catalyst Time

241.4539 h-1

Space Velocity

°150

Temperature

Removal of NOx %

Removal of NO %

0

0

Sec 0

87.7551

87.2340

60

87.7551

87.2340

120

87.7551

87.2340

180

282.4961 h-1

Space Velocity

°150

Temperature

Jordanian sliver catalyst

Removal of NOx %

Removal of NO %

0

0

Sec 0

85.7143

85.1852

60

85.7143

85.1852

120

85.7143

85.1852

180

46

Jordanian sliver catalyst Time

Time

355.0448 h-1

Space Velocity

°150

Temperature

Removal of NOx %

Removal of NO %

0

0

Sec 0

82.3529

81.8182

60

82.3529

81.8182

120

82.3529

81.8182

180

437.5915 h-1

Space Velocity

°150

Temperature

Jordanian sliver catalyst

Removal of NOx %

Removal of NO %

0

0

Sec 0

80.6452

79.7753

60

78.4946

77.5281

120

76.3441

75.2809

180

76.3441

75.2809

240

Jordanian sliver catalyst Time

Time

Table 19: Dependence of de-NO, de-NOx Conversion at different temperatures at close space velocities for ZJB-Ag2O, Al2O3-Ag2O Space Velocity h-1

de-NOx (%)

de-NO (%)

Temperature C°

211.6815

90.9091

90.4762

°150

211.1097

84.9057

84.3137

°185

243.2448

84.6154

84.6154

°200

205.014

46.1538

46.1538

°250

47

Fig. 23: Curves of de-NO, de-NOx as a function of temperatures for ZJB-Ag2O, Al2O3-Ag2O Table 20: Dependence of de-NO, de-NOx Conversion at different temperatures at close space velocities for ZJB-Ag2O, Al2O3-Ag2O Space Velocity h-1

de-NOx (%)

de-NO (%)

Temperature C°

355.0448

82.3529

81.8182

°150

359.1284

64.1509

62.7451

°185

351.8485

68.8889

67.4419

°200

347.1557

48.2759

46.4286

°250

Fig. 24: Curves of de-NO, de-NOx as a function of temperatures for ZJB-Ag2O, Al2O3-Ag2O

48

Table 21: Dependence of 1/m [ln (1/(1-X))] on 1/F0 for de-NO, deNOx at 150°C for ZJB-Ag2O, Al2O3-Ag2O NOx

NO

1/m [Ln (1/(1-X))]

1/m [Ln (1/(1-X))]

0.0238

0.0233

0.1611

0.0208

0.0204

0.1413

0.0193

0.0189

0.1207

0.0172

0.0169

0.0961

0.0150

0.0146

0.0779

1/F0

Fig. 25: 1/m [ln (1/(1-X))] as a function of 1/F0 for de-NO, de-NOx catalytic reaction at 150°C for ZJB-Ag2O, Al2O3-Ag2O Table 22: Dependence of 1/m [ln (1/(1-X))] on 1/F0 for de-NO, deNOx at 185°C for ZJB-Ag2O, Al2O3-Ag2O NOx

NO

1/m [Ln (1/(1-X))]

1/m [Ln (1/(1-X))]

0.0187

0.0184

0.1616

0.0157

0.0154

0.1375

0.0133

0.0130

0.1175

0.0105

0.0101

0.0950

0.0090

0.0089

0.0742

49

1/F0

Fig. 26: 1/m [ln (1/(1-X))] as a function of 1/F0 for de-NO, de-NOx catalytic reaction at 185°C for ZJB-Ag2O, Al2O3-Ag2O Table 23: Values of KAk by means of the equation (10) de-NO

de-NOx Temperatures

KAk

KAk

m mol/ gr. sec atm

m mol/ gr. sec atm

0.006875

0.00701

150°

0.005

0.00509

185°

C

Table 24: Dependence of KAk on Temperature (T) for NO, NOx de-NOx

de-NO Temperature

KAk

KA k

m mol/ gr. sec atm

m mol/ gr. sec atm

0.00701

0.006875

423

0.00509

0.005

458

0.0054

0.00537

473

0.00209

0.00205

523

50

T

Fig. 27: IR Characteristic diagram of the catalyst before catalytic reaction

Fig. 28: IR Characteristic diagram of the catalyst after catalytic reaction

51

Table 25: The observed Valence vibrations' wave numbers characteristic for ZJB-Ag2O, Al2O3-Ag2O before and after the catalytic reaction Bonds

AL-OH

O-Me…OAds

OH Hydrogen bonds with metal oxide

Valence vibrations' Wave Number

cm-1

cm-1

cm-1

1063.55

1458.89

3447.13

Valence vibrations' Wave Before Catalytic Reaction

1049.09

1422.24

3446.17

Valence vibrations' Wave Number After Catalytic Reaction

Si-OH

Catalyst Number

Table 26: Data surface properties for bentonite (B), zeolite (Z), the combined bentonite and zeolite (ZB) and the catalyst ZB-Cr2O3, Al2O3- Cr2O3 ZB-Cr2O3, Combined Al2O3ZB Cr2O3

Zeolite

Bentonite

(Z)

(B)

Sample of chromium Syrian catalyst Surface area

43.8431

52.7564

50.3678

51.7946

69.1211

82.1931

77.6223

82.1938

3.1516

9.3874

14.2969

0.4878

Micropore area m2/gr.

40.6915

43.3690

36.0710

51.3067

External surface area m2/gr.

0.001308

0.004654

0.007487

0.000017

Micropore value cm3/gr.

0.062081

0.063976

0.047057

0.0620

Overall micropore area a certain value P/P0 cm3/gr.

56.6395

48.5065

37.3709

47.8927

Average pore diameter A0

(m2/gr. BET) Surface area

52

(m2/gr. Langmure)

Fig. 29: N2 adsorption – desorption isotherms for the catalyst ZB-Cr2O3, Al2O3- Cr2O3

Fig. 30: Pore volume distribution as a function of diameters in case of adsorption for the catalyst ZB-Cr2O3, Al2O3- Cr2O3

53

Table 27: Results and curves for conversion rate of the de-NO and de-NOx, reactions at 310°C and different space velocities for ZBAg2O, Al2O3-Ag2O Space Velocity 198.2497 h-1

Syrian chromium catalyst

Temperature 310°

Space Velocity 186.8550 h-1

Syrian chromium catalyst

Temperature 310°

Removal of CH

Time

Removal of CH

Time

% 0

Sec 0

% 0

Sec 0

76.7123

60

76.6667

60

78.0822

120

75.0000

120

79.4521

180

70.0000

180

Space Velocity 308.7349 h-1

Syrian chromium catalyst

Temperature 310°

Space Velocity 247.1841 h-1

Syrian chromium catalyst

Temperature 310°

Removal of CH

Time

Removal of CH

Time

% 0

Sec 0

% 0

Sec 0

33.3333

60

37.3333

60

40.6250

120

65.3333

120

43.7500

180

69.3333

180

54

Space Velocity 347.1557 h-1

Syrian chromium catalyst

Temperature 310° Removal of CH

Time

% 0

Sec 0

19.5767

60

32.2751

120

37.5661

180

34.3915

240

Table 28: Dependence of de-CH Conversion at different temperatures at close space velocities for ZB-Cr2O3, Al2O3- Cr2O3 Space Velocity h-1

de-CH (%)

Temperature C°

216.3712

63.2911

°260

198.2497

79.4521

°310

211.1097

76.4706

°355

214.5841

79.5455

°400

55

Fig. 31: Curves of de-CH as a function of temperatures for ZB-Cr2O3, Al2O3- Cr2O3 Table 29: Dependence of de-CH Conversion at different temperatures at close space velocities for ZB-Cr2O3, Al2O3- Cr2O3 Space Velocity h-1

de-CH (%)

Temperature C°

249.9523

52.9412

°260

247.1841

69.3333

°310

248.7588

85.1351

°355

249.9523

84.9057

°400

Fig. 32: Curves of de-CH as a function of temperatures for ZB-Cr2O3, Al2O3- Cr2O3

56

Table 30: Dependence of 1/m [ln (1/(1-X))] on 1/F0 for de-CH at 310°C for ZB-Cr2O3, Al2O3- Cr2O3 CH 1/F0

1/m [Ln (1/(1-X))] 0.0133

0.1825

0.0151

0.1720

0.0085

0.1380

0.0049

0.1105

0.0037

0.0982

Fig. 33: 1/m [ln (1/(1-X))] as a function of 1/F0 for de-CH catalytic reaction at 310° for ZB-Cr2O3, Al2O3- Cr2O3

Table 31: The kinetic parameters for the activation energy for Group A for ZB-Cr2O3, Al2O3- Cr2O3 F0

Log {1/m [Ln (1/(1-X))]}

1/T -1

K

CH

Flow Rate cm3/sec

-2.0024

0.0019

6.3442

-1.8221

0.0017

5.8128

-1.8261

0.0016

6.1899

-1.8028

0.0015

6.2919

57

Fig. 34: Diagrams for Log {1/m [Ln (1/(1-X))]} =  (1/T) for group A for ZB-Cr2O3, Al2O3- Cr2O3 Table 32: The kinetic parameters for the activation energy for Group B for ZB-Cr2O3, Al2O3- Cr2O3 Log {1/m [Ln (1/(1-X))]}

1/T

CH

K-1

-2.1570 -2.0731 -1.7501 -1.7546

0.0019 0.0017 0.0016 0.0015

F0 Flow Rate cm3/sec

7.3288 7.2476 7.2938 7.3288

Fig. 35: Diagrams for Log {1/m [Ln (1/(1-X))]} =  (1/T) for group B for ZB-Cr2O3, Al2O3- Cr2O3

58

Fig. 36: IR characteristic diagram of the catalyst before catalytic reaction

Fig. 37: IR characteristic diagram of the catalyst after catalytic reaction

59

Table 33: The observed Valence vibrations' wave numbers characteristic for ZB-Cr2O3, Al2O3- Cr2O3 before and after the catalytic reaction Bonds O-Me…OAds cm-1

OH AL-OH Valence vibrations' Wave Number Hydrogen Si-OH bonds with metal oxide cm-1 Catalyst -1 cm

1049.09

1422.24

1049.09

1457.92

3448.10 Valence vibrations' Wave Number Before Catalytic Reaction 2365.26 3448.10 2517.61

Valence vibrations' Wave Number After Catalytic Reaction

Table 34: Data surface properties for bentonite (B), zeolite (Z), the combined bentonite and zeolite (ZB) and the catalyst ZB-Cr2O3, Al2O3-Cr2O3-MoO3 ZB-Cr2O3, Al2O3Combined Cr2O3ZB MoO3

33.6362

52.7564

Zeolite

Bentonite

(Z)

(B)

50.3678

51.7946

Sample of chromium and molidium Syrian catalyst

Surface area (m2/gr. BET)

52.9426

82.1931

77.6223

82.1938

Surface area (m2/gr. Langmure)

3.1309

9.3874

14.2969

0.4878

Micropore area m2/gr.

30.5053

43.3690

36.0710

51.3067

External surface area m2/gr.

0.001368

0.004654 0.007487 0.000017

Micropore value cm3/gr.

0.047712

0.063976 0.047057

0.0620

Overall micropore area a certain value P/P0 cm3/gr.

56.7393

48.5065

47.8927

Average pore diameter A0

37.3709

60

Fig. 38: N2 adsorption – desorption isotherms for the catalyst ZB-Cr2O3, Al2O3-Cr2O3-MoO3

Fig. 39: Pore volume distribution as a function of diameters in case of adsorption for the catalyst ZB-Cr2O3, Al2O3-Cr2O3-MoO3

61

Table 35: Results and curves for conversion rate of the de-NO and de-NOx, reactions at 310°C and different space velocities for ZB-Cr2O3, Al2O3-Cr2O3-MoO3 Space Velocity 208.294 h-1

Space Velocity 188.4453 h-1

Temperature 310°

Syrian chromium & molbidium catalyst

Temperature 310°

Syrian chromium & molbidium catalyst

Removal of CH

Time

Removal of CH

Time

% 0

Sec 0

% 0

Sec 0

79.7872

60

80.1105

60

81.9149

120

82.3204

120

79.7872

180

80.1105

180

Space Velocity 278.9655 h-1

Space Velocity 233.8616 h-1

Temperature 310°

Syrian chromium & molbidium catalyst

Temperature 310°

Syrian chromium & molbidium catalyst

Removal of CH

Time

Removal of CH

Time

% 0

Sec 0

% 0

Sec 0

43.2990

60

57.0681

60

47.4227

120

60.2094

120

47.4227

180

66.4921

180

62

Space Velocity 347.1557 h-1 Temperature 310°

Syrian chromium & molbidium catalyst

Removal of CH

Time

% 0

Sec 0

41.2371

60

39.1753

120

41.2371

180

43.2990

240

Table 36: Dependence of de-CH Conversion at different temperatures at close space velocities for ZB-Cr2O3, Al2O3-Cr2O3-MoO3 Space Velocity h-1

de-CH (%)

Temperature C°

209.1289

58.8235

°260

208.2946

79.7872

°310

209.4101

81.4433

°355

204.7453

79.6296

°400

63

Fig. 40: Curves of de-CH as a function of temperatures for ZB-Cr2O3, Al2O3-Cr2O3-MoO3 Table 37: Dependence of de-CH Conversion at different temperatures at close space velocities for ZB-Cr2O3, Al2O3-Cr2O3-MoO3 Space Velocity h-1

de-CH (%)

Temperature C°

347.1557

25.9740

°260

347.1557

43.2990

°310

352.6421

73.2143

°355

344.8561

74.6032

°400

Fig. 41: Curves of de-CH as a function of temperatures for ZB-Cr2O3, Al2O3-Cr2O3-MoO3

64

Table 38: Dependence of 1/m [ln (1/(1-X))] on 1/F0 for de-CH at 310°C for ZB-Cr2O3, Al2O3-Cr2O3-MoO3 CH 1/F0

1/m [Ln (1/(1-X))] 0.0164

0.1810

0.0162

0.1637

0.0094

0.1458

0.0061

0.1223

0.0053

0.0982

Fig. 42: 1/m [ln (1/(1-X))] as a function of 1/F0 for de-CH catalytic reaction at 310° for ZB-Cr2O3, Al2O3-Cr2O3-MoO3 Table 39: The kinetic parameters for the activation energy for Group A for ZB-Cr2O3, Al2O3-Cr2O3-MoO3 Log {1/m [Ln (1/(1-X))]}

1/T

CH

K-1

-2.0560 -1.7907 -1.7681 -1.7685

0.0019 0.0017 0.0016 0.0015

F0 Flow Rate cm3/sec

65

6.1318 6.1318 6.1401 6.0033

Fig. 43: Diagrams for Log {1/m [Ln (1/(1-X))]} =  (1/T) for group A for ZB-Cr2O3, Al2O3-Cr2O3-MoO3 Table 40: The kinetic parameters for the activation energy for Group B for ZB-Cr2O3, Al2O3-Cr2O3-MoO3 Log {1/m [Ln (1/(1-X))]}

1/T

CH

K-1

-2.4772 -2.2785 -1.8844 -1.8672

0.0019 0.0017 0.0016 0.0015

F0 Flow Rate cm3/sec

10.1789 10.1789 10.3397 10.1115

Fig. 44: Diagrams for Log {1/m [Ln (1/(1-X))]} =  (1/T) for group B for ZB-Cr2O3, Al2O3-Cr2O3-MoO3

66

Fig. 45: IR characteristic diagram of the catalyst before catalytic reaction

Fig. 46: IR characteristic diagram of the catalyst after catalytic reaction

67

Table 41: The observed Valence vibrations' wave numbers characteristic for ZB-Cr2O3, Al2O3-Cr2O3-MoO3 before and after the catalytic reaction Bonds O-Me…OAds cm-1

1060.66

OH Hydrogen bonds with metal oxide cm-1

AL-OH

1513.85

2371.05

Valence vibrations' Wave Number Before Catalytic Reaction

3450.99

Valence vibrations' Wave Number After Catalytic Reaction

Si-OH cm-1

1634.38 1052.94

Valence vibrations' Wave Number

1472.38

Catalyst

2344.05 1426.10

Table 42: de-No, de-NOx rates of commercial catalyst compared with those of our catalyst Commercial Catalyst (1)

ZJB-Ag2O, Al2O3-Ag2O

Space Temperature Velocity C cm3/sec

de-NOx

de-NO

de-NOx

de-NO

%

%

%

%

-

-

% 76.3441

% 75.2809

437.5915

150

% 80

% 80

-

-

421.0787

175

68

Table 43: de-CH rates of commercial catalyst compared with those of our catalyst Commercial Catalyst (2) de-CH %

ZB-Cr2O3,Al2O3-Cr2O3-MoO3 de-CH

Space Temperature Velocity C cm3/sec

%

Space Temperature Velocity C cm3/sec

347.1557

°250

% 25.9740 347.1557

°260

301.002

°350

% 73.7705 287.1702

355

%46.9320 339.6102

400

%74.6032 344.8561

400

%43.8914

69

Industrial Chart:

70

What is claimed to: 1- Development of anew catalytic micro pulse –like flow pilot plant for use as a device for measuring the interaction between the car exhaust pollutants such as NO, NOx and CH and the catalyst to be used for the first time in the field of car exhaust between catalysis.[ section I – 1 – 3 and fig (1) (2) in the manuscript ]. 2- Modification of the theoretical basis for determination of the catalytic activity and parameters by means of the above rig in a way that fits the subject of the suggested patent. .[ section I – 1 – 4 in the manuscript]. 3- Preparation of matrixes of Syrian and Jordanian zeolites and Syrian bentonite for use as supports of metal oxides catalyzing the deNOx, de-NO and de-CH processes. 4- Synthesis of novel catalysis and described in the items (Industrial Chart p. 70): A- The catalyst ZB-Ag2O, Al2O3-Ag2O item (I – 1 –9-1) and related pp. 8-11. B- The catalyst ZB-Ag2O, Al2O3-MoO3 - Ag2O item (I – 1 –10-1) and related pp. 11-14. C- The catalyst ZJB-Ag2O, Al2O3-Ag2O item (I – 1 –11-1) and related pp. 14-17. D- The catalyst ZB-Cr2O3, Al2O3-Cr2O3 item (I – 1 –12-1) and related pp. 17-20. E- The catalyst ZB-Cr2O3, Al2O3-Cr2O3-MoO3 item (I – 1 –13-1) and related pp. 20-23.

71

ABSTRACT Researches on car exhaust gas pollutants require accurate informations particularly those of kinetics of catalytic reactions concerning de-NO, de-NOx and de-CH, that take place in the catalytic converters connected directly with the engine of the motor car. Unstable velocity of out coming flow gas from car exhaust is the main impediment to be overcome in order to determine the desired kinetic parameters. Therefore, we have constructed a laboratory pilot plant ,data obtained by means of which have been proved to be in accord with the kinetic equation for the pulse flow catalytic reactions. This pilot plant has been repeatedly used to determine the kinetic parameters and catalytic activity for new catalysts prepared by us from metal oxides supported by matrix of Syrian natural zeolite and bentonite.

Key Words: Matrixes of Syrian and Jordanian zeolites and Syrian bentonite for catalytic removal of NO – NOx and CH emitted with car exhaust gases. Flow micro pulse- like device for testing and measuring catalytic activity and kinetics for removal of NO – NOx and CH emitted with exhaust gases.

72

References: [1] Coq, B., Mauvezin, M., Delahay, G., Butet and J. B., Kieger, S., 2000, The simultaneous catalytic reduction of NO and N2O by NH3 using an Fe-zeolite-beta catalyst. Appl. Catal., B Vol. 27 pp. 193-198. [2] Burch, R., Breen, J. P., and Meunier, F. C., 2002, A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and Platinum group metal catalysts. Appl. Catal. B, Vol. 39 pp. 283-303. [3] Subbiah, A., Cho, B. K., Blint, R. J., Gujar, A., Price, G. L. and Yie, J. E., 2003, NOx reduction over metal-ion exchanged novel zeolite under lean conditions: activity and hydrothermal stability. Appl. Catal. B, Vol. 42 pp. 155-178 [4] Pieterse, J. A. Z., Brink, R. W., Booneveld, S. and Bruijn, F. A., 2003, Influence of Zeolite structure on the activity and durability of Co-PdZeolite catalyst in the reduction of NOx with methane. Appl. Catal. B, Vol. 46 pp. 239-250. [5] Bassed, D. W. and Habgood, H. W., 1959, A gas chromatographic study of the catalytic isomerization of cyclopropane. Jour. Phys. Chem., Vol. 64 pp. 769-773. [6] K. V. Topchieva, B. V. Romanovskii, L. I. Thoang, Y. W. Bizreh, Procc. 4th Inter. Cong. Catal. 2 (1971) 135. [7] Bizreh, Y. W. and Gates, B. C., 1984, Butane cracking catalyzed by the zeolite H-ZSM-5. Jour. Catal., Vol. 88 pp. 240-243. [8] Ya. Girasimov and others, Phys. Chem. 1 (1974) 534. [9] H. A. De Boer, Proc. X Symp. Colston Research Sco. Unvi. Bristol, (Eds. Everttd, N., Stone, F. S. and Butterw Orths), Sci. Bull. London (1958) 68-94. [10] Kooten, W. E. J., Krijsen, H. C., Bleek, C. M. and Calis, H. P. A., 2000, Deactivation of zeolite catalysts used for NOx removal. Appl. Catal. B, Vol. 25 pp. 125-135. [11] Ohtsuka, H. and Tabata, T., 2001, Roles of palladium and platinum in the selective catalytic reduction of nitrogen oxides by methane on palladium-platinum-loaded sulfated zirconia. Appl. Catal. B, Vol. 29 pp. 177-183.

73

[12] Shi, C., Cheng, M., Qu, Z., Yang, X. and Bao, X., 2002, On the selectively catalytic reduction of NOx with methane over Ag-ZSM-5 catalysts. Appl. Catal. B, Vol. 36 pp. 173-182. [13] Zhu, Z., Liu, Z., Liu, S., Niu, H., Hu, T., Liu, T. and Xie, Y., 2000, NO reduction with NH3 over an activated carbon-supported cooper oxide catalysts at low temperatures. Appl. Catal. B, Vol. 26 pp. 25-35. [14] Moreno-Tost, R., Castellon, E. R. and Jimenez-Lopez, A., 2006, Cobalt-iridium impregnated zirconium-doped mesoporous silica as catalysts for the selective catalytic reduction of NO with ammonia. Jour. Molec. Catal. A Chem., Vol. 248 pp. 126-134. [15] Serra, R., Vecchietti, M. J., Miro, E. and Boix, A., 2008, In, Fezeolites: Active and stable catalysts for SCR of NOx-Kinetics, characterization and deactivation studies. Catal. Today Vol. 133-135 pp. 480-486. [16] Richter, M., Bentrup, U., Eckelt, R., Schneider, M., Pohl, M. M. and Fricke, R., 2004, The effect of hydrogen on the selective catalytic reduction of NO in excess Oxygen over Ag/Al2O3. Appl. Catal. B, Vol. 51 pp. 261-274. [17] Mccabe, R. W. and Mitchell, P. J., 1986, Exhaust catalyst development for methanol-fueled vehicles: 1. A comparative study of methanol oxidation over alumina-supported catalysts containing group 9, 10, and 11 metals. Appl. Catal. B, Vol. 27 NO. 1 pp. 83-98. [18] Xanthopoulou, G. and Vekinis, G., 1998, Investigation of catalytic oxidation of carbon monoxide over a Cu–Cr-oxide catalyst made by selfpropagating high-temperature synthesis. Appl. Catal. B, Vol. 19 NO.1 pp. 37-44. [19] Mescia, D., Cauda, E., Russo, N., Fino , D., Saracco, G. and Specchia,V., 2006, Towards practical application of lanthanum chromite catalysts for diesel particulate combustion. Catal. Today, Vol. 117 NO.1-3 pp. 369-375.

74

CONTENS Page No. Title of Invention

1

I-Technical Description of the invention

2

A- Former technical condition

2

B- I-1- Technical Description of the invention

2

I – 1 – 1 Innovation

2

I – 1 – 2 Innovation step and industrial capability

2

I – 1 – 3 Technical description of the pilot plant

2

I – 1 – 4: Theoretical of the innovated development pilot plant

3

I – 1 – 5: The invented catalysts components are

6

I – 1 – 6: Equipments used in the work

6

I – 1 – 7: General Method

6

I – 1 – 8: Method of Experiment

7

I – 1 – 9: Preparation and the experiments of the catalyst

8

I – 1 – 9: Preparation and the experiments of the Syrian sliver catalyst

8

I – 1 –9-1: Preparation of The Syrian sliver catalyst ZB-Ag2O, Al2O3-Ag2O

8

I – 1 – 9-2: Experimental Results

9

I – 1 – 9-2-1: N2 adsorption – desorption measurements

9

I – 1 – 9-2-2:Results of the catalytic study

9

I – 1 – 9-2-2-1: Dependence of conversion rate and time on different temperatures and flow rates

9

75

I – 1 – 9-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures

10

I – 1 – 9-2-2-3: Calculation of the kinetic parameters

11

I – 1 – 9-2-3: IR characteristics diagrams

11

I – 1 – 10: Preparation and the experiments of the Syrian sliver and molybdenum catalyst

11

I – 1 –10-1: Preparation the catalyst ZB-Ag2O, Al2O3-MoO3 Ag2O

11

I – 1 – 10-2: Experimental Results

12

I – 1 – 10-2-1: N2 adsorption–desorption measurements

12

I – 1 – 10-2-2: Results of the catalytic study

12

I – 1 – 10-2-2-1: Dependence of conversion rate and time on different temperatures and flow rates

13

I – 1 – 10-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures

13

I – 1 – 10-2-2-3: Calculation of the kinetic parameters

13

I – 1 – 10-2-3: IR characteristics diagrams

14

I – 1 – 11: Preparation and the experiments of the Jordanian silver catalyst

14

I – 1 –11-1: Preparation the catalyst ZJB-Ag2O, Al2O3-Ag2O

14

I – 1 – 11-2: Experimental Results

15

I – 1 – 11-2-1: N2 adsorption–desorption measurements

15

I – 1 – 11-2-2: Results of the catalytic study

16

I – 1 – 11-2-2-1: Dependence of conversion rate and time on different temperatures and flow rates

16

I – 1 – 11-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures

16

76

I – 1 – 11-2-2-3: Calculation of the kinetic parameters

17

I – 1 – 11-2-3: IR characteristics diagrams

17

I – 1 – 12: Preparation and the experiments of the Syrian chromium catalyst

17

I – 1 –12-1: Preparation the catalyst ZB-Cr2O3, Al2O3-Cr2O3

17

I – 1 – 12-2: Experimental Results

18

I – 1 – 12-2-1: N2 adsorption–desorption measurements

18

I – 1 – 12-2-2: Results of the catalytic study

19

I – 1 – 12-2-2-1: Dependence of conversion rate and time on different temperatures and flow rates

19

I – 1 – 12-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures

19

I – 1 – 12-2-2-3: Calculation of the kinetic parameters

19

I – 1 – 12-2-3: IR characteristics diagrams

20

I – 1 – 13: Preparation and the experiments of the Syrian chromium and molybdenum catalyst

20

I – 1 –13-1: Preparation the catalyst ZB-Cr2O3, Al2O3-Cr2O3MoO3

20

I – 1 – 13-2: Experimental Results

21

I – 1 – 13-2-1: N2 adsorption–desorption measurements

21

I – 1 – 13-2-2: Results of the catalytic study

22

I – 1 – 13-2-2-1: Dependence of conversion rate and time on different temperatures and flow rates

22

I – 1 – 13-2-2-2: Dependence of conversion rate on flow rate of car exhaust gas at different temperatures

22

I – 1 – 13-2-2-3: Calculation of the kinetic parameters

23

77

I – 1 – 13-2-3: IR characteristics diagrams

23

II- Comparative study was conductive between our catalyst ZJB-Ag2O, Al2O3-Ag2O and a commercial catalyst manufactory for use in gasoline vehicles

23

Figures, Tables and Plots

24

Industrial Chart

70

What is claimed to

71

Abstract

72

Key Words

72

References

73

78

1-Title of the invention Removal Of OMWW By Turning Its Condensate Into NO3- Ions Adsorbents Carried On Syrian Pumice And Foam Improving Additive In Hard Soap Industry

Additional patent to 5654 patent

Prof.Dr.Y.Walid Al- Bizreh and Wareef Al-Yazjy

1

2- Technical description of the invention A- Previous technical condition: A-1 Technical description the invention

Details explanation of the invention A-1 -1- Novelty: innovative multifunctional co-ion exchangers have been synthesized from OMWW, Syrian Beyloone, and Omanii Zeolite A.

A-1 -2- Inventive step: Removal of OMWW being a main component in a novel co-ion exchangers mentioned above making a considerable contribution to the exchange activity.

A-1 -3- The industrial capability is schematically explained in (page 16 ) and the text concerning the current patent. A-1 -4-Non of research centers concerned in OMWW happened to remove the OMWW by converting it into ion exchangers along with Syrian Beyloone of 55% montmorilloite content, and Omanii Zeolite A. The results of chemical analysis of the above mentioned components are listed in tables (1,2,3 ) formula of some phenols compound in shap (1) A sample of each of the innovated co-ion exchangers can be given if required. Table (1)Chemical Structure of Raw Syrian Bentonite )Component( W% )Component( W%

AL2O3 12.18 Mn2O3 0.150

CaO 8.22 Na2O >0.06

CL>0.002

Cr2O3 0.044

P2O5 0.082

F0.020

SO3 >0.002

Fe2O3 8.52 SiO2 46.38

Table ( 2 )Chemical Structure of Oman Zeolite A

2

K2O 0.438 TiO2 1.12

MgO 8.34 L.O.I 14.18

)Component( W%

AL2O3 29.24

Na2O 17.38

SiO2 32.88

H2O 20.63

Table( 3 ) composition of OMWW which produce by press and centrifugation technologies Parameter pH Dry material Density Oil Reduction sugar Polyphenols O-Di phenol Hydroxy Tyrosol Ash COD Organic nitrogen Total phosphorous Sodium Potassium Calcium Magnesium Iron Copper Zink Manganese Nicl Cobalt Lead

Unit pH g/l g/l g/l g/l g/l mg/l g/l g/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

Traditional process 5.73-4.73 266.00-15.50 1.09-1.02 11.50-0.12 67.10-9.70 14.30-1.40 13.30-0.90 937-71 42.60-4.00 389.50-42.00 1106-154 915-157 285-38 5000-1500 408-58 337-90 86.40-16.40 4.75-1.10 6.50-1.60 8.90-2.16 1.58-0.44 0.96-0.18 1.85-0.40

3

Modern process 4.55-5.89 161.20-9.50 1.046-1.007 29.80-0.41 34.70-1.60 7.10-0.40 6.00-0.30 426-43 12.5-0.40 199.20-15.20 966-140 485-42 124-18 2500-630 200-47 180-60 31.50-8.80 3.42-1.16 4.48-1.42 5.20-0.87 1.44-0.29 48.00-0.12 0.72-0.35

O

HO

OH

HO

O

O

OH

OH

OH OH

OH

OH

p-hydroxybenzoic acid (p-HBA)

Gallic acid (GA)

O

CH3

O

OH

O

3,4-Dihydroxybenzoic acid Di-HBA

O

OH

CH3

O

OH

OH

Syringic acid (SA)

Vanillic acid (VA)

CH3

OH

HO tyrosol (Ty)

O

OH

OH

O

O

OH

OH

OH cinnamic acid CA

p-hydroxycinnamic acid p-HCA

o-hydroxycinnamic acid o-HCA

OH

HO O H3C

OH

OH

OH O O

3,4-Dihydroxycinnamic acid Di-HCA

ferulic acid (FA)

Shape (1) Formula of some phenol compounds in OMWW

4

A-1 -5- Preparation A-1 -5-1- The ion exchanger OMWWBZ-CP 100 g of Syrian Beyloon were added to 100 g of Zeolite in a thermo plastic Beaker and mixed with 100 g of OMWW until a homogenous past is formed. The past was left to the next day. In order to carry out the poly condensation procces of the phenols content 2 ml of Formaldehyde and 4 ml of Ammonia hydroxide were added to the past and well mixed. An increase in temperature of the past from 31.3 Cْ to 34.4C ْwas observed. The past became more elastic (the observed rise in temperature indicated an exothermic chemical reaction, condensation of phenols contained in a water bath at 50-60 C ْfor 40 minuets. The resulting past was left to the next day to undergo the granulation , drying and calcination at 400 Cْ. Loss of weight was 10% . In order to obtain the Na-ion exchanger, (2) g of granules were immersed in (20) ml NaCl 3N solution for 24 hours at room temperature . The ion exchanger OMWWBZ-PC was filtered, washed, and dried to be used in next step. A-1 -5-2 -The ion exchanger OMWWBZ Neither formaldehyde nor Ammonia hydroxide were used in the preparation of this ion exchanger. Zeolite, Syrian Beyloone and OMWW were mixed, being let to rest to the next day, granulated, dried at room temperature, and calcinated at 400 C ْfor 4 hours. Granules of product were immersed in 3N solution of NaCl for 24 hours, washed, dried, and prepared for conducting experiments. A-1 -5-3- The ion exchanger BZ This form was made to compare our ion exchangers with. All the above mentioned steps were implicated with one difference: we did not add OMWW to form the past, distilled water 100g was used instead. The resulting past was granulated, dried at room temperature and cacinated at 400 C ْfor 4 hours. The ion exchanger was produced in its form Na-form as mentioned above as for the other received ion exchangers. A-1 -6- Measurements (explanation) Hard water for testing the performance of the studied ion exchanger was prepared from chemical pure {(2) g CaCl2.xH2O (M=110.99) + (2)g MgSO4.7H2O} solved, and diluted to 1 liter with distilled water. 5

The ion exchanger{ (1) g} was set on a glass wool bed in ion exchanger column (section area=1cm3) . Hard water was dropped into the column by means of a Burette . (Ca+2,Mg+2) contents were Determined as the following : 5 ml of the desired water were taken with a measuring tube, along with (1) ml of buffer solution {from (440)ml ammonia solution + (54)g NH 4Cl in 1 liter distilled water} adding 0.05-0.1 gr of the indicator Irocrom Black T and titrated with 0.01M EDTA. Ca+2 was determined in a similar way with one difference that Murexide was used instead of Irocrom Black-T and NaOH 0.1N to produce a pH of 12 to 13 instead of buffer solution. Tests were conducted at room temperature with the flow rate (1ml/75 sec). Ca+2,Mg+2 ions were measured after hard water being dropped through the ion exchanger until the hardness of the out- coming water is equal with that of the incoming hard water. At this moment the absorbance capacity is determined. The ion exchangers were regenerated by immersing the used (1) g in (20) ml of 3N Sodium chloride solution for 24 hours. A-1 -7- Results : Results for the prepared ion exchangers as for dynamic method are listed in tables (4 , 5 , 6 ). Table (4 ) The ion exchange capacity of ion exchanger prepared for removing Ca+2 and Mg+2 ions( mgr.eq/100g ) Ion exchanger type Numbered of regenerated Base 1 2 3 4 5 6 7 8 9 10 Mean Sum

OMWBZ

OMWBZ-PC

BZ

238.39 180.36 180.18 171.43 198.57 162.50 207.54 196.16 206.29 169.64 165.00 188.73

234.54 193.50 161.04 177.71 150.89 220.71 202.61 194.64 183.92 187.20 160.08 187.89

210.57 150.00 165.91 162.83 163.57 182.24 171.60 162.00 167.80 136.00 136.00 164.41

6

Table (5 ) The ion exchange capacity of ion exchanger prepared for removing Ca+2 ions ( mgr.eq/100g ) Ion exchanger type Numbered of regenerated Base 1 2 3 4 5 6 7 8 9 10 Mean Sum

OMWBZ

OMWBZ-PC

BZ

201.79 135.71 155.89 139.29 154.82 141.07 162.46 153.89 160.36 130.64 147.60 153.05

184.29 167.86 126.86 142.29 125.00 171.07 155.21 152.86 143.52 150.80 132.00 150.16

206.85 133.93 134.98 123.36 125.00 141.36 150.80 129.20 120.80 109.00 110.00 135.03

Table (6 ) The ion exchange capacity of ion exchanger prepared for removing Mg+2 ions ( mgr.eq/100g ) Ion exchanger type Numbered of regenerated

Base 1 2 3 4 5 6 7 8 9 10 Mean Sum

OMWBZ

OMWBZ-PC

BZ

36.61 44.64 24.29 32.14 43.75 21.43 45.07 42.27 45.93 39.00 17.40 35.68

50.25 25.64 34.18 35.43 25.89 49.64 47.39 41.78 40.40 36.40 28.08 37.74

3.72 16.07 30.93 39.47 38.57 40.88 20.80 32.80 47.00 27.00 26.00 29.39

7

A-1 -8-Estimation of chemical equilibrium Constant KT maximum absorption capacity Sm of the prepared ion exchangers: The ion exchange reaction between the Na+ ions and (Ca+2,Mg+2) in aqueous medium occurs to the following equation 2[Na+]s + [Ca+2]w = [Ca+2]s + 2 [Na+]w According to the low of mass action the chemical equilibrium constant KT KT 

[Ca 2 ] s [ Na  ] 2w [ Na  ] 2s [Ca  2 ] w

Where: [Ca+2]w=C1 is the equilibrium concentration of Calcium ion [Ca+2]s=S1, is the initial concentration of [Ca+2] before using the ion[Ca+2]. [Na+]w= C2 is the equilibrium concentration of the Na+ ions whereas 2 [Ca+2]s= [Na+]w [Na+]s=S2 is the [allover exchangeable Na+ ions- [Na+]w] . The equilibrium constants were determind statically as mentioned above at (30-40-50)C ْ. Results for the prepared ion exchangers [OMWBZ,OMWBZ-PC, BZ]are listed in tables (7,8,9,10,11,12,13,14,15) respectively Table (7) results for equilibrium concentrations of [Na+],[Ca+2,Mg+2] ions for the ion exchanger[OMWBZ] at 30 Cْ Volume of EDTA solution for 5 ml the initial solutions

[Ca+2]w for mmole/liter

11.1 19.8 37.25 42.5 51

22.2 39.6 74.5 85 102

Volume of EDTA solution used for 5 ml after use of ion exchanger 0.1 0.3 5.05 8.9 14.35

C1=[Ca+2]w mmole/liter

[Ca+2]s mmole/liter

C2=[Na+]w mmole/liter

S2=[Na+]s mmole/liter

[Na+]2w [Ca+2]w mole/liter

[Na+]2s [Ca+2]s mole/liter

1/S2 (mmole/l)-

C1S2/C22

0.200 0.600 10.100 17.800 28.700

22.000 39.000 64.400 67.200 73.300

44.000 78.000 128.800 134.400 146.600

239.360 205.360 154.560 148.960 136.760

9.680 10.140 1.643 1.015 0.749

2.604 1.081 0.371 0.330 0.255

0.0042 0.0049 0.0065 0.0067 0.0073

0.0247 0.0203 0.0941 0.1468 0.1826

1

Table (8) results for equilibrium concentrations of [Na+],[Ca+2,Mg+2] ions for the ion exchanger[OMWBZ] at 40 Cْ Volume of EDTA solution for 5 ml the initial solutions

[Ca+2]w for mmole/liter

9.100 19.150 36.200 42.500 51.000

18.200 38.300 72.400 85.000 102.000

Volume of EDTA solution used for 5 ml after use of ion exchanger 0.050 0.650 6.050 12.550 17.4

C1=[Ca+2]w mmole/liter

[Ca+2]s mmole/liter

C2=[Na+]w mmole/liter

S2=[Na+]s mmole/liter

[Na+]2w [Ca+2]w mole/liter

[Na+]2s [Ca+2]s mole/liter

1/S2 (mmole/l)-

C1S2/C22

0.100 1.300 12.100 25.100 34.800

18.100 37.000 60.300 59.900 67.200

36.200 74.000 120.600 119.800 134.400

247.160 209.360 162.760 163.560 148.960

13.104 4.212 1.202 0.572 0.519

3.375 1.185 0.439 0.447 0.330

0.00405 0.00478 0.00614 0.00611 0.00671

0.0189 0.0497 0.1354 0.2860 0.2870

8

1

Table (9) results for equilibrium concentrations of [Na+],[Ca+2,Mg+2] ions for the ion exchanger[OMWBZ] at 50 Cْ Volume of EDTA solution for 5 ml the initial solutions

[Ca+2]w for mmole/liter

9.100 19.150 36.200 42.500 51.000

18.200 38.300 72.400 85.000 102.000

Volume of EDTA solution used for 5 ml after use of ion exchanger 0.100 0.600 5.300 11.400 16.65

C1=[Ca+2]w mmole/liter

[Ca+2]s mmole/liter

C2=[Na+]w mmole/liter

S2=[Na+]s mmole/liter

[Na+]2w [Ca+2]w mole/liter

[Na+]2s [Ca+2]s mole/liter

1/S2 (mmole/l)-1

C1S2/C22

0.200 1.200 10.600 22.800 33.300

18.000 37.100 61.800 62.200 68.700

36.000 74.200 123.600 124.400 137.400

247.360 209.160 159.760 158.960 145.960

6.480 4.588 1.441 0.679 0.567

3.399 1.179 0.413 0.406 0.310

0.0040 0.0048 0.0063 0.0063 0.0069

0.0382 0.0456 0.1109 0.2342 0.2575

Table (10) results for equilibrium concentrations of [Na+],[Ca+2,Mg+2] ions for the ion exchanger[OMWBZ-PC] at 30Cْ Volume of EDTA solution for 5 ml the initial solutions

[Ca+2]w for mmole/liter

11.100 19.800 37.250 42.500 51.000

22.200 39.600 74.500 85.000 102.000

Volume of EDTA solution used for 5 ml after use of ion exchanger 0.100 0.500 4.700 10.300 15.600

C1=[Ca+2]w mmole/liter

[Ca+2]s mmole/liter

C2=[Na+]w mmole/liter

S2=[Na+]s mmole/liter

[Na+]2w [Ca+2]w mole/liter

[Na+]2s [Ca+2]s mole/liter

1/S2 (mmole/l)-1

C1S2/C22

0.200 1.000 9.400 20.600 31.200

22.000 38.600 65.100 64.400 70.800

44.000 77.200 130.200 128.800 141.600

230.560 197.360 144.360 145.760 132.960

9.680 5.960 1.803 0.805 0.643

2.416 1.009 0.320 0.330 0.250

0.0043 0.0051 0.0069 0.0069 0.0075

0.0238 0.0331 0.0800 0.1810 0.2069

Table (11) results for equilibrium concentrations of [Na+],[Ca+2,Mg+2] ions for the ion exchanger[OMWBZ-PC] at 40Cْ Volume of EDTA solution for 5 ml the initial solutions

[Ca+2]w for mmole/liter

9.100 19.150 36.200 42.500 51.000

18.200 38.300 72.400 85.000 102.000

Volume of EDTA solution used for 5 ml after use of ion exchanger 0.050 0.700 7.900 13.400 19.550

C1=[Ca+2]w mmole/liter

[Ca+2]s mmole/liter

C2=[Na+]w mmole/liter

S2=[Na+]s mmole/liter

[Na+]2w [Ca+2]w mole/liter

[Na+]2s [Ca+2]s mole/liter

1/S2 (mmole/l)-1

C1S2/C22

0.100 1.400 15.800 26.800 39.100

18.100 36.900 56.600 58.200 62.900

36.200 73.800 113.200 116.400 125.800

238.360 200.760 161.360 158.160 148.760

13.104 3.890 0.811 0.506 0.405

3.139 1.092 0.460 0.430 0.352

0.0042 0.0050 0.0062 0.0063 0.0067

0.0182 0.0516 0.1990 0.3128 0.3675

9

Table (12) results for equilibrium concentrations of [Na+],[Ca+2,Mg+2] ions for the ion exchanger[OMWBZ-PC] at 50 Cْ Volume of EDTA solution for 5 ml the initial solutions

[Ca+2]w for mmole/liter

9.100 19.150 36.200 42.500 51.000

18.200 38.300 72.400 85.000 102.000

Volume of EDTA solution used for 5 ml after use of ion exchanger 0.050 0.700 7.450 12.600 18.200

C1=[Ca+2]w mmole/liter

[Ca+2]s mmole/liter

C2=[Na+]w mmole/liter

S2=[Na+]s mmole/liter

[Na+]2w [Ca+2]w mole/liter

[Na+]2s [Ca+2]s mole/liter

1/S2 (mmole/l)-1

C1S2/C22

0.100 1.400 14.900 25.200 36.400

18.100 36.900 57.500 59.800 65.600

36.200 73.800 115.000 119.600 131.200

238.360 200.760 159.560 154.960 143.360

13.104 3.890 0.888 0.568 0.473

3.139 1.092 0.443 0.402 0.313

0.00420 0.00498 0.00627 0.00645 0.00698

0.0182 0.0516 0.1798 0.2730 0.3032

Table (13 ) results for equilibrium concentrations of [Na+],[Ca+2,Mg+2] ions for the ion exchanger[BZ] at 30 Cْ

Volume of EDTA solution for 5 ml the initial solutions

11.100 19.800 37.250 42.500 51.000

[Ca+2]w for mmole/liter

Volume of EDTA solution used for 5 ml after use of ion exchanger

C1=[Ca+2]w mmole/liter

[Ca+2]s mmole/liter

C2=[Na+]w mmole/liter

S2=[Na+]s mmole/liter

[Na+]2w [Ca+2]w mole/liter

[Na+]2s [Ca+2]s mole/liter

1/S2 (mmole/l)-1

C1S2/C22

22.200 39.600 74.500 85.000 102.000

0.050 0.500 6.100 9.600 14.300

0.100 1.000 12.200 19.200 28.600

22.100 38.600 62.300 65.800 73.400

44.200 77.200 124.600 131.600 146.800

191.320 158.320 110.920 103.920 88.720

19.536 5.960 1.273 0.902 0.754

1.656 0.649 0.197 0.164 0.107

0.00523 0.00632 0.00902 0.00962 0.01127

0.0098 0.0266 0.0872 0.1152 0.1177

Table (14) results for equilibrium concentrations of [Na+],[Ca+2,Mg+2] ions for the ion exchanger[BZ] at 40 Cْ Volume of EDTA solution for 5 ml the initial solutions

[Ca+2]w for mmole/liter

9.100 19.150 36.200 42.500 51.000

18.200 38.300 72.400 85.000 102.000

Volume of EDTA solution used for 5 ml after use of ion exchanger 0.050 0.500 7.700 13.583 18.750

C1=[Ca+2]w mmole/liter

[Ca+2]s mmole/liter

C2=[Na+]w mmole/liter

S2=[Na+]s mmole/liter

[Na+]2w [Ca+2]w mole/liter

[Na+]2s [Ca+2]s mole/liter

1/S2 (mmole/l)-1

C1S2/C22

0.100 1.000 15.400 27.166 37.500

18.100 37.300 57.000 57.834 64.500

36.200 74.600 114.000 115.668 129.000

199.320 160.920 121.520 119.852 106.520

13.104 5.565 0.844 0.492 0.444

2.195 0.694 0.259 0.248 0.176

0.00502 0.00621 0.00823 0.00834 0.00939

0.0152 0.0289 0.1440 0.2434 0.2400

10

Table (15) results for equilibrium concentrations of [Na+],[Ca+2,Mg+2] ions for the ion exchanger[BZ] at 50 Cْ Volume of EDTA solution for 5 ml the initial solutions

[Ca ]w for m mole/liter

9.100 19.150 36.200 42.500 51.000

18.200 38.300 72.400 85.000 102.000

+2

Volume of EDTA solution used for 5 ml after use of ion exchanger 0.050 0.600 6.100 12.100 17.550

C1=[Ca+2]w mmole/liter

[Ca+2]s mmole/liter

C2=[Na+]w mmole/liter

S2=[Na+]s mmole/liter

[Na+]2w [Ca+2]w mole/liter

[Na+]2s [Ca+2]s mole/liter

1/S2 (mmole/l)-1

C1S2/C22

0.100 1.200 12.200 24.200 35.100

18.100 37.100 60.200 60.800 66.900

36.200 74.200 120.400 121.600 133.800

199.320 161.320 115.120 113.920 101.720

13.104 4.588 1.188 0.611 0.510

2.195 0.701 0.220 0.213 0.155

0.00502 0.00620 0.00869 0.00878 0.00983

0.0152 0.0352 0.0969 0.1864 0.1994

A-1 -8-1- Determination of chemical equilibrium constant and the maximal absorption capacities for the prepared ion exchangers. The maximal absorption capacity of ion exchanger is the sum of the concentrations of [Na+] =S2 and [(Ca+2,Mg+2)]=S1 ions on the surface of the ion-exchanger: *S1+2S2=Sm 2 S C 1 2 K  2 S C 2 1 Substituting S2 from the expression 2 K S C 2 1 S  1 2 K  C S 2 1 1 T 1 2 C   2 in equations * we receive: S S S  C2 2 m m 2  C1C 2  1 1  can be used to determine Plots in coordinates from the  ƒ 2  Sm S2  C2  1 intercept value of , and the slope of the resulting line (f.g. 2,3,4) S2

Results for the studied ion exchangers are listed in table (16) and ( 17 ) Table (16 ) values for K and Sm at room temperature Co-ion exchanger OMWBZ OMWBZ-PC BZ

K 1.94475 1.736262 4.056406

11

Sm mgr.eq/100g 222.22 219.78 188.67

Table ( 17 ) values for K,Sm,and ∆Sm=Sm-(Sm)BZ at room temperatures Co-Ion exchanger K BZ 4.056 OMWBZ-PC 1.736 OMWBZ 1.944

Sm (mgr.eq/100gr) 188.00 219.78 222.20

∆Sm=Sm-(Sm BZ) (mgr.eq /100gr)

0 31.78 34.2

A-1 -8-1-1-Data of tables (16 ) and (17 )show a firm evidence that the component OMWW has made a contribution of 29% and 31% to the ion exchanger efficiency of the exchangers OMWBZ-PC and OMWBZ respectively. Despite the small differences between the values of Sm for both OMWW exchangers, OMWBZ-PC was observed to be more stable in terms of multi regeneration. A-1 -8-1-2- When 500 gr of OMWW were dried at room temperature a 27.66 gr elastic mass remained. Heating 1/5 of this mass for 4 hours at 120 Cْ reduced the mass from 5.293 to 4.4068 gr of elastic character, calcination of this mass in the atmosphere of N2 produced 1.606 gr of solid mass which gave rise to the added value of ion exchanger to be ∆Sm = 34.2 (mgr.eq/100gr) A-1 -8-1-3- Poly -condensation of the poly phenols took place at 50-70 Cْ when 50 ml of Ammonia solution and 20 ml of Formaldehyde were added as described above to 500gr of OMWW. Evaporation of the resulting solution at room temperature left 25.75 gr as elastic mass with more adhesive property. Heating 1/5 of this mass for 4 hours at 120 Cْ reduced the mass from 4.393 gr to 3.146 gr, and a persisting bubble of the mass was observed during the heating. Calcination of this mass in the atmosphere of N2 for 4 hours produced 1.034 gr of solid mass value of which gave rise to the added value of ion exchanger to be ∆Sm= 31.78 (mgr.eq/100gr) and comprises 29% of the ion exchanger,. The lower value of the elastic mass for OMWBZ-PC may be attributed to water formed as a product of polycondensation of the phenols content A-1 -9-Thermo dynamical parameters at 30Cْ for the invented ion exchangers listed in table ( 18 ) and were determined from equations

1 LnK  ƒ  and F   RTLnK T

12

(f.g 5,6,7).

Table ( 18) Thermo dynamical parameter of the invented Co-ion exchangers at 30Cْ Co-ion exchanger

OMWBZ-PC OMWBZ BZ

∆F cal/mol -332.207 -400.385 -843.138

∆H cal/mol -11923.045 -15102.526 -10730.76

∆S e.u -38.254 -48.522 -32.632

A-1 -10- Removal NO3- and NH4+ ions at room temperature A-1 -10-1- NO3- onions were completely exchanged in solutions of less than 100 ppm NO3- ions and after regeneration in NaCl 3N solution at room temperature table( 19 ). Table (19 ) Removal of NO3- and NH4+ ions from the solution contain less than 100 ppm at room temperature. Co-ion exchanger OMWBZ OMWBZ-PC BZ

Removal NH4+ ions % Before After regeneration regeneration 84.38 70.97 85.31 72.75 83.87 73.86

Removal NO3- ions % Before After regeneration regeneration 100 100 100 100 100 100

A-1 -10-2 -NH4+ cations were exchanged with Na+ ions in similar conditions as well table ( 19 ). A-1 -10-3- Unfortunately ,in contrast with Ca+2,Mg+2, neither data for NH4+ ions nor data for NO3- ions was confirming to the formula for ion exchange law. A-1 -10-4- This conclusion may be attributed to less electric charges and larger diameter of NO3- ( d= 1.89 Aْ) and NH4 + ( d= 1.43 Aْ) than Mg +2 ( d= 0.77 Aْ) and Ca+2 (d= 0.98Aْ) and to the pore structure of the ion exchangers. A-1 -10-5- NO3- anions were removed from industrial polluted “waters in water treatment planet of Damascus” table ( 20 ) . Table (20 ) Removal of NO3- and NH4+ ions from the treatment water plant of Damascus at room temperature *. Ion exchanger OMWBZ OMWBZ-PC BZ

Removal NH4+ ions % Before After regeneration regeneration 81.79 98.91 79.35 98.91 78.26 98.91 13

Removal NO3- ions % Before After regeneration regeneration 90.18 32.14 90.18 39.29 91.52 23.21

*Apparatus: Colorimeter Dr/890 Results for NO3- remopval may be atrebuted to its large diameter (1.89 A)high content of NO3- and to the serounding ions or impurities in this water that may have narrowered the pores in the ion exchanger. A-1 -11- When the innovated ion exchangers were tested in KMnO4 solutions, data were proved to suit molecular adsorption rules, rather than ion exchange regulation. A-1 -11-1- The BZ product shows a typical Langmure curve  

KC 1  KC

with sharp slope in the field of small concentrations of KMnO4 with poor mono molecular layer ( am). A-1 -11-2- As for OMWBZ, adsorption of KMnO4 shows good appliance with Frendicsh formula (a/m=KC1/n) with a relatively high value of (am). A-1 -11-3- Adsorption of KMnO4 on OMWBZ-PC happened to be directly proportional with small concentrations of KMnO4 ( a=amKC) with a value of (am) near to that of OMWBZ. Results of KMnO4 adsorption are show in table (21 ). Table ( 21 )values of (am ) and ( Δam ) of KMnO4 adsorption for BZ, OMWBZ, and OMWBZ-PC at room temperature.

Ion exchanger adsorbent

am mmol/100gr

Δam mmole/100gr

BZ

2.920

0

OMWBZ 10.282 7.362 OMWBZ-PC 10.268 7.348  Apparatus: Colorimeter Dr/890 , = 400 nm

formula 

KC 1  KC

(a/m=KC1/n) ( a=amKC)

A-1 -11-4 Data of table (21) reflect the big contribution of the OMWW to the adsorption efficiency of OMWBZ and OMWBZ-PC in comparison with BZ. A-1 -12- Molecular separation of the invented products in polar-nonpolar liquid system was tested for CH3OH-CCl4 liquid system. Results in the coordinates of Gibss equation: G1 

 m 2 ( K  1) X 1 (1  X 1 ) are listed in table 1  ( K1, 2  1) X 1

(22) (f.g.8,9,10) . 14

Table ( 22 ) Values of Kβ and  m for CCl4, and CH3OH adsorption on BZ, OMWBZ-PC, OMWBZ at room temperature. Ion exchanger

OMWBZ OMWBZ-PC BZ

CCL4 Kß 20.753 37.735 20.753

m



0.107 0.148 0.127

CH3OH Kß 37.735 53.778 81.000

m



0.0826 0.156 0.100

Results in table (22 ) indicate more tendency to unpolar adsorption with decrease in polar adsorption as for OMWBZ-PC if compared with the molecular separation property of BZ. A-1 -13- Syrian Beyloone is deposited near Aleppo (Syria) in as thick as 216 meters layers. Syrian Beyloone differs from other Bentonites: In addition to 50-55 % contents of montmorillonite, quarts, Ca, Mg carbonates and other compounds, results of the chemical analysis of Syrian Bentonite is shown in table ( 1 ). The detailed information about Syrian Beyloon are published in reference (4-7 ). A-1 -14- The DTA curves show indo thermal process at 94-97Cْ for all studied samples are simillar before and after regeneration with NaCl (f.g.11,12) A-1 -15- No substantial differences were observed between the diagrams of X ray diffraction for OMWBZ,OMWBZ-PC and BZ in which the Zeolite and Bentonite picks are well distinguished, and the generation with NaCl didn’t affect the diagrams (f.g.13,14). A-1 -16 - No hazardous compounds( heavy metals) in the suggested ion exchangers according to analysis with atomic absorption (Appendex 1).

15

A-2 Chart,Diegrams, Curves and Appendix lairtsudnIIndustrial chart for removing OMWW OMWW Syrian Bentonite

zeolite

Mixer

Digester

Ammonia hydroxide

PolycondensationVan 60-50Cْ

Granulator

Drier

Calcination

Cooling

Packing

16

Formaldehyde

‫‪0.008‬‬ ‫‪0.007‬‬ ‫‪0.006‬‬ ‫‪1/S2‬‬

‫‪0.005‬‬ ‫‪0.004‬‬ ‫‪0.003‬‬ ‫‪0.002‬‬ ‫‪0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.170 0.190‬‬ ‫‪2‬‬

‫‪C1S2/C2‬‬

‫‪2‬‬ ‫‪(F.g‬‬ ‫‪2) for‬‬ ‫‪ 30‬و ْ نهمبادل ‪OMWBZ‬‬ ‫اندرجة‬ ‫‪ COMWBZ‬في‬ ‫انشكم (‪ S2/1 )1‬بدالنة ‪1S2/C 2‬‬

‫‪0.008‬‬ ‫‪0.007‬‬ ‫‪0.006‬‬

‫‪1/S2‬‬

‫‪0.005‬‬ ‫‪0.004‬‬ ‫‪0.003‬‬

‫‪0.250‬‬

‫‪0.200‬‬

‫‪0.150‬‬

‫‪0.050‬‬

‫‪0.100‬‬

‫‪0.002‬‬ ‫‪0.000‬‬

‫‪C1S 2/C22‬‬

‫‪(F.g.3) for OMWBZ-PC‬‬ ‫‪2‬‬

‫انشكم (‪ S2/1 ) 4‬بدالنة ‪ C1S2/C2‬في اندرجة ‪30‬وْ نهمبادل ‪OMWBZ-PC‬‬

‫‪0.012‬‬ ‫‪0.011‬‬ ‫‪0.010‬‬ ‫‪0.009‬‬ ‫‪1/S2‬‬

‫‪0.008‬‬ ‫‪0.007‬‬ ‫‪0.006‬‬ ‫‪0.005‬‬ ‫‪0.140‬‬

‫‪0.120‬‬

‫‪0.100‬‬

‫‪0.080‬‬

‫‪0.060‬‬

‫‪0.040‬‬

‫‪0.020‬‬

‫‪C1S2/C22‬‬ ‫‪2‬‬ ‫)‪(F.g.4‬‬ ‫‪for‬‬ ‫‪BZ‬‬ ‫اندرجة ‪30‬وْ نهمبادل ‪BZ‬‬ ‫‪ C1S‬في‬ ‫انشكم ( ‪ S2/1 ) 7‬بدالنة ‪2/C2‬‬

‫‪17‬‬

‫‪0.004‬‬ ‫‪0.000‬‬ ‫‪1/S2‬‬

1.600 1.400

Ln K

1.200 1.000 0.800 0.600 0.400 0.200 0.000 0.003

0.0031

0.0032 1/T (Kْ)-1

0.0033

(Fig 5) for BZ 1.400 1.000 0.600

LnK

0.200

-0.200 0.0030

0.0031

0.0032

0.0033

-0.600 -1.000 -1.400

1/T (Kْ)-1

(Fig .6) for OMWBZ

1.400 1.000

Ln K

0.600 0.200

-0.200 0.003 -0.600

0.0031

0.0032

-1.000 -1.400

-1 1/T (Kْ)

(Fig. 7) for OMWBZ-PC

18

0.0033

0.1

0.08

0.06

0.04

0.02

0 0.2

0.4

0.6

0.8

mol/g1

G

0

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

X

(Fig.8)Adsorption in binary liquid system CH3OH,CC4 for OMWBZ

19

1.2

mol/g 0.1000

0.0800

0.0600

0.0400

0.0200

0.2000

0.4000

0.6000

0.8000

1.0000

G

0.0000 0.0000

-0.0200

-0.0400

-0.0600

-0.0800

-0.1000

-0.1200

X

(F.g.9)Adsorption in binary liquid system CH3OH,CC4 for OMWBZPC

20

1.2000

mol/g 0.1

0.08

0.06

0.04

0.02

0 G

0

0.2

0.4

0.6

0.8

1

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12 X1

(F.g.10) Adsorption in binary liquid system CH3OH,CC4 for BZ

21

1.2

( F.g. 11) DTA for Na-form of the ion exchanger OMWBZ-PC

22

(F.g. 12) DTA for OMWBZ-PC

23

(F.g. 13) X.R.D Na-form of the ion exchanger OMWBZ-PC

24

(F.g.14) X.R.D for OMWBZ-PC

25

Appendix (1) Results for Heavy ions detection Ion exchanger before regeneration wastewater OMWBZ+wastewater OMWBZ-PC+wastewater BZ+wastewater

Heavy Metals concentration (μ g/l) Cd Cu Zn Pb Mn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ion exchanger after regeneration

Heavy Metals concentration (μ g/l) Cd Cu Zn Pb Mn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

wastewater OMWBZ+wastewater OMWBZ-PC+wastewater BZ+wastewater

26

A-3 What is claimed to : A-3-1-Method for Removal of the pollutant Olive Mill Wastewater (OMWW) by turning it into new multifunctional co-ion exchangers.

A-3-2- Preparation of new ion exchanger (OMWBZ-PC) from (Omani Zeolite A+Beyloone+OMWW) with surface polycondensation of the phenols components.

A-3-3- Preparation of new ion exchanger (OMWBZ) from (Omani Zeolite A+Beyloone+OMWW) without polycondensation.

A-3-4- Preparation of ion exchanger (BZ) from (Omani Zeolite A+Beyloone).

A-3-5- Hard water treatment with the ion (OMWBZ, OMWBZ-PC, BZ), determination of chemical equilibrium constant and the maximal absorption capacities and thermal dynamical parameters for (OMWBZ, OMWBZ-PC, BZ).

A-3-6- Removal of NO3- and NH4+ ions from polluted with them waters. A-3-7- Adsorption KMnO4 on (OMWBZ, OMWBZ-PC, BZ). A-3-8- Molecular separation in polar-unpolar binary liquid system CH3OHCCl4 by use of (OMWBZ, OMWBZ-PC, BZ).

A-3-9- Introducing DTA curves and XRD diagrams of (OMWBZ, OMWBZ-PC, BZ).

A-3-10- The mentioned above claims may go with all kinds of Zeolites and Bentonites along with OMWW

27

A-4- Abstract A new method for removing the pollutant OMWW has been developed to turn it into multi functional co-ion exchanger along with Syrian Beyloone and Omani zeolite A. The presence of less than 1% w of the calcinated material resulting from OMWW and polycondensed phenols of it , gave rise to about 31% increase in the ion exchange efficiency in terms of small diameter ions (Ca+2 , Mg+2 ( , and to 200% excess in case of KMnO4 adsorption on the innovated products. Moreover the resulting ion exchangers were proved to be good enough to act in terms of relatively large diameter ions (NO3-, NH4+) for concentrations less than 100 ppm, in addition to their competency to molecular separation in polar- nonpolar liquid systems.

Key words: Olive Mill Wastewater (OMWW), Ion exchanger from (OMWW, Beyloone, Zeolite), Removal of OMWW, Ion exchangers.

28

A-5-References References on Zeolite 1 Breck D.W. 1974Zeolite Molecular Sieves-Structure,Chemistry and Use. Wiley Interscience, New York. 2 Breck, Zeolite Molecular Sieves, New York: Wiley(1979); cited in Rompp, Chemie Lexikon, Band 6,9. Auflage (1992), Georg Thieme Verlag, Stuttgart. 3 Allen, H.E.,Cho S.H. Neubecker T. A. 1983. Ion exchange and hydrolysis of type A Zeolite in natural water. Water Res. 17, 1871, 1879. References on Syrian Bentonite 4 Y. W. Bizreh, Damascus University Journal Vol (18) N ْ= 5, part (2) page 7-38, (1989) 5 Hamwee, N. master degree dissertation P.29-39 Supervisered by Prof. Y. W. Bizreh, Damascus University (1996). 6 Shaheen Abeer, master degree dissertation P.47-52 Supervised by Prof. Y. W. Bizreh, Damascus University. 7 Abudullah, Suzan master degree dissertation P.39-74 Supervised by Prof. Y. W. Bizreh, Damascus University, Faculty of sciences (2003). Reference for OMWW 9 Isabel P. Marques. Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation. Departamento de Energias Renováveis, Instituto Nacional de Engenharia e Tecnologia Industria, 21 August 2000. 10 Basheer Sobhi,* Sabbah Isam, Yazbek Ahmad, Haj Jacob, Saleeba. Ahlam REDUCING THE ENVIRONMENTAL IMPACT OF OLIVE MILL WASTEWATER IN JORDAN, PALESTINE. 10 The treatment of olive oil milling wastewater. Objective and results of the CAT-MED. 5TH FRAMEWORK PROGRAMME -INCO-MED PROGRAMMECONFIRMING THE INTERNATIONAL ROLE OF COMMUNITY RESEARCH Shared Cost Actionsww2.unime.it/catalysis/cat-med. 11 ANONYMOUS: Food and agriculture organization of the United Nations, Online under URL: www.fao.org [last Access on 23.03.2005]. 12 ANONYMOUS: International Olive Oil Council, Online under URL: www.internationaloliveoil.org [last Access on 23.03.2005]

29

13 MULINACCI, N., et al. (2001): Polyphenolic Content in Olive Oil Waste Waters and Related Olive Samples, Journal of Agricultural and Food Chemistry (2001) 49: 1005 – 1009. 14 MULINACCI, N., et al. (2001): Polyphenolic Content in Olive Oil Waste Waters and Related Olive Samples, Journal of Agricultural and Food Chemistry (2001) 49: Page: 1005 – 1009. 15 FIORENTINO, A., et al. (2003): Environmental effects caused by olive oil mill wastewaters: Toxicity comparison of low-molecularweight phenol components, Journal of Agricultural and Food Chemistry (2003) 51: Page: 1005 – 1009. 16 Igor Kobek," Waste Treatment- TDC-OLIVE project" Framework Programme of the European Union http://www.tdcolive.net/documents/booklet/D14k_Waste_Treatment_ V1.0.pdf 17 ANONYMOUS (2004): Project INASOOP - Integrated Approach to Sustainable Olive Oil and Table Olive Production (COLL-CT-2003500467) - Report on Relevant Olive Oil and Table Olives Production Techniques and Technologies, Pages: 20. " ..‫ أ حمٍ عبهش‬.‫ فشاًسىا‬,‫ لشٍ بُج‬.‫م‬.‫د‬.‫أ‬.‫ هحوذ‬,ٍ‫د الوٌجذ عل‬.‫ أ‬.‫ هحوذ‬,‫د هبشن شهُش‬.‫ أ‬18 ‫هعبلجت الوُبٍ الصٌبعُت الٌبحجت عي هعبصش الضَخىى ببسخخذام حمبًبث األكسذة الوخمذهت‬ .‫ جبهعت دهشك‬,‫ كلُت العلىم‬, ‫الوحفضة ضىئًُب و بىجىد أًصبف الٌىالل" سسبلت هبجسخُش‬ .2004 ‫ االحجبهبث الحذَثت فٍ إداسة‬.‫ الوؤحوش العشبٍ الثبلث لإلداسة البُئُت‬.‫ حبفظ شبهُي‬.‫ د‬19 ‫الوُخلفبث الولىثت للبُئت هفهىم وأًىاع الوُخلفبث الولىثت للبُئت وأسبلُب هعبلجخهب‬ Management of Olive Mills Wastes in the Palestinian ‫ جبهعت‬،‫ كلُت الهٌذست‬,‫هخلفبث الضَخىى وإداسحهب فٍ الوٌبطك الفلسطٌُُت‬Territories .‫فلسطُي‬-‫ًببلس‬,‫الٌجبح الىطٌُت‬ ‫ دساست وححذَذ أًىاع وًسب الوشكببث الفٌُىلُت الطبُعُت فٍ صَج‬.‫د هحوذ دَب ًذاف‬.‫ أ‬20 ‫الضَخىى البكش السىسٌ وهذي حأثُش طشَمت اسخخالص الضَج علً هحخىاٍ هي هزٍ الوشآببث‬ -‫ سىسَت‬,‫ جبهعت حششَي‬- ‫ آلُت الضساعت‬-‫ لسن علىم األغزَت‬." ‫بهذف ححسُي الجىدة‬ ‫الالرلُت‬ ‫ جبهعت‬."‫ " طشق هعبلجت هبء الجفج الٌبحج عي عصش الضَخىى‬,‫ الٌصبس أحوذ هحوذ‬21 ‫ سىسَب‬,‫ كلُت الهٌذست الضساعُت‬,‫دهشك‬ Reference of ion exchangers 22 -Andrei A , Zagordni” Ion exchange Materials properties and Applications “ Elsvier, 2007.

30

B- Details explanation of the invention

B1-1 Novelty: innovative adsorbents have been synthesized from the following components 1- OMWW,2- crushed granular pumice (0.1-0.5 mm) 3- granular pumice 4Basaltic or pumice wool . B-1-2 Inventing a new form of solid soap by employing the condensed OMWW in natural soap industry .

B -2 Inventing step: B-2-1 Removal of OMWW being a main component along with Syrian Shahba pumice novel NO3- adsorbents from polluted with NO3- ions waters. B- 2-2 : Use of the condensed OMWW in natural solid soap industry as a foam improving ingredient and antioxidant.

B-3 The industrial appliance capability: is schematically explained in (45,46) and in the text concerning this patent

31

B-4 Technical description the invention B-4-1: Non of the research centers concerned in OMWW happened to carry OMWW on pumice (Syria , Shahba) or basaltic wool to obtain adsorbents for NO3- ions removal from waters. The chemical structure of the pumice is shown in table (1) and the OMWW is listed in table (2). The formula for some phenol compounds are shown in fig (1) Table( 2 ) composition of OMWW which produce by press and centrifugation technologies Parameter pH Dry material Density Oil Reduction sugar Polyphenols O-Di phenol Hydroxy Tyrosol Ash COD Organic nitrogen Total phosphorous Sodium Potassium Calcium Magnesium Iron Copper Zink Manganese Nicl Cobalt Lead

Unit pH g/l g/l g/l g/l g/l mg/l g/l g/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

Traditional process 5.73-4.73 266.00-15.50 1.09-1.02 11.50-0.12 67.10-9.70 14.30-1.40 13.30-0.90 937-71 42.60-4.00 389.50-42.00 1106-154 915-157 285-38 5000-1500 408-58 337-90 86.40-16.40 4.75-1.10 6.50-1.60 8.90-2.16 1.58-0.44 0.96-0.18 1.85-0.40

32

Modern process 4.55-5.89 161.20-9.50 1.046-1.007 29.80-0.41 34.70-1.60 7.10-0.40 6.00-0.30 426-43 12.5-0.40 199.20-15.20 966-140 485-42 124-18 2500-630 200-47 180-60 31.50-8.80 3.42-1.16 4.48-1.42 5.20-0.87 1.44-0.29 48.00-0.12 0.72-0.35

O

HO

OH

HO

O

O

OH

OH

OH OH

OH

OH

p-hydroxybenzoic acid (p-HBA)

Gallic acid (GA)

O

3,4-Dihydroxybenzoic acid Di-HBA

O

OH

O

O

OH

CH3

O

OH

OH

Syringic acid (SA)

Vanillic acid (VA)

CH3

CH3

OH

HO tyrosol (Ty)

O

OH

OH

O

O

OH

OH

OH cinnamic acid CA

p-hydroxycinnamic acid p-HCA

o-hydroxycinnamic acid o-HCA

OH

HO O H3C

OH

OH

OH O O

3,4-Dihydroxycinnamic acid Di-HCA

ferulic acid (FA)

Fig (1) formula of some phenol compounds in OMWW.

B 4-2 In addition , we believe that we are the first to produce a new form of natural solid soap by adding the OMWW condensate to the hot liquid phase of soap with stirring before hardening . B-5 Preparations B-5-1 The adsorbent BW-PC 300 ml of OMWW were added to 18 gr of basaltic wool. The resulting mass was left to dry at the room temperature to result 37±1 grs of the product. 33

Once 12 ml of (36%) Ammonia and 6 ml of formaldehyde were added and mixed together, temperature rasid from 34C ْ to 38 C ْ indicating to an exothermal process. The produced mass that waited 37.8 gr after drying at room temperature was calcinated at 400 C ْ for four hours the final product was the adsorbent that waited 25.7 gr B-5-2 the adsorbanent BG-PC : 18 gr granular pumice were mixed with 27 gr of OMWW condensate resulting from drying 500 ml OMWW at room temperature ,20 ml of Ammonia (36%) and 10 ml of formaldehyde were added , and mixed along together with the whole mass the temperature of which increased from 31.2 to 33.8 C ْ . After drying at room temperature , the product was calcinated for 4 hours at 400 C ْ , the resulting mass 21.77gr. B-5-3 The adsorbent BG 18 grs of the granual pumice were mixed with 27 gr of the OMWW condensate , 38 grs of mixture was inserted in a cylinder and calcinated for 4 hours at 400 C B-5-4 The adsorbent BS: 18 grs of the rushed pumice ( ф= 0.1-0.5mm) were mixed with 27 gr of the OMWW condensate mentioned above fourteen grs of the adsorbent BS were received from calcinating 30 gr of the mixture in a closed cylinder for 4 hours at 400 C . B-5-5 Soap with the OMWW condensate. 500 ml of OMWW were dried at room temperature , 27 gr of the condensate were received, 10 grs of this condensate were well mixed with 990 gr of the hot liquid phase of the soap . the liquid new form of soap was powered out into a frame to harden in the desired form.

34

B-6 Measurements B-6-1 Removal of NO3- ions of the adsorbents BW-PC, BG-PC, BG, and BS was tested statically as for water pumped from Dooma (Al-Rehan) region as far as 10 Km from the city of Damascus . One gram of each sorbent was put in 50 ml of water for 48 hours , then the concentrations of Alkaline P , Alkaline M, Total Alkaline and NO3- ions were determined in addition to pH at room temperature. B-7 Results of experiments: Table ( 3 ) Performance of the prepared adsorbents for NO3- ions removal from a sample of Dooma ( Rehan) well water at 30 C ْ Sample ID pH Alkaline P (CaCO3)mg/l Alkaline M (CaCO3)mg/l Total Alkaline mg/l NO3 - concentration mg/l Percentage of NO3 – removal%

Sample BG-PC

BW-PC

BG

BS

8.13

9.96

10.27

10.02

10.53

40

600

400

400

660

340

700

840

580

900

380

1300

1240

980

1560

338.12

233.26

126.26

173.34

111.28

31.01

62.66

48.73

67.09

The results listed in table (3 ) show that the performance of the adsorbents in terms of the percentage of NO3- ions follow the order: BS>BW-PC>BG-PC>BG. B-8 Kinetics The kinetical study was focused on the adsorbent BS due to its good performance and low coast if it was compared with the other prepared adsorbents. One gram of the BS adsorbent was submerged in 50 ml of the

35

polluted with NO3- water for 48 hours at room temperature for different time periods . Results are listed in table ( 4 ) and represented by the kinetical curve fig( 2) Table (4 ) kinetic study of the adsorbent BS Time (hour) 0.00 24.00 30.00 36.00 42.00 48.00

Concentration mg/l 308.57 120.00 105.00 96.43 92.14 77.14

Removed NO3mg/l 0.00 188.57 203.57 212.14 216.43 231.43

Percentage of NO3 – removal % 0.00 61.11 65.97 68.75 70.14 75.00

Fig (2) Shows that, the efficiency of the BS adsorbent reached 61.11% in 24 h, and increased to 75 % after 48 hour, that is the time period required for decreasing the NO3- ions concentration to the needed levels can be known once the initial NO3- concentration is known ; This information helps minimize the coast of treatment. B-9 Determination of the adsorption parameters Study on NO3- ions adsorption in waters was conducted on the adsorbent BS . One gr of the BS adsorbent was submerged in 50 ml for each sample for 48 h at room temperature. The concentration of NO3- for each sample are shown in table (5 )

36

Table ( 5 ) Adsorption of NO3- ions on the adsorbent BS at different concentrations of NO3- in water Initial concentra tion of NO3mg/l

Concentrati on of NO3after adsorption mg/l

Initial concentrat ion (mmol/ l)

321.429 312.857 295.714 231.429 190.714 162.857 130.714 105.000

106.071 90.000 85.714 32.143 26.786 21.429 18.214 19.286

5.184 5.046 4.770 3.733 3.076 2.627 2.108 1.694

Equilibri -um concentr ation (mmol/ l) 1.711 1.452 1.382 0.518 0.432 0.346 0.294 0.311

Adsorbed 1/C 1/ α NO3- on 1 gr (mmol/l (mmol -1 /gr) (mmol/g) )-1 0.174 0.180 0.169 0.161 0.132 0.114 0.091 0.069

0.585 0.689 0.723 1.929 2.315 2.893 3.404 3.215

α/αm

5.758 5.564 5.905 6.222 7.564 8.768 11.022 14.467

0.660 0.683 0.644 0.611 0.502 0.433 0.345 0.263

We have found out that these data satisfy well the langmiur equation in adsorption:  

θ

a KC  a 1  KC m

- the fraction coverage - quantity of adsorbate on 1 gr BS a

a - the monolayer capacity on 1 gr BS m K C

- the equilibrium constant of adsorption - the equilibrium concentration of the adsorbate

1 Fig (3) represents as a function of  of

1 The section cut off on the axis C

ordinate and the slope enabled us to determine amto be equal to 1/3.6= 0.277 (mmol/g) , whereas the slope made it possible to calculate the equilibrium constant of adsorption. Therefore, the calculated value of K is (1.547) (mmol)-1 .

37

Otherwise, in order to determine K, the equilibrium constant of adsorption in the region of low concentration Henry,s equation is applied and K is calculated from the slope of the straight like curve as shown in fig (4) to be equal to (1.4) (mmol)-1, that is the value of K is in the range (1.4-1.547) (mmol)-1 . B-10 The surface studies Studies on N2 adsorption at -196 C ْ to determine the surface properties of the studied adsorpents and research on the NO3- ions adsorption from waters were conducted as well . B-10-1 the good accordance with Langmiure equation indicates to the homogeneity of the surface of the BS adsorbent. B-11 The IR studies: The IR studies were conducted by mean of the device Jascon FT /IR-300 E. A sample of the studied adsorbent is pressed enough to form a transparent cyclic sample to be installed in special holder . the sample was moved to the IR spectroscopy apparatus to be exposed to the IR rays . B-11-1 The efficiency of prepared andsorbents as for NO3- removal from water follows the order BS>BW-PC>BG-PC>BG . Differences of adsorption activity of those products may be explained by comparing one IR specter of one adsorbent before and after the adsorption process and the IR spectrum of the carrier (Pumice) and by determination of the adsorption equilibrium constant K. Obvious absorption bands were observed as a result of the product of the OMWW calcinations being deposited on the carrier ( pumice) as for the absorbents BS and BW-PC fig(6,9) whereas most of those bands ; whereas most of those bands disappeared as for those two adsorbent as a result of the adsorption fig(7,10 ) this may be attributed to strong bonding between the 38

active centers of the adsorbent and the NO3- that resulted the change in the adsorption bands of the adsorbent observed before adsorption . As a result the adsorption activity has increased. This conclusion is in accord with the value of K the adsorption equilibrium constant (K>1). The value of K involves the quantity of the adsorption potential , that is , the interaction between the molecules of adsorbate and the active centers on the surface of the adsorbent due to the principles of statical thermodynamics of the surface layer. B-11-2 In order to remove the OMWW ultimately in an economically profitable and benifitable way one weight part from OMWW condensate has been added to 99 weight parts of the hot liquid phase of soap and stirred in the bulk until homogeneity is reached. The phenolic content of OMWW played the role of antioxidant. No microps or bacterias have been observed in the resulting hard soap at pH=7-9 for 6 months . The other components of the condensed OMWW have improved the quality of the foam of the soap if compared with the untreated with the OMWW condensate. The foam structure turned softer as for its appearance or for hair wash. B-11-3 Due to our suggested method no residual OMWW remain by use OMWW condensate in this sort of solid soaps as an additive. B-11-4 Due to our experiments : OMWW could not be used satisfactorily on large scale as an additive or component to shampoo . It can be used in its ordinary condition in very small rats about (0.09-0.18)% or (0.9-1.8)Kg of ordinary (unconensated OMWW) for one ton VS 200Kg /ton of OMWW that can be removed if compared with our suggested method for soap mentioned B-112,B-11-3. 39

5- Spectrum and Chart Percentag removal of NO3- %

80

y = -0.038x2 + 3.3211x + 0.5225

70

2

R = 0.9932

60 50

Fig ( 2) kinetical study on the adsorbent BS

40 30 20 10 0 0

6

12

18

24

30

36

42

48

54

Time (hour) fig (

2 1

)

Kinetical study on adsorbent BS

16.00 14.00 y = 2.2546x + 3.7193 R2 = 0.7035

12.00

1/a (mmol/g)-1

10.00

1/α

(mmol/g)_1

8.00 6.00 4.00 2.00 0.00 0.000

0.500

1.000

1 Fig (3)



1.500

 ƒ

2.000

1 C

2.500

3.000

3.500

4.000

1.600

1.800

1/C (mmol/l)-1

for the adsorbent

a/am mmol/g

 0.800  m 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000 0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

C mmol/l

C ‫انتوازني‬ a/am ‫تابعية‬ ‫انشكم‬ fig (4) α/ αm‫نهتركيس‬ = ƒ( C ) for the )3( adsorbent 40

BS

Fig ( 5) IR Spectrum for crushed pumice

Fig (6 ) IR Spectrum for BS before adsorption

Fig (7 ) IR Spectrum for BS after adsorption NO3 -

41

Fig ( 8 ) IR Spectrum of pumice wool

Fig (9) Spectrum of BW-PC before adsorption

Fig( 10) IR Spectrum of BW-PC after adsorption NO3 -

42

Fig ( 11) Spectrum of the crushed pumice

Fig( 12 ) IR Spectrum of BG-PC before adsorption

Fig( 13 ) IR Spectrum of BG-PC after adsorption NO3 43

Fig ( 14) Spectrum of the crushed pumice

Fig ( 15) IR Spectrum of BG before adsorption

Fig ( 16) IR Spectrum of BG after adsorption NO3 44

Industrial chart for removing OMWW by carrying of its condensate on Syrian pumice industry Pumice in its different forms

OMWW Condensate

Solar Energy or another

OMWW

Mixing

Drying

Calcination at 400 Cْ

Cooling

Granular separating Storage

45

Industrial chart for removing OMWW by employing its condensate in Soap Industry OMWW

Solar Energy or any other energy OMWW Condensate

Storage 0f OMWW Condensate Hot Liquid Phase of soap

≈ 1% ≈99%

Stirring

OMWW Soap Hardening on frame surface

One ton of the soap with OMWW “ removes” { 200 Kg of ordinary OMWW ≈10 Kg condensate}

Notices: A sample of the new soap with OMWW can be presented if required

Soap Formation

Soap Packing

Storage

46

4- What claimed to: 4-1 Removal of OMWW and OMWW condensate by carrying it on Syria pumice to Produce adsorbents for removing NO3- ions from polluted water . 4-2 Use of Syria Pumice and Wool Pumice as a carrier in adsorbents industry . 4-3 Recirculation of pumice for use as a carrier of OMWW.

4-4 Use of mixtures of pumice and bentonite as carrier of OMWW.

4-5 Use of OMWW condensate in solid soap industry as a valuable material.

4-6 Removal of OMWW on large scale by condensing it by means of solar energy or any other energy and employing it as an additive of antioxidant and foam softening properties in novel solid soap production

47

5- Abstract Removal of OMWW and OMWW condensate has been carried out on Syrian pumice and wool pumice to Produce adsorbents for removing NO3ions from polluted water .We have used the OMWW condensate on large scale by [condensing the ordinary OMWW by means of solar energy] as an additive of antioxidant and foam softening properties in a novel solid soap production .

Key words: Olive Mill Wastewater (OMWW), Adsorbent, Nitrate ion, Pumice, Basaltic wool, Bentonite, Solid soap.

48

6- References 1- P.K.GOEL, Water Pollution-Causes, Effects and control, P(197-198). New Delhi.1997. 2- Yazjy, Wareef, M.Sc. Thesis P(10-11) Damascus University, Faculty of sciences, (2004). 3- T.M. Addiscott, NITRATE, AGRICULTURE AND THE ENVIRONMENT, UK, P (27-28,30-40) , 2005 ‫ ٔصاسح‬,45 ‫ سلى‬.‫ يٍبِ انششة انًشاجؼخ األٔنى‬,‫ ٍْئخ انًٕاصفبد ٔانًمبٌٍس انؼشثٍخ انسٕسي‬- 4 .1994 ,‫انصُبػخ‬ ‫ يٍبِ انصشف انصحً انًؼبنجخ ألغشاض‬,‫ ٍْئخ انًٕاصفبد ٔانًمبٌٍس انؼشثٍخ انسٕسٌخ‬- 5 .2003 ,‫ ٔصاسح انصُبػخ‬.2752 ‫ سلى‬,‫انشي‬ ‫ كهٍخ‬,‫ لسى ػهى األحٍبء انُجبتٍخ‬, ‫ انجضء انُظشي‬-ِ‫ يٍكشٔثٍٕنٕجٍب انًٍب‬,ٌ‫ ػذَب‬, ‫ ػهً َظبو‬.‫ د‬- 6 .2004-2003 ,‫ جبيؼخ ديشك‬, ‫انؼهٕو‬ 7- M. Matosic, I. Mijatouic, and E. Hodzic , Nitrate Removal from Drinking Water Using Ion Exchange – Comparison of Chloride and Bicarbonate Form of the Resins, Chem.Biochem. Eng, P(141-146) ,2000. 8- Manal F. Abou Taleba, , Ghada A. Mahmouda, Samia M. Elsigenyb, El-Sayed A. Hegazya. , Adsorption and desorption of phosphate and nitrate ions using quaternary (polypropylene-g-N,N-dimethylamino ethylmethacrylate) graft copolymer, Journal of Hazardous Materials , P(372–379) ,2008.www.elsevier.com/locate/jhazmat 9- Stephany burge,Rolf Halden, Nitrat and Perchlorate Removal from Ground water by Ion exchange , University of Idaho Moscow,1999.

49

10- Aušra Mažeikienė1, Marina Valentukevičienė, Mindaugas Rimeika, Algirdas Bronislovas Matuzevičius, Regimantas Dauknys, Removal Of Nitrates and Ammonium Ions from water using natural sorbent Zeolite (Clinoptilolite), Dept of Water Management, Vilnius Gediminas Technical University, P(38–44) ,2008. ‫ اَفبق االلتصبدٌخ نُٕاتج انجشكُخ فً سٕسٌب‬,‫ػجذ انسالو‬.ًَ‫ انتشكًب‬,‫فبسٔق‬.‫انؼًبدي‬

- 11

‫تمشٌش يُشٕس داخم انًؤسسخ‬, )‫ انصخٕس انجبصنتٍخ سكٕسٌب ٔ انطف‬-‫(انصخٕس انتشاكٍتٍخ‬ .2004 ,‫ ديشك‬,‫انؼبيخ نهجٍٕنٕجٍب ٔ انثشٔح انًؼذٍَخ‬ ( ( ٌٕ‫ انتخهص يٍ يٍبِ ػصش انضٌت‬,ً‫ ٔسٌف انٍبصج‬,‫ ػذَبٌ دٌت‬.‫ د‬,‫ٌحٍى ٔنٍذ انجضسح‬.‫د‬.‫ أ‬- 12 ‫ ثتحٌٕهّ ( يغ تكبثف انًكَٕبد انفٍُٕنٍخ ػهى انسطح ٔ ثذَّٔ ) إنى يجبدل‬OMWW ٔ ‫ االصطُبع‬-І

‫شبسدي يشتشن يتؼذد انٕظبئف نًؼبنجخ انًٍبِ انًستخذيخ فً انصُبػخ‬

‫ يجهخ جبيؼخ ديشك نهؼهٕو‬,‫يؼبنجخ انًٍبِ انحبٌٔخ ػهى األٌَٕبد راد األلطبس انصغٍشح‬ .2009 ,‫ انؼذد األٔل‬25 ‫األسبسٍخ –انًجهذ‬ 13-

Francis Rouessac, Annich Rouessac, Chemical Analysis-

Second Edition, University of Lemans, France. 2007. 14-

Standard Methods for the Examination of Water and

Wastewater 20 th Edition, American Public Health Association, American Water Works association, Water Environment Federation,1999. ‫ ٔصاسح اإلسكبٌ ٔ انًشافك‬, ‫ دنٍم طشائك انتحبنٍم انًخجشٌخ نًشالجخ جٕدح يٍبِ انششة‬- 15 .2001 ,‫ ديشك‬,‫ثبنتؼبٌٔ يغ يُظًخ األيى انًتحذح نهطفٕنخ ٌٍَٕسف‬ ‫ لسى‬,ً‫ انمسى انؼًه‬-‫ يؼبنجخ انًٍبِ ٔ َفبٌبد انًصبَغ‬,ً‫ يحًذ ػه‬,‫ انشؼبس‬.‫د‬.‫أ‬

- 16

.2008-2007.‫ جبيؼخ ديشك‬,‫ كهٍخ انُٓذسخ انكًٍٍبئٍخ ٔ انجتشٔنٍخ‬,‫انُٓذسخ انغزائٍخ‬ 17 - LEO M. L. NOLLET , Handbook of water analysis- Second edition ,Boca Raton London New York, P(201-217) , 2007. 18- YA. GIRASIMOV and others, Physical Chemistry, Vol 1, P(487), Mir Publishers, Mosco,1974. 50

19- Syrian patent number 5654, 2008/2009, examined by WIPO ( IC/09/2843/SY-BG )

51

‫ػُٕاٌ االخزشاع‪:‬‬ ‫‪ -1‬انزخهض يٍ ‪ OMWW‬ثزسٕ‪ٚ‬م يكثلّ إنٗ يبدح يبصح أل‪ ٌٕٚ‬انُزشاد ٔ إنٗ يبدح يضبكخ يسغُخ‬ ‫نهشؿبء ٔ يضبدح نألكغذح ك‪ ٙ‬طُبػخ انظبثٌٕ انظهت‬ ‫ثشاءح إضبك‪ٛ‬خ نهجشاءح سهى ‪5654‬‬

‫أ‪.‬د ‪ٚ‬س‪ٔ ٗٛ‬ن‪ٛ‬ذ انجضسح ٔ ٔس‪ٚ‬ق ان‪ٛ‬بصخ‪ٙ‬‬

‫‪1‬‬

‫‪2‬‬

‫أ‪ -‬انسبنخ انزوُ‪ٛ‬خ انغبثوخ‬

‫أ‪ -1-‬انٕطق انلُ‪ ٙ‬نالخزشاع‬ ‫انششذ انًلظم نالخزشاع‬

‫ال ٓشزشًًب ٓزؼذد اُ‪ٞ‬ظبئق عذ‪٣‬ذا ًػِ‪ ٠‬شٌَ‬ ‫أ‪ -1-1-‬يٍ ز‪ٛ‬ث اندذّح ‪:‬اطـ٘ؼ٘ب ٓجبد ً‬ ‫ؽج‪٤‬جبد ثو‪٤‬بط ≈ ‪ ٖٓ ِْٓ 0.5‬صالصخ ٌٓ‪ٗٞ‬بد ‪: ٢ٛ‬‬ ‫‪ٓ - 1‬بء اُغلذ )‪ -2 (OMWW‬اُج‪ ِٕٞ٤‬اُغ‪ٞ‬س‪ ٖٓ) ١‬رَ ؽغبس ؽِت) ‪ -3‬اُض‪٤ُٞ٣‬ذ اُؼٔبٗ‪A٢‬‬ ‫أ‪ -2--1-‬يٍ ز‪ٛ‬ث انخطٕح اإلثزكبس‪ٚ‬خ ‪:‬رْ أل‪ٓ ٍٝ‬شح اُزخِض ٖٓ ٓبء اُغلذ ‪ OMWW‬ثادخبُ‪ٚ‬‬ ‫ٌٓ‪ًٗٞ‬ب ‪ٛ‬بًٓب ك‪ٓ ٢‬جبدٍ أ‪ ٢ٗٞ٣‬رشبسً‪ٓ ٢‬جزٌش ٓزؼذد اُ‪ٞ‬ظبئق ‪٣ ٝ‬غ‪ ْٜ‬ك‪ ٢‬كؼبُ‪٤‬خ أُجبدٍ ئع‪ٜ‬بًٓب ع‪٤‬ذاً‪.‬‬ ‫أ‪ -3--1-‬هبثه‪ٛ‬خ انزطج‪ٛ‬ن انظُبػ‪ٗ : ٙ‬ش‪ ٟ‬رُي ك‪ ٢‬أُخـؾ اُظ٘بػ‪ ٢‬أُشكن ( طلؾخ ‪ ٝ ) 14‬ك‪٢‬‬ ‫ٗض اُجشاءح أُوزشؽخ‪.‬‬

‫‪2‬‬

‫أ‪ -4-1-‬ك‪ ٢‬أ‪ٓ ٖٓ ١‬شاًض اُجؾش ك‪ ٢‬اُذ‪ ٍٝ‬أُ‪ٜ‬زٔخ ثٔبء اُغلذ ‪٣ ُْ OMWW‬زْ اُزخِض ؽز‪٠‬‬ ‫اُ‪ٓ ٖٓ ّٞ٤‬بء اُغلذ أُِ‪ِٞ‬س ثزؾ‪ ِٚ٣ٞ‬ئُ‪ٓ ٠‬جبدالد أ‪٤ٗٞ٣‬خ ثبالشزشاى ٓغ اُج‪ ِٕٞ٤‬اُغ‪ٞ‬س‪ ١‬اُؾب‪١ٝ‬‬ ‫‪ٗٞٓ55%‬زٔ‪ٞ‬س‪٤ِِٗٞ٣‬ذ ‪ ٝ‬اُض‪٤ُٞ٣‬ذ اُؼٔبٗ‪. A ٢‬‬ ‫‪ٞٗ ٝ‬سد ك‪ٔ٤‬ب ‪ٗ ٢ِ٣‬زبئظ اُزؾِ‪ َ٤‬اٌُ‪٤ٔ٤‬بئ‪ ٖٓ ٌَُ ٢‬اُج٘ز‪٤ٗٞ‬ذ ‪ ٝ‬اُض‪٤ُٞ٣‬ذ ‪ٓ ٝ‬بء اُغلذ ‪ OMWW‬ك‪٢‬‬ ‫اُغذا‪٣ ٝ )3,2,1( ٍٝ‬ج‪ ٖ٤‬اُشٌَ (‪ )1‬اُظ‪٤‬ؾ اٌُ‪٤ٔ٤‬بئ‪٤‬خ ُجؼغ األشٌبٍ أُ‪ٞ‬ع‪ٞ‬دح ك‪.OMWW ٢‬‬ ‫‪ ٌٖٔ٣‬روذ‪ ْ٣‬ػ‪٘٤‬خ ٖٓ ًَ ٖٓ ‪ٛ‬ز‪ ٙ‬أُ٘زغبد ػ٘ذ اُـِت‪.‬‬ ‫اندذٔل ) ‪(1‬انزشك‪ٛ‬ت انك‪ًٛٛ‬بئ‪ ٙ‬نهج‪ٛ‬هٌٕ انغٕس٘‬ ‫انًكٌٕ‬ ‫‪W%‬‬

‫‪AL2O3‬‬ ‫‪12.18‬‬

‫‪CaO‬‬ ‫‪8.22‬‬

‫‪CL‬‬‫‪>0.002‬‬

‫‪Cr2O3‬‬ ‫‪0.044‬‬

‫‪F‬‬‫‪0.020‬‬

‫انًكٌٕ‬ ‫‪W%‬‬

‫‪Mn2O3‬‬ ‫‪0.150‬‬

‫‪Na2O‬‬ ‫‪>0.06‬‬

‫‪P2O5‬‬ ‫‪0.082‬‬

‫‪SO3‬‬ ‫‪>0.002‬‬

‫‪SiO2‬‬ ‫‪46.38‬‬

‫‪K 2O‬‬ ‫‪0.438‬‬

‫‪Fe2O3‬‬ ‫‪8.52‬‬ ‫‪TiO2‬‬ ‫‪1.12‬‬

‫‪MgO‬‬ ‫‪8.34‬‬ ‫‪L.O.I‬‬ ‫‪14.18‬‬

‫اندذٔل ) ‪(2‬انزشك‪ٛ‬ت انك‪ًٛٛ‬بئ‪ ٙ‬نهض‪ٕٚ‬ن‪ٛ‬ذ انؼًبَ‪A ٙ‬‬ ‫انًكٌٕ‬ ‫‪W%‬‬

‫‪Na2O‬‬ ‫‪17.38‬‬

‫‪AL2O3‬‬ ‫‪29.24‬‬

‫‪SiO2‬‬ ‫‪32.88‬‬

‫‪H 2O‬‬ ‫‪20.63‬‬

‫اندذٔل (‪ ) 3‬يٕاطلبد ًَٕرج ػٍ ي‪ٛ‬بِ اندلذ انُبردخ ػٍ طش‪ٚ‬وز‪ ٙ‬انضـط ٔ انطشد انًشكض٘‬ ‫انًبدح‬ ‫األط انٓ‪ٛ‬ذسٔخ‪ُٙٛ‬‬ ‫انًٕاد اندبكخ‬ ‫انكثبكخ‬ ‫انض‪ٚ‬ذ‬ ‫انغكبكش انًشخؼخ‬ ‫انل‪ُٕٛ‬الد انًزؼذدح‬ ‫أٔسرٕ د٘ ك‪ُٕٛ‬ل‬ ‫ْ‪ٛ‬ذسٔكغ‪ ٙ‬ر‪ٛ‬شٔصٔل‬ ‫سيبد‬ ‫‪COD‬‬ ‫َزشٔخ‪ ٍٛ‬ػضٕ٘‬ ‫كٕعلٕس كه‪ٙ‬‬ ‫طٕد‪ٕٚ‬و‬ ‫ثٕربع‪ٕٛ‬و‬ ‫كبنغ‪ٕٛ‬و‬

‫انطش‪ٚ‬وخ انزوه‪ٛ‬ذ‪ٚ‬خ‬ ‫‪5.73-4.73‬‬ ‫‪266.00-15.50‬‬ ‫‪1.09-1.02‬‬ ‫‪11.50-0.12‬‬ ‫‪67.10-9.70‬‬ ‫‪14.30-1.40‬‬ ‫‪13.30-0.90‬‬ ‫‪937-71‬‬ ‫‪42.60-4.00‬‬ ‫‪389.50-42.00‬‬ ‫‪1106-154‬‬ ‫‪915-157‬‬ ‫‪285-38‬‬ ‫‪5000-1500‬‬ ‫‪408-58‬‬

‫انٕزذح‬ ‫‪pH‬‬ ‫‪g/l‬‬ ‫‬‫‪g/l‬‬ ‫‪g/l‬‬ ‫‪g/l‬‬ ‫‪g/l‬‬ ‫‪mg/l‬‬ ‫‪g/l‬‬ ‫‪g/l‬‬ ‫‪mg/l‬‬ ‫‪mg/l‬‬ ‫‪mg/l‬‬ ‫‪mg/l‬‬ ‫‪mg/l‬‬

‫‪3‬‬

‫انطش‪ٚ‬وخ انسذ‪ٚ‬ثخ‬ ‫‪4.55-5.89‬‬ ‫‪161.20-9.50‬‬ ‫‪1.046-1.007‬‬ ‫‪29.80-0.41‬‬ ‫‪34.70-1.60‬‬ ‫‪7.10-0.40‬‬ ‫‪6.00-0.30‬‬ ‫‪426-43‬‬ ‫‪12.5-0.40‬‬ ‫‪199.20-15.20‬‬ ‫‪966-140‬‬ ‫‪485-42‬‬ ‫‪124-18‬‬ ‫‪2500-630‬‬ ‫‪200-47‬‬

180-60 31.50-8.80 3.42-1.16 4.48-1.42 5.20-0.87 1.44-0.29 48.00-0.12 0.72-0.35

337-90 86.40-16.40 4.75-1.10 6.50-1.60 8.90-2.16 1.58-0.44 0.96-0.18 1.85-0.40 O

HO

OH

HO

‫ٕو‬ٚ‫يـُض‬ ‫ذ‬ٚ‫زذ‬ ‫َسبط‬ ‫صَك‬ ‫ض‬ُٛ‫يُـ‬ ‫كم‬َٛ ‫كٕثبنذ‬ ‫سطبص‬

mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l O

O

OH

OH

OH OH

OH

OH

p-hydroxybenzoic acid (p-HBA)

Gallic acid (GA)

O

CH3

O

OH

O

3,4-Dihydroxybenzoic acid Di-HBA

O

OH

CH3

O

OH

OH

Syringic acid (SA)

Vanillic acid (VA)

CH3

OH

HO tyrosol (Ty)

O

OH

OH

O

O

OH

OH

OH cinnamic acid CA

p-hydroxycinnamic acid p-HCA

o-hydroxycinnamic acid o-HCA

OH

HO O H3C

OH

OH O O

3,4-Dihydroxycinnamic acid Di-HCA

ferulic acid (FA)

4

OH

‫انشكم ) ‪(1‬انظ‪ٛ‬ؾ انك‪ًٛٛ‬بئ‪ٛ‬خ نجؼض انًشكجبد انل‪ُٕٛ‬ن‪ٛ‬خ ٔ انًٕخٕدح ك‪ ٙ‬ي‪ٛ‬بِ يؼبطش انض‪ٚ‬زٌٕ‬

‫أ‪ -5-1-‬طش‪ٚ‬وخ انزسض‪ٛ‬ش‪:‬‬ ‫أ‪ 1-5-1-‬انًجبدل األٔل ‪OMWBZ-PC‬‬ ‫ٓضط ‪100‬ؽ ٖٓ اُج‪ ِٕٞ٤‬اُؾِج‪ ٢‬ك‪ ٢‬ث‪٤‬شش ٖٓ اُجالعز‪٤‬ي اُؾشاس‪ٓ ١‬غ ‪100‬ؽ ٖٓ اُض‪٤ُٞ٣‬ذ ٓضعًب ع‪٤‬ذًا‬ ‫صْ أػ‪٤‬ق ئُ‪ٜ٤‬ب ‪100‬ؽ ٖٓ ‪ٓ ٝOMWW‬ضط ٓغٔ‪ٞ‬ع ‪ٛ‬ز‪ ٙ‬أُ‪ٞ‬اد ٓضعًب ع‪٤‬ذًا ؽز‪ ٠‬اُؾظ‪ ٍٞ‬ػِ‪٠‬‬ ‫‪,‬ه‪٤‬غذ دسعخ‬ ‫ػغ‪٘٤‬خ ‪.‬رشًذ ‪ٛ‬ز‪ ٙ‬اُؼغ‪٘٤‬خ ئُ‪ ٠‬اُ‪ ّٞ٤‬اُزبُ‪ ٢‬ؽ‪٤‬ش ُ‪ٞ‬ؽظ أٗ‪ٜ‬ب أطجؾذ أًضش رٔبعٌبً‬ ‫ؽشاسح اُؼغ‪٘٤‬خ كٌبٗذ ‪ٝ ّْ 31.3‬ث‪ٜ‬ذف ئؽذاس اُزٌبصق أُزؼذد اُل‪ٞ٘٤‬الد ك‪ OMWW ٢‬أػ‪٤‬ق ثؼذ‬ ‫رُي( ‪ٓ ٖٓ َٓ4‬ؾِ‪ٓ ٍٞ‬بءاد االٓ‪36% ّٞ٤ٗٞ‬ثذ‪ ٕٝ‬رٔذ‪٣‬ذ ‪ ٖٓ َٓ2 ٝ‬اٍك‪ٞ‬سّ أُذ‪٤ٛ‬ذ ) ‪ ٝ‬رْ ٓضط‬ ‫أُغٔ‪ٞ‬ػخ اُ٘برغخ ؽز‪ ٠‬اُزغبٗظ ؽ‪٤‬ش ُ‪ٞ‬ؽظ أٗ‪ٜ‬ب ارخزد ه‪ٞ‬آًب هش‪٣‬جًب ٖٓ اُِذ‪ٗٝ‬خ ‪ٓ ٝ‬غ اعزٔشاس ػِٔ‪٤‬خ‬ ‫أُضط ُ‪ٞ‬ؽظ اسرلبع ك‪ ٢‬دسعخ ؽشاسح اُؼغ‪٘٤‬خ ؽز‪ٜٗ ٠‬ب‪٣‬خ ػظٔ‪ٔٓ ّْ(34.4) ٠‬ب ‪٣‬ذٍ ػِ‪ ٠‬ؽظ‪ٍٞ‬‬ ‫رلبػَ ٗبشش ُِؾشاسح داخَ اُؼغ‪٘٤‬خ ‪ ٞٛ‬رلبػَ اُزٌبصق أُزؼذد ‪,‬عش‪ ٟ‬ثؼذ رُي رغخّٖ اُؼغ‪٘٤‬خ اُ٘برغخ‬ ‫ك‪ ٢‬ؽٔبّ ٓبئ‪ ٢‬دسعخ ؽشاسر‪ ٚ‬ث‪ُٔ ّْ 60-50 ٖ٤‬ذح ‪40‬ده‪٤‬وخ ٓغ اُؼغٖ ًَ ػششح دهبئن ‪,‬رشًذ‬ ‫‪ٝ ,ِْٓ1-0.5‬رشى اُ٘برظ‬ ‫اُؼغ‪٘٤‬خ ؽز‪ ٠‬اُ‪ ّٞ٤‬اُزبُ‪ ٢‬ؽ‪٤‬ش عشد ػِٔ‪٤‬خ اُزؾض‪٤‬ش ئُ‪ ٠‬ؽج‪٤‬جبد ثو‪٤‬بط‬ ‫‪ٝ ,‬صٗذ ‪100‬ؽ ٖٓ اُؾج‪٤‬جبد اُغبكخ‬ ‫أُؾضش ُ‪٤‬غق ثجؾء ك‪ ٢‬اُ‪ٜٞ‬اء ‪ ٝ‬ك‪ ٢‬دسعخ ؽشاسح اُـشكخ‬ ‫‪ٝٝ‬ػؼذ ك‪ ٢‬اُلشٕ ك‪ ٢‬دسعخ اُؾشاسح )‪ُٔ ّْ(400‬ذح ‪4‬عبػبد‪ ,‬صْ ‪ٝ‬صٗذ اُؾج‪٤‬جبد اُجبسدح ك‪ ٢‬اُ‪ّٞ٤‬‬ ‫اُزبُ‪ ٢‬كٌبٕ ‪ٝ‬صٗ‪ٜ‬ب )‪(90‬ؽ ‪,‬صْ ‪ٝ‬ػغ ‪2‬ؽ ٖٓ أُجبدٍ ك‪20 cm3 ٢‬ك‪ٓ ٢‬ؾِ‪ُٔ 3N NaCl ٍٞ‬ذح‬ ‫‪24‬عبػخ ك‪ ٢‬دسعخ ؽشاسح اُـشكخ ؽ‪٤‬ش ؽظِ٘ب ػِ‪ ٠‬أُجبدٍ اُظ‪ٞ‬د‪ ٢ٓٞ٣‬اُز‪ ١‬ؿغَ ثبُٔبء أُوـش‬ ‫‪ٝ‬علق صْ ؽلظ الخزجبس كؼبُ‪٤‬ز‪ ٚ‬ك‪ ٢‬ئصاُخ ػغشح أُ‪٤‬ب‪.ٙ‬‬ ‫أ‪ - 2-5-1-‬انًجبدل انثبَ‪OMWBZ ٙ‬‬ ‫ٓضط ‪100‬ؽ ٖٓ اُج‪ ِٕٞ٤‬اُؾِج‪ٓ ٢‬غ ‪100‬ؽ ٖٓ اُض‪٤ُٞ٣‬ذ ٓضعًب ع‪٤‬ذًا ك‪ ٢‬ث‪٤‬شش ٖٓ اُجالعز‪٤‬ي‬ ‫اُؾشاس‪ ٝ ١‬أػ‪٤‬ق ئُ‪100 ٚ٤‬ؽ ٖٓ ٓبء اُغلذ ‪ ٝ ,OMWW‬ثؼذ أُضط اُغ‪٤‬ذ رشًذ اُغِٔخ‬ ‫اُ٘برغخ ئُ‪ ٠‬اُ‪ ّٞ٤‬اُزبُ‪٣ ُْ ٝ ٢‬زْ ئػبكخ اُل‪ٞ‬سّ أُذ‪٤ٛ‬ذ أ‪ٓ ٝ‬بءاد األٓ‪ ّٞ٤ٗٞ‬ئُ‪ ٠‬أُض‪٣‬ظ ‪ ُْ ٝ‬رغش ػِ‪ ٚ٤‬ا‬ ‫ػِٔ‪٤‬خ اُزٌبسف‪ ,‬صْ اٗزوِ٘ب ٓجبششح ئُ‪ ٠‬ػِٔ‪٤‬خ اُزؾض‪٤‬ش ‪ ٝ‬رغل‪٤‬ق اُؾج‪٤‬جبد اُ٘برغخ ‪.‬‬ ‫أخز ‪100‬ؽ ٖٓ اُؾج‪٤‬جبد اُ٘برغخ ‪ٝٝ‬ػؼذ داخَ أعـ‪ٞ‬اٗخ ٓـِوخ ك‪ ٢‬اُلشٕ ثذسعخ ؽشاسح ‪ْ ّ400‬‬ ‫ُٔذح ‪4‬عبػبد ‪ً ٝ‬بٕ ‪ٝ‬صٕ اُ٘برظ ‪83‬ؽ ‪ ٝ.‬رْ اُؾظ‪ ٍٞ‬ػِ‪ ٠‬اُشٌَ اُظ‪ٞ‬د‪ًٔ ٢ٓٞ٣‬ب رًشٗب ك‪٢‬‬ ‫اُلوشح‪.1-a- І‬‬ ‫أ‪ -3-5-1-‬انًجبدل انثبنث ‪BZ‬‬ ‫رْ ٓضط ‪100‬ؽ ٖٓ اُج‪ ِٕٞ٤‬اُؾِج‪100 ٝ ٢‬ؽ ٖٓ اُض‪٤ُٞ٣‬ذ ٓغ ‪100‬ؽ ٖٓ أُبء أُوـش ك‪ ٢‬ث‪٤‬شش‬ ‫ثالعز‪ ٢ٌ٤‬ؽشاس‪ ١‬ؽ‪٤‬ش ػغ٘ذ أٌُ‪ٗٞ‬بد ع‪٤‬ذًا ‪ٝ‬رشًذ ئُ‪ ٠‬اُ‪ ّٞ٤‬اُضبٗ‪ ٢‬صْ اعش‪ ١‬ػِ‪٤‬ب ػِٔ‪٤‬خ اُزؾض‪٤‬ش‬ ‫‪ٝ‬اُزغل‪٤‬ق‪٣ ُْٝ .‬ؼق‪ OMWW‬ث‪ٜ‬ذف أُوبسٗخ ٓغ أُجبدٍ اُضبٗ‪ ٝ ٢‬اُضبُش‪.‬‬

‫‪5‬‬

‫أخز ‪90‬ؽ ٖٓ اُؾج‪٤‬جبد ‪ٝٝ‬ػؼذ داخَ أعـ‪ٞ‬اٗخ ٓـِوخ ك‪ ٢‬كشٕ دسعخ ؽشاسر‪ُٔ ّْ 400 ٚ‬ذح أسثغ‬ ‫عبػبد ‪ ٝ‬ثؼذ اُزجش‪٣‬ذ ًبٕ اُ‪ٞ‬صٕ ‪86‬ؽ ‪ ٝ ,‬رْ اُؾظ‪ ٍٞ‬ػِ‪ ٠‬أُجبدٍ اُظ‪ٞ‬د‪ ٢ٓٞ٣‬ث٘وغ ‪10‬ؽ ٖٓ‬ ‫اُؾج‪٤‬جبد اُ٘برغخ ك‪ٓ ٢‬ؾِ‪ًِٞ ٍٞ‬س اُظ‪ٞ‬د‪ُٔ 3N NaCl ّٞ٣‬ذح ‪24‬عبػخ صْ اُـغَ ‪ ٝ‬اُزغل‪٤‬ق‪.‬‬

‫أ‪ -6-1-‬انو‪ٛ‬بعبد‬ ‫رْ رؾؼ‪٤‬ش أُبء اُوبع‪ ٢‬أُغزخذّ ك‪ ٢‬اخزجبس أداء أُجبدالد اُشبسد‪٣‬خ ثؾَ ( ‪(2‬ؽ ‪CaCl2.xH2O‬‬ ‫)‪(M=110.99‬ؽ ‪ 2+‬ؽ ٖٓ ‪ MgSO4.7H2O‬ك‪ ٢‬أُبء أُوـش ‪ ٝ‬ئرٔبّ اُؾغْ ئُ‪ُ1 ٠‬زش ‪.‬‬ ‫‪ٝ‬ػغ) ‪(1‬ؽ ٖٓ أُجبدٍ اُشبسد‪ ١‬ػِ‪ ٠‬عش‪٣‬ش ٖٓ اُظ‪ٞ‬ف اُضعبع‪ ٢‬ك‪ ٢‬ػٔ‪ٞ‬د اُزجبدٍ اُز‪ٓ ١‬غبؽخ‬ ‫ٓوـؼ‪ ٝ , cm2 1 ٚ‬رْ رؼ‪ٓ ٖ٤٤‬ؾز‪ ٟٞ‬أُبء ٖٓ أ‪ٗٞ٣‬بد اٌُبُغ‪ ٝ ّٞ٤‬أُـ٘ض‪ ّٞ٣‬ػِ‪ ٠‬اُشٌَ اُزبُ‪: ٢‬‬ ‫ه‪٤‬غذ اُوغب‪ٝ‬ح االثزذائ‪٤‬خ اٌُِ‪٤‬خ ‪ٝ,‬اٌُبُغ‪٤ٓٞ٤‬خ ‪ ٝ‬أُـ٘ض‪٤ٓٞ٣‬خ ‪ ,‬صْ ٓشسد هـلبد ٖٓ ‪ٛ‬ز‪ ٙ‬أُ‪٤‬ب‪ ٙ‬اُوبع‪٤‬خ‬ ‫ػِ‪ ٠‬أُجبدٍ ؽغْ ًَ هـلخ ‪ ٝ َٓ50‬ه‪٤‬غذ اُوغب‪ٝ‬ح اٌُِ‪٤‬خ ثٔؼب‪٣‬شح ‪ ًَ ٖٓ َٓ5‬هـلخ ثٔؾِ‪ٍ ٞ‬‬ ‫‪ M 0.01 EDTA‬ثؼذ ئػبكخ ‪ ٖٓ َٓ1‬أُؾِ‪ ٍٞ‬أُ‪ٞ‬ه‪ ٢‬أُؾؼش ٖٓ ( ‪54‬ؽ ٖٓ ًِ‪ٞ‬س األٓ‪ّٞ٤ٗٞ‬‬ ‫اُجِ‪ٞ‬س‪ ١‬ك‪٤ٛ َٓ440 ٢‬ذس‪ًٝ‬غ‪٤‬ذ األٓ‪ً ّٞ٤ٗٞ‬ضبكز‪ 0.91 ٚ‬صْ ‪ٔ٣‬ذد أُؾِ‪ ٍٞ‬ئُ‪ُ1 ٠‬زش ثبُٔبء أُوـش (‬ ‫ٓغ ‪ 0.5-0.1‬ؽ ٖٓ ٓشؼش أع‪ٞ‬د األس‪ًٞ٣‬ش‪ T ّٝ‬ئُ‪ ٠‬اُؼ‪٘٤‬خ أُلؾ‪ٞ‬طخ‪.‬‬ ‫رْ رؼ‪ٓ ٖ٤٤‬ؾز‪ ٟٞ‬أ‪ٗٞ٣‬بد ‪Ca+2‬ثبُـش‪٣‬وخ رار‪ٜ‬ب ثبعزجذاٍ أُشؼش اُغبثن ثٔشؼش أُ‪٤‬ش‪ًٝ‬غ‪٤‬ذ ‪ٝ ,‬ئػبكخ‬ ‫ٓؾِ‪ NaOH ٍٞ‬ػ‪ٞ‬ػًب ػٖ أُؾِ‪ ٍٞ‬أُ‪ٞ‬ه‪ُِٞ ٢‬ط‪ ٍٞ‬ئُ‪. (13-12) pH ٠‬‬ ‫‪/75 َٓ1‬صب‪ ,‬ثؾ‪٤‬ش ‪٘٣‬وؾ أُبء‬ ‫عشد اُو‪٤‬بعبد ثذسعخ ؽشاسح اُـشكخ ‪ ٝ‬ػ٘ذ عشػخ رذكن هذس‪ٛ‬ب‬ ‫اُؼغش ػِ‪ ٠‬أُجبدٍ ‪ٝ‬روبط هغب‪ٝ‬ح أُبء اُؼغش اُخبسط ٖٓ ػٔ‪ٞ‬د اُزجبدٍ ئُ‪ ٠‬إٔ ‪٣‬زغب‪ ٟٝ‬رشً‪٤‬ض‬ ‫أ‪ٗٞ٣‬بد ‪Mg+2 ٝCa+2‬ك‪ٓ ٚ٤‬غ ٓض‪ِٜٔ٤‬ب ك‪ ٢‬أُبء اُذاخَ ئُ‪ ٠‬ػٔ‪ٞ‬د اُزجبدٍ ‪ ٝ ,‬ػ٘ذ رُي رؾغت عؼخ‬ ‫آزظبص أُجبدٍ‪.‬‬ ‫‪3‬‬ ‫ثؼذ ًَ ه‪٤‬بط ‪٣‬ؼبد ر٘ش‪٤‬ؾ أُجبدٍ أُذس‪ٝ‬ط ثـٔش‪ ٙ‬أ‪(1 ( ١‬ؽ ك‪ٓcm (20) ٢‬ؾِ‪ًِٞ ٍٞ‬س اُظ‪ٞ‬د‪ّٞ٣‬‬ ‫‪ُٔ3N‬ذح ‪24‬عبػخ ك‪ ٢‬دسعخ ؽشاسح اُـشكخ‪.‬‬ ‫أ‪ -7-1-‬انُزبئح‪:‬‬ ‫ٗذسط ك‪ ٢‬اُغذا‪ٗ ) 6 , 5 , 4( ٍٝ‬زبئظ اُغؼبد اُزجبدُ‪٤‬خ ُِٔجبدالد أُذس‪ٝ‬عخ اُغذ‪٣‬ذح ثبُـش‪٣‬وخ‬ ‫اُذ‪٘٣‬بٓ‪٤ٌ٤‬خ ‪ ٝ‬ثؼذ االعزخذاّ ػشش ٓشاد‪.‬‬ ‫‪+2‬‬ ‫‪+2‬‬ ‫اندذٔل ) ‪(4‬انغؼبد انزجبدن‪ٛ‬خ نهًجبدالد انًذسٔعخ اندذ‪ٚ‬ذح يغ أ‪َٕٚ‬بد ‪Mg ٔ Ca‬ثؼذ كم‬ ‫رُش‪ٛ‬ط ( ي‪ٛ‬ه‪ ٙ‬يكبكئ ؿشاي‪ 100/ٙ‬ؿشاو)‬ ‫‪OMWBZ‬‬ ‫رٕط‪ٛ‬ق انًجبدل‬ ‫‪BZ‬‬ ‫‪OMWBZ-PC‬‬ ‫سهى انزُش‪ٛ‬ط‬ ‫أعبع‪ٙ‬‬ ‫يُشط نهًشح )‪(1‬‬ ‫يُشط نهًشح )‪(2‬‬ ‫يُشط نهًشح )‪(3‬‬ ‫يُشط نهًشح )‪(4‬‬ ‫يُشط نهًشح )‪(5‬‬

‫‪234.54‬‬ ‫‪193.50‬‬ ‫‪161.04‬‬ ‫‪177.71‬‬ ‫‪150.89‬‬ ‫‪220.71‬‬

‫‪238.39‬‬ ‫‪180.36‬‬ ‫‪180.18‬‬ ‫‪171.43‬‬ ‫‪198.57‬‬ ‫‪162.50‬‬

‫‪6‬‬

‫‪210.57‬‬ ‫‪150.00‬‬ ‫‪165.91‬‬ ‫‪162.83‬‬ ‫‪163.57‬‬ ‫‪182.24‬‬

‫يُشط نهًشح )‪(6‬‬ ‫يُشط نهًشح )‪(7‬‬ ‫يُشط نهًشح )‪(8‬‬ ‫يُشط نهًشح )‪(9‬‬ ‫يُشط نهًشح)‪(10‬‬

‫انًزٕعط انسغبث‪ٙ‬‬

‫‪202.61‬‬ ‫‪194.64‬‬ ‫‪183.92‬‬ ‫‪187.20‬‬ ‫‪160.08‬‬ ‫‪187.89‬‬

‫‪207.54‬‬ ‫‪196.16‬‬ ‫‪206.29‬‬ ‫‪169.64‬‬ ‫‪165.00‬‬ ‫‪188.73‬‬

‫‪171.60‬‬ ‫‪162.00‬‬ ‫‪167.80‬‬ ‫‪136.00‬‬ ‫‪136.00‬‬ ‫‪164.41‬‬

‫اندذٔل ) ‪(5‬انغؼبد انزجبدن‪ٛ‬خ نهًجبدالد انًذسٔعخ اندذ‪ٚ‬ذح يغ أ‪َٕٚ‬بد ‪ Ca+2‬ثؼذ كم رُش‪ٛ‬ط‬ ‫)ي‪ٛ‬ه‪ ٙ‬يكبكئ ؿشاي‪ 100/ٙ‬ؿشاو(‬ ‫رٕط‪ٛ‬ق انًجبدل‬ ‫سهى انزُش‪ٛ‬ط‬ ‫أعبع‪ٙ‬‬ ‫يُشط نهًشح )‪(1‬‬ ‫يُشط نهًشح )‪(2‬‬ ‫يُشط نهًشح )‪(3‬‬ ‫يُشط نهًشح )‪(4‬‬ ‫يُشط نهًشح )‪(5‬‬ ‫يُشط نهًشح )‪(6‬‬ ‫يُشط نهًشح )‪(7‬‬ ‫يُشط نهًشح )‪(8‬‬ ‫يُشط نهًشح )‪(9‬‬ ‫يُشط نهًشح)‪(10‬‬

‫انًزٕعط انسغبث‪ٙ‬‬

‫‪OMWBZ‬‬

‫‪OMWBZ-PC‬‬

‫‪BZ‬‬

‫‪201.79‬‬ ‫‪135.71‬‬ ‫‪155.89‬‬ ‫‪139.29‬‬ ‫‪154.82‬‬ ‫‪141.07‬‬ ‫‪162.46‬‬ ‫‪153.89‬‬ ‫‪160.36‬‬ ‫‪130.64‬‬ ‫‪147.60‬‬ ‫‪153.05‬‬

‫‪184.29‬‬ ‫‪167.86‬‬ ‫‪126.86‬‬ ‫‪142.29‬‬ ‫‪125.00‬‬ ‫‪171.07‬‬ ‫‪155.21‬‬ ‫‪152.86‬‬ ‫‪143.52‬‬ ‫‪150.80‬‬ ‫‪132.00‬‬ ‫‪150.16‬‬

‫‪206.85‬‬ ‫‪133.93‬‬ ‫‪134.98‬‬ ‫‪123.36‬‬ ‫‪125.00‬‬ ‫‪141.36‬‬ ‫‪150.80‬‬ ‫‪129.20‬‬ ‫‪120.80‬‬ ‫‪109.00‬‬ ‫‪110.00‬‬ ‫‪135.03‬‬

‫اندذٔل ) ‪(6‬انغؼبد انزجبدن‪ٛ‬خ نهًجبدالد انًذسٔعخ اندذ‪ٚ‬ذح يغ أ‪َٕٚ‬بد ‪ Mg+2‬ثؼذ كم رُش‪ٛ‬ط‬ ‫)ي‪ٛ‬ه‪ ٙ‬يكبكئ ؿشاي‪ 100/ٙ‬ؿشاو(‬ ‫‪OMWBZ‬‬ ‫رٕط‪ٛ‬ق انًجبدل‬ ‫‪BZ‬‬ ‫‪OMWBZ-PC‬‬ ‫سهى انزُش‪ٛ‬ط‬ ‫أعبع‪ٙ‬‬ ‫يُشط نهًشح )‪(1‬‬ ‫يُشط نهًشح )‪(2‬‬ ‫يُشط نهًشح )‪(3‬‬ ‫يُشط نهًشح )‪(4‬‬ ‫يُشط نهًشح )‪(5‬‬ ‫يُشط نهًشح )‪(6‬‬ ‫يُشط نهًشح )‪(7‬‬ ‫يُشط نهًشح )‪(8‬‬ ‫يُشط نهًشح )‪(9‬‬ ‫يُشط نهًشح)‪(10‬‬

‫‪36.61‬‬ ‫‪44.64‬‬ ‫‪24.29‬‬ ‫‪32.14‬‬ ‫‪43.75‬‬ ‫‪21.43‬‬ ‫‪45.07‬‬ ‫‪42.27‬‬ ‫‪45.93‬‬ ‫‪39.00‬‬ ‫‪17.40‬‬

‫‪50.25‬‬ ‫‪25.64‬‬ ‫‪34.18‬‬ ‫‪35.43‬‬ ‫‪25.89‬‬ ‫‪49.64‬‬ ‫‪47.39‬‬ ‫‪41.78‬‬ ‫‪40.40‬‬ ‫‪36.40‬‬ ‫‪28.08‬‬

‫‪3.72‬‬ ‫‪16.07‬‬ ‫‪30.93‬‬ ‫‪39.47‬‬ ‫‪38.57‬‬ ‫‪40.88‬‬ ‫‪20.80‬‬ ‫‪32.80‬‬ ‫‪47.00‬‬ ‫‪27.00‬‬ ‫‪26.00‬‬

‫انًزٕعط انسغبث‪ٙ‬‬

‫‪35.68‬‬

‫‪37.74‬‬

‫‪29.39‬‬

‫‪7‬‬

‫أ‪ -8-1-‬زغبة ثبثذ رٕاصٌ رلبػم انزجبدل األ‪ ٔ َٕٙٚ‬عؼخ االيزظبص انؼظًٗ‬ ‫انًجبدالد انًسضشح‪:‬‬ ‫‪٣‬غش‪ ١‬رلبػَ اُزجبدٍ ث‪ ٖ٤‬أ‪ٗٞ٣‬بد اُظ‪ٞ‬د‪ ّٞ٣‬أُ‪ٞ‬ع‪ٞ‬دح ػِ‪ ٠‬عـؼ أُجبدٍ ‪ ٝ‬أ‪ٗٞ٣‬بد اٌُبُغ‪ٝ ّٞ٤‬‬ ‫أُـ٘ض‪ ّٞ٣‬أُ‪ٞ‬ع‪ٞ‬دح ك‪ ٢‬أُؾِ‪ ٍٞ‬ؽغت أُؼبدُخ ثشٌِ‪ٜ‬ب أُجغؾ‪:‬‬ ‫‪+‬‬ ‫‪2[Na ]s‬‬ ‫‪+‬‬ ‫‪[Ca+2]w = [Ca+2]s + 2 [Na+]w‬‬ ‫طهت‬ ‫يسهٕل‬ ‫طهت‬ ‫يسهٕل‬ ‫‪ ٝ‬ثبُزبُ‪ ٢‬رٌ‪ ٕٞ‬ػجبسح صبثذ اُز‪ٞ‬اصٕ ًٔب‪:٢ِ٣‬‬

‫ػهٗ عطٕذ‬

‫‪[Ca 2 ] s [ Na  ] 2w‬‬ ‫‪KT ‬‬ ‫‪[ Na  ] 2s [Ca  2 ] w‬‬

‫ؽ‪٤‬ش‪:‬‬ ‫‪ :C1=[Ca+2]w‬رشً‪٤‬ض اٌُبُغ‪ ّٞ٤‬أُ‪ٞ‬ع‪ٞ‬دح ك‪ ٢‬أُؾِ‪ ٍٞ‬ػ٘ذ ؽظ‪ ٍٞ‬اُز‪ٞ‬اصٕ‪.‬‬ ‫‪ :S1= [Ca+2]s‬رشً‪٤‬ض أ‪ٗٞ٣‬بد اٌُبُغ‪ ٝ ّٞ٤‬أُـ٘ض‪ ّٞ٣‬أُز‪ٞ‬ػؼخ ػِ‪ ٠‬عـؼ أُجبدٍ أُ‪ٞ‬ع‪ٞ‬د ك‪٢‬‬ ‫‪ُ1‬زش ػ٘ذ اُز‪ٞ‬اصٕ (رشً‪٤‬ض‪ Ca+2‬هجَ ‪ٝ‬ػغ أُجبدٍ ك‪ٗ ٚ٤‬بهظًب ‪.(C1=[Ca+2]w‬‬ ‫‪ : S2= [Na+]s‬رشً‪٤‬ض أ‪ٗٞ٣‬بد اُظ‪ٞ‬د‪ ّٞ٣‬اُوبثِخ ُِزجبدٍ ‪ ٝ‬أُزجو‪٤‬خ ػِ‪ ٠‬عـؼ أُجبدٍ أُ‪ٞ‬ع‪ٞ‬د ك‪٢‬‬ ‫‪ُ1‬زش ٖٓ أُؾِ‪ ٍٞ‬ػ٘ذ اُز‪ٞ‬اصٕ ‪.‬‬ ‫‪ :C2= [Na+]w‬رشً‪٤‬ض أ‪ٗٞ٣‬بد اُظ‪ٞ‬د‪ ّٞ٣‬أُ‪ٞ‬ع‪ٞ‬دح ك‪ ٢‬أُؾِ‪ ٍٞ‬ػ٘ذ اُز‪ٞ‬اصٕ ثؾ‪٤‬ش ‪ٌٕٞ٣‬‬ ‫‪.2[Ca+2]s= [Na+]w‬‬ ‫‪ ٝ‬هذ رْ رؼ‪ ٖ٤٤‬اُزشاً‪٤‬ض اُز‪ٞ‬اصٗ‪٤‬خ ثبُـش‪٣‬وخ اُشاًذح ًٔب ‪ٝ‬طق أػال‪ٝ , ٙ‬رج‪ ٖ٤‬اُغذا‪ ٍٝ‬اُزبُ‪٤‬خ (‪-9-8-7‬‬ ‫‪ٗ )15-14-13-12-11-10‬زبئظ اُو‪٤‬بعبد ك‪ ٢‬دسعبد اُؾشاسح أُخزِلخ (‪ٖٓ ٌَُ ْ ّ ( 50-40-30‬‬ ‫أُجبدالد أُذس‪ٝ‬عخ ػِ‪ ٠‬اُز‪ٞ‬اُ‪:٢‬‬ ‫انًجبدل )‪(OMWBZ‬‬ ‫‪+2‬‬ ‫اندذٔل )‪(7‬انزشاك‪ٛ‬ض انزٕاصَ‪ٛ‬خ أل‪َٕٚ‬بد ‪Ca (Mg+2) ٔNa+‬ك‪ ٙ‬انًسهٕل ػهٗ انًجبدل‬ ‫)‪(OMWBZ‬ك‪ ٙ‬انذسخخ ‪ْ 30‬و‬ ‫زدى‬ ‫‪EDTA‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫األعبع‪ٛ‬خ‬

‫]‪[Ca+2‬‬ ‫نهًسبن‪ٛ‬م‬ ‫األعبع‪ٛ‬خ‬ ‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪11.1‬‬ ‫‪19.8‬‬ ‫‪37.25‬‬ ‫‪42.5‬‬ ‫‪51‬‬

‫‪22.2‬‬ ‫‪39.6‬‬ ‫‪74.5‬‬ ‫‪85‬‬ ‫‪102‬‬

‫زدى‬ ‫‪EDTA‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫ثؼذ‬ ‫انًؼبندخ‬ ‫‪0.1‬‬ ‫‪0.3‬‬ ‫‪5.05‬‬ ‫‪8.9‬‬ ‫‪14.35‬‬

‫‪+2‬‬

‫‪+‬‬

‫‪C1=[Ca+2]w‬‬ ‫ي‪ٛ‬ه‪ ٙ‬يٕل‪/‬نزش‬

‫‪[Ca ]s‬‬ ‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪C2=[Na+]w‬‬ ‫ي‪ٛ‬ه‪ ٙ‬يٕل‪/‬نزش‬

‫‪S2=[Na ]s‬‬ ‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪[Na+]2w‬‬ ‫‪[Ca+2]w‬‬ ‫يٕل‪/‬نزش‬

‫‪[Na+]2s‬‬ ‫‪[Ca+2]s‬‬ ‫يٕل‪/‬نزش‬

‫‪0.200‬‬ ‫‪0.600‬‬ ‫‪10.100‬‬ ‫‪17.800‬‬ ‫‪28.700‬‬

‫‪22.000‬‬ ‫‪39.000‬‬ ‫‪64.400‬‬ ‫‪67.200‬‬ ‫‪73.300‬‬

‫‪44.000‬‬ ‫‪78.000‬‬ ‫‪128.800‬‬ ‫‪134.400‬‬ ‫‪146.600‬‬

‫‪239.360‬‬ ‫‪205.360‬‬ ‫‪154.560‬‬ ‫‪148.960‬‬ ‫‪136.760‬‬

‫‪9.680‬‬ ‫‪10.140‬‬ ‫‪1.643‬‬ ‫‪1.015‬‬ ‫‪0.749‬‬

‫‪2.604‬‬ ‫‪1.081‬‬ ‫‪0.371‬‬ ‫‪0.330‬‬ ‫‪0.255‬‬

‫‪1/S2‬‬ ‫‪1‬‬

‫‪C1S2/C22‬‬

‫‪0.0247‬‬ ‫‪0.0203‬‬ ‫‪0.0941‬‬ ‫‪0.1468‬‬ ‫‪0.1826‬‬

‫‪0.0042‬‬ ‫‪0.0049‬‬ ‫‪0.0065‬‬ ‫‪0.0067‬‬ ‫‪0.0073‬‬

‫اندذٔل )‪(8‬انزشاك‪ٛ‬ض انزٕاصَ‪ٛ‬خ أل‪َٕٚ‬بد ‪Ca+2 (Mg+2) ٔNa+‬ك‪ ٙ‬انًسهٕل ػهٗ انًجبدل‬ ‫)‪(OMWBZ‬ك‪ ٙ‬انذسخخ ‪ْ 40‬و‬ ‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬

‫]‪[Ca+2‬‬ ‫نهًسبن‪ٛ‬م‬ ‫األعبع‪ٛ‬خ‬

‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬

‫]‪C1=[Ca+2‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫]‪[Ca+2‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫]‪C2=[Na+‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪8‬‬

‫]‪S2=[Na+‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪[Na+]2‬‬

‫‪[Na+]2‬‬

‫‪w‬‬

‫‪s‬‬

‫]‪[Ca+2‬‬

‫]‪[Ca+2‬‬

‫‪1/S2‬‬

‫‪C1S2/C2‬‬ ‫‪2‬‬

‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫األعبع‪ٙ‬‬ ‫ح‬

‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫ثؼذ‬ ‫انًؼبندخ‬

‫‪9.100‬‬

‫‪18.200‬‬

‫‪0.050‬‬

‫‪0.100‬‬

‫‪19.150‬‬

‫‪38.300‬‬

‫‪0.650‬‬

‫‪1.300‬‬

‫‪37.000‬‬

‫‪36.200‬‬

‫‪72.400‬‬

‫‪6.050‬‬

‫‪12.100‬‬

‫‪60.300‬‬

‫‪120.600‬‬

‫‪42.500‬‬

‫‪85.000‬‬

‫‪12.55‬‬ ‫‪0‬‬

‫‪25.100‬‬

‫‪59.900‬‬

‫‪119.800‬‬

‫‪163.560‬‬

‫‪51.000‬‬

‫‪102.00‬‬ ‫‪0‬‬

‫‪17.4‬‬

‫‪34.800‬‬

‫‪67.200‬‬

‫‪134.400‬‬

‫‪148.960‬‬

‫‪w‬‬

‫‪s‬‬

‫يٕل‪/‬نزش‬

‫يٕل‪/‬نزش‬

‫‪18.100‬‬

‫‪36.200‬‬

‫‪247.160‬‬

‫‪13.104‬‬

‫‪3.375‬‬

‫‪74.000‬‬

‫‪209.360‬‬

‫‪4.212‬‬

‫‪1.185‬‬

‫‪162.760‬‬

‫‪1.202‬‬

‫‪0.439‬‬

‫‪0.572‬‬

‫‪0.447‬‬

‫‪0.519‬‬

‫‪0.330‬‬

‫‪1‬‬

‫‪0.004‬‬ ‫‪0‬‬ ‫‪0.004‬‬ ‫‪8‬‬ ‫‪0.006‬‬ ‫‪1‬‬ ‫‪0.006‬‬ ‫‪1‬‬ ‫‪0.006‬‬ ‫‪7‬‬

‫‪0.0189‬‬ ‫‪0.0497‬‬ ‫‪0.1354‬‬ ‫‪0.2860‬‬ ‫‪0.2870‬‬

‫اندذٔل )‪(9‬انزشاك‪ٛ‬ض انزٕاصَ‪ٛ‬خ أل‪َٕٚ‬بد ‪Ca+2 (Mg+2) ٔNa+‬ك‪ ٙ‬انًسهٕل ػهٗ انًجبدل‬ ‫)‪(OMWBZ‬ك‪ ٙ‬انذسخخ ‪ْ 50‬و‬ ‫زدى‬ ‫‪EDTA‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫األعبع‪ٛ‬خ‬

‫]‪[Ca+2‬‬ ‫نهًسبن‪ٛ‬م‬ ‫األعبع‪ٛ‬خ‬ ‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪9.100‬‬

‫‪18.200‬‬

‫زدى‬ ‫‪EDTA‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫ثؼذ‬ ‫انًؼبندخ‬ ‫‪0.100‬‬

‫‪0.200‬‬

‫‪19.15‬‬ ‫‪0‬‬ ‫‪36.20‬‬ ‫‪0‬‬ ‫‪42.50‬‬ ‫‪0‬‬ ‫‪51.00‬‬ ‫‪0‬‬

‫‪38.300‬‬

‫‪0.600‬‬

‫‪1.200‬‬

‫‪72.400‬‬

‫‪5.300‬‬

‫‪10.600‬‬

‫‪85.000‬‬

‫‪11.40‬‬ ‫‪0‬‬ ‫‪16.65‬‬

‫‪22.800‬‬

‫‪102.00‬‬ ‫‪0‬‬

‫]‪C1=[Ca+2‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪[Ca+2]s‬‬ ‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫]‪C2=[Na+‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫]‪S2=[Na+‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪18.00‬‬ ‫‪0‬‬ ‫‪37.10‬‬ ‫‪0‬‬ ‫‪61.80‬‬ ‫‪0‬‬ ‫‪62.20‬‬ ‫‪0‬‬ ‫‪68.70‬‬ ‫‪0‬‬

‫‪[Na+]2‬‬ ‫‪w‬‬ ‫‪+2‬‬

‫‪1/S2‬‬ ‫‪[Na+]2‬‬

‫] ‪[Ca‬‬

‫‪s‬‬

‫يٕل‪/‬نزش‬

‫‪s‬‬

‫‪36.000‬‬

‫‪247.360‬‬

‫‪6.480‬‬

‫‪3.399‬‬

‫‪74.200‬‬

‫‪209.160‬‬

‫‪4.588‬‬

‫‪1.179‬‬

‫‪123.600‬‬

‫‪159.760‬‬

‫‪1.441‬‬

‫‪0.413‬‬

‫‪124.400‬‬

‫‪158.960‬‬

‫‪0.679‬‬

‫‪0.406‬‬

‫‪137.400‬‬

‫‪145.960‬‬

‫‪0.567‬‬

‫‪0.310‬‬

‫‪1‬‬

‫]‪[Ca+2‬‬

‫‪w‬‬

‫‪C1S2/C2‬‬ ‫‪2‬‬

‫يٕل‪/‬نزش‬

‫‪33.300‬‬

‫‪0.004‬‬ ‫‪0‬‬ ‫‪0.004‬‬ ‫‪8‬‬ ‫‪0.006‬‬ ‫‪3‬‬ ‫‪0.006‬‬ ‫‪3‬‬ ‫‪0.006‬‬ ‫‪9‬‬

‫‪0.0382‬‬ ‫‪0.0456‬‬ ‫‪0.1109‬‬ ‫‪0.2342‬‬ ‫‪0.2575‬‬

‫خذٔل )‪(10‬انزشاك‪ٛ‬ض انزٕاصَ‪ٛ‬خ أل‪َٕٚ‬بد ‪Ca+2 (Mg+2) ٔNa+‬ك‪ ٙ‬انًسهٕل ػهٗ انًجبدل‬ ‫)‪(OMWBZ-CP‬ك‪ ٙ‬انذسخخ ‪ْ 30‬و‬ ‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫األعبع‪ٙ‬‬ ‫ح‬ ‫‪11.100‬‬

‫‪22.200‬‬

‫‪19.800‬‬

‫‪39.600‬‬

‫‪0.500‬‬

‫‪37.250‬‬

‫‪74.500‬‬

‫‪4.700‬‬

‫]‪[Ca+2‬‬ ‫نهًسبن‪ٛ‬م‬ ‫األعبع‪ٛ‬خ‬ ‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫ثؼذ‬ ‫انًؼبندخ‬ ‫‪0.100‬‬

‫يٕل‪/‬نزش‬

‫يٕل‪/‬نزش‬

‫‪0.200‬‬

‫‪22.000‬‬

‫‪44.000‬‬

‫‪230.560‬‬

‫‪9.680‬‬

‫‪2.416‬‬

‫‪1.000‬‬

‫‪38.600‬‬

‫‪77.200‬‬

‫‪197.360‬‬

‫‪5.960‬‬

‫‪1.009‬‬

‫‪9.400‬‬

‫‪65.100‬‬

‫‪130.200‬‬

‫‪144.360‬‬

‫‪1.803‬‬

‫‪0.320‬‬

‫‪[Na+]2‬‬ ‫‪+2‬‬

‫‪+2‬‬

‫‪+‬‬

‫‪+‬‬

‫] ‪C1=[Ca‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫] ‪[Ca‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫] ‪C2=[Na‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫] ‪S2=[Na‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪9‬‬

‫‪[Na+]2‬‬

‫‪w‬‬

‫]‪[Ca+2‬‬ ‫‪w‬‬

‫‪1/S2‬‬

‫‪s‬‬

‫‪C1S2/C2‬‬

‫]‪[Ca+2‬‬ ‫‪s‬‬

‫‪2‬‬

‫‪1‬‬

‫‪0.004‬‬ ‫‪3‬‬ ‫‪0.005‬‬ ‫‪1‬‬ ‫‪0.006‬‬

‫‪0.0238‬‬ ‫‪0.0331‬‬ ‫‪0.0800‬‬

‫‪42.500‬‬

‫‪85.000‬‬

‫‪51.000‬‬

‫‪102.00‬‬ ‫‪0‬‬

‫‪10.30‬‬ ‫‪0‬‬ ‫‪15.60‬‬ ‫‪0‬‬

‫‪20.600‬‬

‫‪64.400‬‬

‫‪128.800‬‬

‫‪145.760‬‬

‫‪0.805‬‬

‫‪0.330‬‬

‫‪31.200‬‬

‫‪70.800‬‬

‫‪141.600‬‬

‫‪132.960‬‬

‫‪0.643‬‬

‫‪0.250‬‬

‫‪9‬‬ ‫‪0.006‬‬ ‫‪9‬‬ ‫‪0.007‬‬ ‫‪5‬‬

‫‪0.1810‬‬ ‫‪0.2069‬‬

‫اندذٔل )‪(11‬انزشاك‪ٛ‬ض انزٕاصَ‪ٛ‬خ أل‪َٕٚ‬بد ‪Ca+2 (Mg+2) ٔNa+‬ك‪ ٙ‬انًسهٕل ػهٗ انًجبدل‬ ‫)‪(OMWBZ-PC‬ك‪ ٙ‬انذسخخ ‪ْ 40‬و‬ ‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫األعبع‪ٙ‬‬ ‫ح‬ ‫‪9.100‬‬

‫‪18.200‬‬

‫‪19.150‬‬

‫‪38.300‬‬

‫‪0.700‬‬

‫‪36.200‬‬

‫‪72.400‬‬

‫‪7.900‬‬

‫‪15.800‬‬

‫‪42.500‬‬

‫‪85.000‬‬

‫‪51.000‬‬

‫‪102.00‬‬ ‫‪0‬‬

‫‪13.40‬‬ ‫‪0‬‬ ‫‪19.55‬‬ ‫‪0‬‬

‫‪26.800‬‬

‫‪58.200‬‬

‫‪39.100‬‬

‫‪62.900‬‬

‫]‪[Ca+2‬‬ ‫نهًسبن‪ٛ‬م‬ ‫األعبع‪ٛ‬خ‬ ‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫ثؼذ‬ ‫انًؼبندخ‬ ‫‪0.050‬‬

‫يٕل‪/‬نزش‬

‫يٕل‪/‬نزش‬

‫‪0.100‬‬

‫‪18.100‬‬

‫‪36.200‬‬

‫‪238.360‬‬

‫‪13.104‬‬

‫‪3.139‬‬

‫‪1.400‬‬

‫‪36.900‬‬

‫‪73.800‬‬

‫‪200.760‬‬

‫‪3.890‬‬

‫‪1.092‬‬

‫‪56.600‬‬

‫‪113.200‬‬

‫‪161.360‬‬

‫‪0.811‬‬

‫‪0.460‬‬

‫‪116.400‬‬

‫‪158.160‬‬

‫‪0.506‬‬

‫‪0.430‬‬

‫‪125.800‬‬

‫‪148.760‬‬

‫‪0.405‬‬

‫‪0.352‬‬

‫‪[Na+]2‬‬ ‫]‪C1=[Ca+2‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫]‪[Ca+2‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫]‪C2=[Na+‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫]‪S2=[Na+‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪w‬‬

‫]‪[Ca+2‬‬ ‫‪w‬‬

‫‪[Na+]2‬‬

‫‪1/S2‬‬

‫‪s‬‬

‫‪C1S2/C2‬‬

‫]‪[Ca+2‬‬ ‫‪s‬‬

‫‪2‬‬

‫‪1‬‬

‫‪0.004‬‬ ‫‪2‬‬ ‫‪0.005‬‬ ‫‪0‬‬ ‫‪0.006‬‬ ‫‪2‬‬ ‫‪0.006‬‬ ‫‪3‬‬ ‫‪0.006‬‬ ‫‪7‬‬

‫‪0.0182‬‬ ‫‪0.0516‬‬ ‫‪0.1990‬‬ ‫‪0.3128‬‬ ‫‪0.3675‬‬

‫اندذٔل (‪ )12‬انزشاك‪ٛ‬ض انزٕاصَ‪ٛ‬خ أل‪َٕٚ‬بد ‪Ca+2 (Mg+2) ٔNa+‬ك‪ ٙ‬انًسهٕل ػهٗ انًجبدل‬ ‫)‪(OMWBZ-PC‬ك‪ ٙ‬انذسخخ ‪ْ 50‬و‬ ‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش‬ ‫‪5‬يم‬ ‫يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫ثؼذ‬ ‫انًؼبندخ‬ ‫‪0.050‬‬

‫]‪C1=[Ca+2‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫]‪[Ca+2‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫]‪C2=[Na+‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫]‪S2=[Na+‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪0.100‬‬ ‫‪1.400‬‬

‫‪18.10‬‬ ‫‪0‬‬ ‫‪36.90‬‬ ‫‪0‬‬ ‫‪57.50‬‬ ‫‪0‬‬ ‫‪59.80‬‬ ‫‪0‬‬ ‫‪65.60‬‬ ‫‪0‬‬

‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫األعبط‬ ‫‪ٚ‬خ‬

‫]‪[Ca+2‬‬ ‫نهًسبن‪ٛ‬م‬ ‫األعبع‪ٛ‬خ‬ ‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪9.100‬‬

‫‪18.200‬‬

‫‪19.15‬‬ ‫‪0‬‬ ‫‪36.20‬‬ ‫‪0‬‬ ‫‪42.50‬‬ ‫‪0‬‬ ‫‪51.00‬‬ ‫‪0‬‬

‫‪38.300‬‬

‫‪0.700‬‬

‫‪72.400‬‬

‫‪7.450‬‬

‫‪14.900‬‬

‫‪85.000‬‬

‫‪12.60‬‬ ‫‪0‬‬ ‫‪18.20‬‬ ‫‪0‬‬

‫‪25.200‬‬

‫‪102.00‬‬ ‫‪0‬‬

‫‪[Na+]2‬‬

‫‪36.400‬‬

‫‪w‬‬

‫]‪[Ca+2‬‬ ‫‪w‬‬

‫‪[Na+]2‬‬ ‫‪s‬‬

‫‪C1S2/C2‬‬

‫]‪[Ca+2‬‬ ‫‪s‬‬

‫يٕل‪/‬نزش‬

‫يٕل‪/‬نزش‬

‫‪36.200‬‬

‫‪238.360‬‬

‫‪13.104‬‬

‫‪3.139‬‬

‫‪73.800‬‬

‫‪200.760‬‬

‫‪3.890‬‬

‫‪1.092‬‬

‫‪115.000‬‬

‫‪159.560‬‬

‫‪0.888‬‬

‫‪0.443‬‬

‫‪119.600‬‬

‫‪154.960‬‬

‫‪0.568‬‬

‫‪0.402‬‬

‫‪131.200‬‬

‫‪143.360‬‬

‫‪0.473‬‬

‫‪0.313‬‬

‫‪10‬‬

‫‪1/S2‬‬

‫‪2‬‬

‫‪1‬‬

‫‪0.0042‬‬ ‫‪0‬‬ ‫‪0.0049‬‬ ‫‪8‬‬ ‫‪0.0062‬‬ ‫‪7‬‬ ‫‪0.0064‬‬ ‫‪5‬‬ ‫‪0.0069‬‬ ‫‪8‬‬

‫‪0.0182‬‬ ‫‪0.0516‬‬ ‫‪0.1798‬‬ ‫‪0.2730‬‬ ‫‪0.3032‬‬

‫اندذٔل (‪ ) 13‬انزشاك‪ٛ‬ض انزٕاصَ‪ٛ‬خ أل‪َٕٚ‬بد ‪Ca+2 (Mg+2) ٔNa+‬ك‪ ٙ‬انًسهٕل ػهٗ انًجبدل‬ ‫)‪(BZ‬ك‪ ٙ‬انذسخخ ‪ْ 30‬و‬ ‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫األعبط‬ ‫‪ٚ‬خ‬ ‫‪11.10‬‬ ‫‪0‬‬ ‫‪19.80‬‬ ‫‪0‬‬ ‫‪37.25‬‬ ‫‪0‬‬ ‫‪42.50‬‬ ‫‪0‬‬ ‫‪51.00‬‬ ‫‪0‬‬

‫]‪[Ca+2‬‬ ‫نهًسبن‪ٛ‬م‬ ‫األعبع‪ٛ‬خ‬ ‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش‬ ‫‪5‬يم‬ ‫يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫ثؼذ‬ ‫انًؼبندخ‬

‫] ‪C1=[Ca‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪22.200‬‬

‫‪0.050‬‬

‫‪0.100‬‬

‫‪39.600‬‬

‫‪0.500‬‬

‫‪1.000‬‬

‫‪74.500‬‬

‫‪6.100‬‬

‫‪12.200‬‬

‫‪85.000‬‬

‫‪9.600‬‬

‫‪19.200‬‬

‫‪102.00‬‬ ‫‪0‬‬

‫‪14.30‬‬ ‫‪0‬‬

‫‪28.600‬‬

‫‪+2‬‬

‫]‪[Ca+2‬‬

‫]‪C2=[Na+‬‬

‫]‪S2=[Na+‬‬

‫‪s‬‬

‫‪w‬‬

‫‪s‬‬

‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪22.10‬‬ ‫‪0‬‬ ‫‪38.60‬‬ ‫‪0‬‬ ‫‪62.30‬‬ ‫‪0‬‬ ‫‪65.80‬‬ ‫‪0‬‬ ‫‪73.40‬‬ ‫‪0‬‬

‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪[Na+]2‬‬ ‫‪w‬‬

‫‪[Na+]2‬‬ ‫‪s‬‬

‫]‪[Ca+2‬‬

‫]‪[Ca+2‬‬

‫‪w‬‬

‫‪s‬‬

‫يٕل‪/‬نزش‬

‫يٕل‪/‬نزش‬

‫‪44.200‬‬

‫‪191.320‬‬

‫‪19.536‬‬

‫‪1.656‬‬

‫‪77.200‬‬

‫‪158.320‬‬

‫‪5.960‬‬

‫‪0.649‬‬

‫‪124.600‬‬

‫‪110.920‬‬

‫‪1.273‬‬

‫‪0.197‬‬

‫‪131.600‬‬

‫‪103.920‬‬

‫‪0.902‬‬

‫‪0.164‬‬

‫‪146.800‬‬

‫‪88.720‬‬

‫‪0.754‬‬

‫‪0.107‬‬

‫‪C1S2/C2‬‬

‫‪1/S2‬‬

‫‪2‬‬

‫‪0.0052‬‬ ‫‪3‬‬ ‫‪0.0063‬‬ ‫‪2‬‬ ‫‪0.0090‬‬ ‫‪2‬‬ ‫‪0.0096‬‬ ‫‪2‬‬ ‫‪0.0112‬‬ ‫‪7‬‬

‫‪0.0098‬‬ ‫‪0.0266‬‬ ‫‪0.0872‬‬ ‫‪0.1152‬‬ ‫‪0.1177‬‬

‫اندذٔل) ‪( 14‬انزشاك‪ٛ‬ض انزٕاصَ‪ٛ‬خ أل‪َٕٚ‬بد ‪Ca+2 (Mg+2) ٔNa+‬ك‪ ٙ‬انًسهٕل ػهٗ انًجبدل )‪(BZ‬‬ ‫ك‪ ٙ‬انذسخخ ‪ْ 40‬و‬ ‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش‬ ‫‪5‬يم‬ ‫يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫ثؼذ‬ ‫انًؼبندخ‬ ‫‪0.050‬‬

‫] ‪C1=[Ca‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫] ‪[Ca‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫] ‪C2=[Na‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫] ‪S2=[Na‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪0.100‬‬

‫‪38.300‬‬

‫‪0.500‬‬

‫‪1.000‬‬

‫‪72.400‬‬

‫‪7.700‬‬

‫‪15.400‬‬

‫‪85.000‬‬

‫‪13.58‬‬ ‫‪3‬‬ ‫‪18.75‬‬ ‫‪0‬‬

‫‪27.166‬‬

‫‪18.10‬‬ ‫‪0‬‬ ‫‪37.30‬‬ ‫‪0‬‬ ‫‪57.00‬‬ ‫‪0‬‬ ‫‪57.83‬‬ ‫‪4‬‬ ‫‪64.50‬‬ ‫‪0‬‬

‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬ ‫انالصو‬ ‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫األعبط‬ ‫‪ٚ‬خ‬

‫]‪[Ca+2‬‬ ‫نهًسبن‪ٛ‬م‬ ‫األعبع‪ٛ‬خ‬ ‫ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪9.100‬‬

‫‪18.200‬‬

‫‪19.15‬‬ ‫‪0‬‬ ‫‪36.20‬‬ ‫‪0‬‬ ‫‪42.50‬‬ ‫‪0‬‬ ‫‪51.00‬‬ ‫‪0‬‬

‫‪102.00‬‬ ‫‪0‬‬

‫‪[Na+]2‬‬ ‫‪+2‬‬

‫‪37.500‬‬

‫‪+2‬‬

‫‪+‬‬

‫‪[Na+]2‬‬

‫‪+‬‬

‫‪w‬‬

‫]‪[Ca+2‬‬ ‫‪w‬‬

‫‪s‬‬

‫‪1/S2‬‬

‫‪C1S2/C2‬‬

‫]‪[Ca+2‬‬

‫‪2‬‬

‫‪1‬‬

‫‪s‬‬

‫يٕل‪/‬نزش‬

‫يٕل‪/‬نزش‬

‫‪36.200‬‬

‫‪199.320‬‬

‫‪13.104‬‬

‫‪2.195‬‬

‫‪74.600‬‬

‫‪160.920‬‬

‫‪5.565‬‬

‫‪0.694‬‬

‫‪114.000‬‬

‫‪121.520‬‬

‫‪0.844‬‬

‫‪0.259‬‬

‫‪115.668‬‬

‫‪119.852‬‬

‫‪0.492‬‬

‫‪0.248‬‬

‫‪129.000‬‬

‫‪106.520‬‬

‫‪0.444‬‬

‫‪0.176‬‬

‫‪0.0050‬‬ ‫‪2‬‬ ‫‪0.0062‬‬ ‫‪1‬‬ ‫‪0.0082‬‬ ‫‪3‬‬ ‫‪0.0083‬‬ ‫‪4‬‬ ‫‪0.0093‬‬ ‫‪9‬‬

‫‪0.0152‬‬ ‫‪0.0289‬‬ ‫‪0.1440‬‬ ‫‪0.2434‬‬ ‫‪0.2400‬‬

‫اندذٔل (‪ )15‬انزشاك‪ٛ‬ض انزٕاصَ‪ٛ‬خ أل‪َٕٚ‬بد ‪Ca+2 (Mg+2) ٔNa+‬ك‪ ٙ‬انًسهٕل ػهٗ انًجبدل )‪(BZ‬‬ ‫ك‪ ٙ‬انذسخخ ‪ْ 50‬و‬ ‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬ ‫انالصو‬

‫]‪[Ca+2‬‬ ‫نهًسبن‪ٛ‬م‬ ‫األعبع‪ٛ‬خ‬ ‫ي‪ٛ‬ه‪ٙ‬‬

‫زدى‬ ‫‪EDT‬‬ ‫‪A‬‬ ‫انالصو‬

‫]‪C1=[Ca+2‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫]‪[Ca+2‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫]‪C2=[Na+‬‬ ‫‪w‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪11‬‬

‫]‪S2=[Na+‬‬ ‫‪s‬ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬نزش‬

‫‪[Na+]2‬‬ ‫‪w‬‬ ‫‪+2‬‬

‫‪[Na+]2‬‬

‫‪1/S2‬‬

‫‪C1S2/C2‬‬

‫‪s‬‬

‫] ‪[Ca‬‬

‫]‪[Ca+2‬‬

‫‪w‬‬

‫‪s‬‬

‫‪2‬‬

‫‪1‬‬

‫نًؼب‪ٚ‬ش ‪5‬‬ ‫يم يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫األعبط‬ ‫‪ٚ‬خ‬

‫يٕل‪/‬نزش‬

‫‪9.100‬‬

‫‪18.200‬‬

‫نًؼب‪ٚ‬ش‬ ‫‪5‬يم‬ ‫يٍ‬ ‫انًسبن‪ٛ‬م‬ ‫ثؼذ‬ ‫انًؼبندخ‬ ‫‪0.050‬‬

‫‪0.100‬‬

‫‪19.15‬‬ ‫‪0‬‬ ‫‪36.20‬‬ ‫‪0‬‬ ‫‪42.50‬‬ ‫‪0‬‬ ‫‪51.00‬‬ ‫‪0‬‬

‫‪38.300‬‬

‫‪0.600‬‬

‫‪1.200‬‬

‫‪72.400‬‬

‫‪6.100‬‬

‫‪12.200‬‬

‫‪85.000‬‬

‫‪12.10‬‬ ‫‪0‬‬ ‫‪17.55‬‬ ‫‪0‬‬

‫‪24.200‬‬

‫‪102.00‬‬ ‫‪0‬‬

‫‪35.100‬‬

‫‪18.10‬‬ ‫‪0‬‬ ‫‪37.10‬‬ ‫‪0‬‬ ‫‪60.20‬‬ ‫‪0‬‬ ‫‪60.80‬‬ ‫‪0‬‬ ‫‪66.90‬‬ ‫‪0‬‬

‫يٕل‪/‬نزش‬

‫يٕل‪/‬نزش‬

‫‪36.200‬‬

‫‪199.320‬‬

‫‪13.104‬‬

‫‪2.195‬‬

‫‪74.200‬‬

‫‪161.320‬‬

‫‪4.588‬‬

‫‪0.701‬‬

‫‪120.400‬‬

‫‪115.120‬‬

‫‪1.188‬‬

‫‪0.220‬‬

‫‪121.600‬‬

‫‪113.920‬‬

‫‪0.611‬‬

‫‪0.213‬‬

‫‪133.800‬‬

‫‪101.720‬‬

‫‪0.510‬‬

‫‪0.155‬‬

‫أ‪- 1-8-1-‬رؼ‪ ٍٛٛ‬ثبثذ انزٕاصٌ انك‪ًٛٛ‬بئ‪ ٔ ٙ‬عؼخ االيزظبص األػظً‪ٛ‬خ‪:‬‬ ‫رؼ‪ ٖ٤‬عؼخ االٓزظبص األػظٔ‪٤‬خ ٖٓ ٓغٔ‪ٞ‬ع رشً‪٤‬ض أ‪ٗٞ٣‬بد اُظ‪ٞ‬د‪[Na ]S ّٞ٣‬‬ ‫‪ ٝ‬أ‪ٗٞ٣‬بد اٌُبُغ‪ ٝ ّٞ٤‬أُـ٘‪٤‬ض‪ S1= [Ca+2]s ّٞ٣‬ػ٘ذ اُز‪ٞ‬اصٕ أ‪ ١‬إٔ ‪:‬‬ ‫* ‪Sm=2S1+S2‬‬ ‫‪ ٝ‬ثبُؼ‪ٞ‬دح ئُ‪ ٠‬ه‪ ْ٤‬صبثذ اُز‪ٞ‬اصٕ ٗغز٘زظ إٔ ‪:‬‬ ‫‪+‬‬

‫‪0.0050‬‬ ‫‪2‬‬ ‫‪0.0062‬‬ ‫‪0‬‬ ‫‪0.0086‬‬ ‫‪9‬‬ ‫‪0.0087‬‬ ‫‪8‬‬ ‫‪0.0098‬‬ ‫‪3‬‬

‫‪0.0152‬‬ ‫‪0.0352‬‬ ‫‪0.0969‬‬ ‫‪0.1864‬‬ ‫‪0.1994‬‬

‫=‪S2‬ػِ‪ ٠‬عـؼ أُجبدٍ‬

‫‪2‬‬ ‫‪S C‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪K ‬‬ ‫‪2‬‬ ‫‪S C‬‬ ‫‪2‬‬ ‫‪1‬‬

‫‪K  S2  C‬‬ ‫‪ٗ ٚ٘ٓ ٝ‬غز٘زظ ه‪ٔ٤‬خ ‪2 1‬‬ ‫‪ S ‬اُز‪٘٣ ٢‬زظ ٖٓ رؼ‪٣ٞ‬ؼ‪ٜ‬ب ك‪* ٢‬إٔ‬ ‫‪1‬‬ ‫‪C2‬‬ ‫‪2‬‬ ‫‪2K  C S‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪S‬‬ ‫‪S‬‬ ‫‪2‬‬ ‫‪m‬‬

‫‪T 1 2‬‬ ‫‪S  C2‬‬ ‫‪m 2‬‬ ‫‪C1S2‬‬ ‫‪1‬‬ ‫‪2K‬‬ ‫‪ ٖٓ ٝ‬روبؿؼ‪ٓ ٚ‬غ‬ ‫ٗؾظَ ػِ‪ ٠‬خؾ ٓغزو‪ِٚ٤ٓ ْ٤‬‬ ‫‪ٝ‬‬ ‫‪ٝ‬ثشعْ اُخؾ اُج‪٤‬بٗ‪ ٢‬ث‪ٖ٤‬‬ ‫‪S2‬‬ ‫‪Sm‬‬ ‫‪C 22‬‬ ‫‪1‬‬ ‫ٓؾ‪ٞ‬س اُؼ‪٘٤‬بد ٗؾظَ ػِ‪٣ ٚ٘ٓٝ S . ٠‬ؾغت صبثذ اُز‪ٞ‬اصٕ ‪ ٝ K‬عؼخ االٓزظبص اُؼظٔ‪Sm ٠‬‬ ‫‪m‬‬

‫ك‪ ٢‬دسعخ اُؾشاسح أُؼـبح ًٔب ك‪ ٢‬األشٌبٍ ( ‪.)4,3,2‬‬ ‫‪ٗٝ‬ج‪ ٖ٤‬ك‪ ٢‬اُغذا‪ )17,16( ٍٝ‬ه‪ ٖٓ ٌَُSm ٝK ْ٤‬أُجبدالد أُذس‪ٝ‬عخ‬

‫اندذٔل ) ‪ (16‬ه‪ٛ‬ى ‪ Sm ٔ K‬ك‪ ٙ‬دسخخ انسشاسح االػز‪ٛ‬بد‪ٚ‬خ‬ ‫انًجبدل‬ ‫‪OMWBZ‬‬ ‫‪OMWBZ-CP‬‬ ‫‪BZ‬‬

‫‪K‬‬ ‫‪1.94475‬‬ ‫‪1.736262‬‬ ‫‪4.056406‬‬

‫‪12‬‬

‫‪( Sm‬ي‪ٛ‬ه‪ ٙ‬يكبكئ ؿشاي‪100/ٙ‬ؽ)‬ ‫‪222.22‬‬ ‫‪219.78‬‬ ‫‪188.67‬‬

‫اندذٔل ) ‪(17‬ه‪ٛ‬ى ‪ ٔ Sm ٔ K‬انلشم ‪ Sm=Sm-∆ (Sm)BZ‬ك‪ ٙ‬دسخخ انسشاسح االػز‪ٛ‬بد‪ٚ‬خ‬ ‫انًجبدل‬

‫‪K‬‬

‫‪( S m‬ي‪ٛ‬ه‪ ٙ‬يكبكئ ؿشاي‪100/ٙ‬ؽ)‬

‫‪BZ‬‬ ‫‪OMWBZ‬‬ ‫‪OMWBZ-CP‬‬

‫‪4.056‬‬ ‫‪1.736‬‬ ‫‪1.944‬‬

‫‪188.00‬‬ ‫‪219.78‬‬ ‫‪222.2‬‬

‫‪Sm=Sm-∆ (Sm)BZ‬‬

‫(ي‪ٛ‬ه‪ ٙ‬يكبكئ ؿشاي‪100/ٙ‬ؽ)‬ ‫‪0‬‬ ‫‪31.78‬‬ ‫‪34.20‬‬

‫أ‪٣-1-1-8-1-‬الؽظ ٖٓ اُغذ‪( 17 ) ٝ(16 ) ٖ٤ُٝ‬ئٕ أٌُ‪ OMWW ٕٞ‬هذ أػبف ٓوذاسًا‬ ‫ٓؾغ‪ٞ‬ع ًب ٖٓ اُلؼبُ‪٤‬خ اُزجبدُ‪٤‬خ ٓوذاس‪ %29 ٝ % 31 ٙ‬ثبُ٘غجخ ُِٔجبدُ‪OMWBZ-PC ,OMWBZ ٖ٤‬‬ ‫ػِ‪ ٠‬اُزشر‪٤‬ت ‪ ٝ .‬ثبُشؿْ ٖٓ روبسة كؼبُ‪٤‬خ أُجبدُ‪ ٖ٤‬األخ‪٤‬ش‪ ٖ٣‬ئال إٔ كؼبُ‪٤‬خ ‪ OMWBZ-PC‬أًضش‬ ‫صجبرًب ثوِ‪ ٖٓ َ٤‬ؽبُخ ‪. OMWBZ‬‬ ‫أ‪ُ -2-1- 8-1-‬ذ‪ ٟ‬رجخ‪٤‬ش ‪500‬ؽ ٖٓ ‪ٗ OMWW‬زغذ ًزِخ ُضعخ عٔ‪ٌ٤‬خ ٓوذاس‪ٛ‬ب ‪27.66‬ؽ ‪ٝ‬‬ ‫‪1‬‬ ‫‪4.407‬ؽ ‪ٝ ,‬‬ ‫ثزغخ‪ 5 ٖ٤‬اٌُزِخ ك‪ ٢‬اُذسعخ ‪ ّْ 120‬ؽز‪ ٠‬صجب د اُ‪ٞ‬صٕ أطجؼ ‪ٝ‬صٕ اُ٘برظ‬ ‫ثبُزٌِ‪٤‬ظ ثٔؼضٍ ػٖ اُ‪ٜٞ‬اء أطجؾذ اٌُزِخ ‪1.606‬ؽ ‪ ٢ٛ ٝ‬أٌُ‪٤‬خ أُ‪ٞ‬ع‪ٞ‬دح ك‪100 ٢‬ؽ ٓجبدٍ ‪ٝ‬‬ ‫‪ ٢ٛ‬اُز‪ ٢‬عججذ اُض‪٣‬بدح ‪ٓ ٝ∆ Sm‬وذاس‪ٛ‬ب ‪ٌٓ ٢ِ٤ٓ(34.2‬بكئ ؿشآ‪100/٢‬ؽ) أ‪ ١‬أٗ‪ٜ‬ب شٌِذ ‪ٖٓ % 31‬‬ ‫كؼبُ‪٤‬خ أُجبدٍ اٌُِ‪٤‬خ‪.‬‬ ‫‪500‬ؽ ٖٓ‬ ‫‪ َٓ20‬ك‪ٞ‬سّ أُذ‪٤ٛ‬ذ ئُ‪٠‬‬ ‫أ‪ - 3-1-8-1-‬ثؼذ ئػبكخ ‪ٓ َٓ50‬بءاد األٓ‪ٝ ّٞ٤ٗٞ‬‬ ‫‪ٝ OMWW‬ئعشاء ػِٔ‪٤‬خ اُزٌبصق ( ‪ (PC‬ػِ‪ٜ٤‬ب صْ اُزغل‪٤‬ق ؽظِ٘ب ػِ‪ً ٠‬زِخ ٓوذاس‪ٛ‬ب ‪25.75‬ؽ‪,‬‬ ‫‪ُٝ‬ذ‪ ٟ‬رغخ‪ ٖ٤‬اٌُزِخ اُؼبئذح ُ ‪ٛ1/5‬ز‪ ٙ‬أٌُ‪٤‬خ ك‪ ٢‬اُذسعخ ‪ ّْ 120‬ؽز‪ ٠‬صجبد اُ‪ٞ‬صٕ ُ‪ٞ‬ؽظ اٗزلبؿ صبثذ ‪ٝ‬‬ ‫ًبٕ ‪ٝ‬صٕ اُ٘برظ ‪3.146‬ؽ ‪ٝ.‬ثزٌِ‪٤‬ظ ‪ٛ‬ز‪ ٙ‬اٌُزِخ ك‪ ٢‬اُذسعخ ‪ُٔ ّْ400‬ذح ‪4‬عبػبد ؽظِ٘ب ػِ‪ً ٠‬زِخ‬ ‫‪∆Sm‬‬ ‫ٓوذاس‪ٛ‬ب ‪1.034‬ؽ ‪ٛ ٝ,‬ز‪ ٙ‬اٌُزِخ ‪ ٢ٛ‬أُغإ‪ُٝ‬خ ػٖ اُض‪٣‬بدح ك‪ ٢‬اُلؼبُ‪٤‬خ اُزجبدُ‪٤‬خ ‪ ٝ‬هذس‪ٛ‬ب‬ ‫=‪ٌٓ ٢ِ٤ٓ 31.78‬بكئ ؿشآ‪ 100/ ٢‬ؿشاّ‪.‬‬ ‫أ‪ ١‬أٗ‪ٜ‬ب شٌِذ ‪ ٖٓ % 29‬اُلؼبُ‪٤‬خ اُزجبدُ‪٤‬خ اٌُِ‪٤‬خ ‪ٗ ٝ‬ؼزوذ ثإٔ اُزٌبصق اُؾبطَ ‪ ٞٛ‬اُز‪ ١‬أػـ‪٠‬‬ ‫اُضجبد ‪ ٝ‬االعزوشاس اُ٘غج‪ OMWBZ-PCُ ٢‬ثبُٔوبسٗخ ٓغ ‪ MOWBZ‬ئر عجت ٓض‪٣‬ذًا ٖٓ أُغبٓ‪٤‬خ‬ ‫ك‪ ٢‬ث٘‪٤‬خ أُجبدٍ ثبُشؿْ ٖٓ روبسة ‪ُِٔ ∆Sm‬جبدُ‪ ٌٖٔ٣ٝ. ٖ٤‬إٔ ‪٣‬ؼض‪ ٟ‬اٗخلبع ه‪ ْ٤‬اٌُزِخ أُزخِلخ ػٖ‬ ‫رجخ‪٤‬ش ‪ ٖٓ َٓ500‬أُبدح ك‪ٛ ٢‬ز‪ ٙ‬اُؾبُخ ئُ‪ ٠‬أُبء أُزشٌَ ٗز‪٤‬غخ ػِٔ‪٤‬خ اُزٌبصق صْ رجخش‪ ٙ‬ك‪ٔ٤‬ب ثؼذ‪.‬‬

‫أ‪ -9-1-‬ؽغجذ ه‪ ْ٤‬األثؼبد اُزشٓ‪ٞ‬د‪٘٣‬بٓ‪٤ٌ٤‬خ ُِٔجبدالد أُجزٌشح ٖٓ اُؼالهز‪ƒ 1  ٖ٤‬‬ ‫‪ ٝ F   RTLnK ٝ‬هذ أدسعذ ك‪ ٢‬اُغذ‪ ,(18 ) ٍٝ‬األشٌبٍ (‪.)7,6,5‬‬

‫‪T‬‬

‫‪LnK ‬‬

‫اندذٔل ) ‪(18‬األثؼبد انزشيٕد‪ُٚ‬بي‪ٛ‬ك‪ٛ‬خ نهًجبدالد انًجزكشح ك‪ ٙ‬انذسخخ ‪30‬و ْ‬ ‫انًجبدل‬ ‫‪OMWBZ-PC‬‬ ‫‪OMWBZ‬‬ ‫‪BZ‬‬

‫‪∆H cal/mol‬‬ ‫‪-11923.045‬‬ ‫‪-15102.526‬‬ ‫‪-10730.76‬‬

‫‪∆F cal/mol‬‬ ‫‪-332.207‬‬ ‫‪-400.385‬‬ ‫‪-843.138‬‬

‫‪13‬‬

‫‪∆S e.u‬‬ ‫‪-38.254‬‬ ‫‪-48.522‬‬ ‫‪-32.632‬‬

‫أ‪ -10-1-‬انزخهض يٍ أ‪َٕٚ‬بد انُزشاد ‪ ٔ NO3-‬األيَٕ‪ٕٛ‬و ‪ NH4+‬ثذسخخ انسشاسح االػز‪ٛ‬بد‪ٚ‬خ‬ ‫رْ ه‪٤‬بط رشً‪٤‬ض األ‪ٗٞ٣‬بد اُغبثوخ ك‪ ٢‬أُ‪٤‬ب‪ ٙ‬هجَ ‪ ٝ‬ثؼذ ر٘ش‪٤‬ؾ أُجبدٍ ثبعزخذاّ ع‪ٜ‬بص‬ ‫‪ Colorimeter Dr/890‬ػ٘ذ ؿ‪ٞٓ ٍٞ‬عخ ‪ 400nm‬ثبُ٘غجخ ُِ٘زشاد ‪ ٝ‬ؿ‪ٞٓ ٍٞ‬عخ ‪425 nm‬‬ ‫ثبُ٘غجخ ُألٓ‪ ّٞ٤ٗٞ‬اُغذ‪)19( ٍٝ‬‬ ‫اندذٔل ) ‪(19‬إصانخ أ‪َٕٚ‬بد انُزشاد ٔ األيَٕ‪ٕٛ‬و يٍ و ‪ٚ‬بِ يسطخ انًؼبندخ ثذيشن ثذسخخ انسشاسح‬ ‫االػز‪ٛ‬بد‪ٚ‬خ‬ ‫انًجبدل‬ ‫‪OMWBZ‬‬ ‫‪OMWBZ-PC‬‬ ‫‪BZ‬‬

‫انُغجخ انًئٕ‪ٚ‬خ إلصانخ‪ NO3-‬ج ‪1‬ؽ‬ ‫يجبدل‬ ‫‪%‬ثؼذ انزُش‪ٛ‬ط‬ ‫‪%‬هجم انزُش‪ٛ‬ط‬ ‫‪32.14‬‬ ‫‪90.18‬‬ ‫‪39.29‬‬ ‫‪90.18‬‬ ‫‪23.21‬‬ ‫‪91.52‬‬

‫انُغجخ انًئٕ‪ٚ‬خ إلصانخ ‪ NH4+‬ج ‪ 1‬ؽ‬ ‫يجبدل‬ ‫‪%‬هجم انزُش‪ٛ‬ط ‪ %‬ثؼذ انزُش‪ٛ‬ط‬ ‫‪98.91‬‬ ‫‪81.79‬‬ ‫‪98.91‬‬ ‫‪79.35‬‬ ‫‪98.91‬‬ ‫‪78.26‬‬

‫أ‪ٗ -1-10-1-‬ش‪ ٟ‬ك‪ٛ ٢‬زا اُغذ‪ ٍٝ‬أدا ًء ع‪٤‬ذًا ُِٔجبدالد ك‪ٔ٤‬ب ‪٣‬زؼِن ثأ‪ ٕٞ٣‬األٓ‪ ّٞ٤ٗٞ‬هجَ ‪ ٝ‬ثؼذ اُز٘ش‪٤‬ؾ‪,‬‬ ‫ك‪ ٢‬ؽ‪ ٖ٤‬إٔ ‪ٛ‬زا األداء ع‪٤‬ذ ثبُ٘غجخ ُِ٘زشاد هجَ اُز٘ش‪٤‬ؾ ‪٣ ٝ‬ز٘بهض ئُ‪ ٠‬اُضِش ثؼذ اُز٘ش‪٤‬ؾ ‪ ٌٖٔ٣ٝ ,‬إٔ‬ ‫‪٣‬ؼض‪ ٟ‬رُي ئُ‪ً ٠‬جش هـش أ‪ ٕٞ٣‬اُ٘زشاد‪ ٝ ,‬اٗخلبع شؾ٘ز‪ ٝ ٚ‬ئُ‪ ٠‬ص‪٣‬بدح رشً‪٤‬ض اُ٘زشاد ك‪٤ٓ ٢‬ب‪ٙ‬‬ ‫أُؾـخ ‪ ٝ‬ئُ‪ ٠‬اإلؽبؿخ األ‪٤ٗٞ٣‬خ ‪ ٝ‬اُغض‪٣‬ئ‪٤‬خ اُز‪ ٌٖٔ٣ ٢‬إٔ رؼ‪٤‬ن أُغبٓبد ك‪ ٢‬أُجبدالد‪.‬‬ ‫أ‪٣ ُْ -2-10-1-‬زجغ اُزجبدٍ ث‪ ٝ NH4+ ٝ NO3- ٖ٤‬أ‪ٗٞ٣‬بد ‪ Na+‬ػِ‪ ٠‬اُغـؼ هبٗ‪ ٕٞ‬اُزجبدٍ األ‪٢ٗٞ٣‬‬ ‫ًٔب ك‪ ٢‬ؽبُخ ‪.Mg+2 ٝCa+2‬‬ ‫أ‪ ٌٖٔ٣ -3-10-1-‬رلغ‪٤‬ش االعز٘زبط ثبُشؾ٘خ اٌُ‪ٜ‬شثبئ‪٤‬خ األطـش ‪ ٝ‬ثبُوـش األًجش أل‪ ٕٞ٣‬اُ٘زشاد‬ ‫( ‪ ٝ )d=1.89 A‬أ‪ ٕٞ٣‬األٓ‪ ( d= 1.43A) ّٞ٤ٗٞ‬ئػبكخ ئُ‪ ٠‬اُج٘‪٤‬خ أُغبٓ‪٤‬خ ُِٔجبدالد أُجزٌشح ‪.‬‬ ‫أ‪ -4-10-1-‬رْ رخل‪٤‬غ رشً‪٤‬ض ًَ ٖٓ أ‪ٗٞ٣‬بد اُ٘زشاد ‪ ٝ‬األٓ‪ ّٞ٤ٗٞ‬ك‪ ٢‬أُ‪٤‬ب‪ ٙ‬اُظ٘بػ‪٤‬خ أُِ‪ٞ‬صخ‬ ‫اُ٘برغخ ػٖ ٓؾـخ ٓؼبُغخ أُ‪٤‬ب‪ ٙ‬ك‪ ٢‬دٓشن اُغذ‪. )19( ٍٝ‬‬ ‫أ‪ - 5-10-1-‬ػ٘ذٓب عش‪ ٟ‬اخزجبس أُجبدالد ػِ‪ٓ ٠‬ؾبُ‪ َ٤‬اُ٘زشاد أُخجش‪٣‬خ اُز‪ ٢‬روَ رشاً‪٤‬ض‪ٛ‬ب‬ ‫ػٖ‪ً 100 ppm‬بٕ األداء ػبُ‪ً٤‬ب ع‪ٞ‬اء هجَ اُز٘ش‪٤‬ؾ أ‪ ٝ‬ثؼذ‪ًٔ ٙ‬ب ك‪ ٢‬اُغذ‪.)20( ٍٝ‬‬

‫‪14‬‬

‫اندذٔل ) ‪( 20‬إصانخ أ‪َٕٚ‬بد انُزشاد ٔ األيَٕ‪ٕٛ‬و يٍ انًسبن‪ٛ‬م انز‪ٚ ٙ‬وم يسزٕاْب ػٍ ‪100ppm‬‬ ‫ك‪ ٙ‬دسخخ انسشاسح االػز‪ٛ‬بد‪ٚ‬خ‪.‬‬ ‫انًجبدل‬ ‫‪OMWBZ‬‬ ‫‪OMWBZ-PC‬‬ ‫‪BZ‬‬

‫انُغجخ انًئٕ‪ٚ‬خ إلصانخ‪ NO3-‬ج ‪1‬ؽ‬ ‫يجبدل‬ ‫‪%‬ثؼذ انزُش‪ٛ‬ط‬ ‫‪%‬هجم انزُش‪ٛ‬ط‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬

‫انُغجخ انًئٕ‪ٚ‬خ إلصانخ ‪ NH4+‬ج ‪ 1‬ؽ‬ ‫يجبدل‬ ‫‪%‬هجم انزُش‪ٛ‬ط ‪ %‬ثؼذ انزُش‪ٛ‬ط‬ ‫‪70.97‬‬ ‫‪84.38‬‬ ‫‪72.75‬‬ ‫‪85.31‬‬ ‫‪73.86‬‬ ‫‪83.87‬‬

‫أ‪ -11-1-‬نذٖ اخزجبس كؼبن‪ٛ‬خ انًجبدالد األ‪َٕٛٚ‬خ انًجزكشح ك‪ ٙ‬انًسبن‪ٛ‬م انًبئ‪ٛ‬خ ن ‪ KMnO4‬رج‪ ٍٛ‬يٍ‬ ‫انج‪ٛ‬بَبد انُبردخ أَٓب رزجغ هٕاَ‪ ٍٛ‬االيزضاص اندض‪ٚ‬ئ‪ ٔ ٙ‬ن‪ٛ‬ظ أَظًخ انزجبدل األ‪.َٕٙٚ‬‬ ‫أ‪ -1-11-1-‬أػـ‪ ٠‬أُ٘زظ ‪٘ٓ BZ‬ؾ٘‪ً٤‬ب ٗٔ‪ٞ‬رع‪ً٤‬ب ٓشبث‪ٜ‬ب ُٔ٘ؾ٘‪ ٢‬ال ٗـٔ‪ٞ٤‬س‬

‫‪KC‬‬ ‫‪1  KC‬‬

‫‪ٓ  ‬غ ٓ‪َ٤‬‬

‫ؽبد ك‪ٓ ٢‬غبٍ اُزشاً‪٤‬ض اُظـ‪٤‬شح ُ ‪ٓ , KMnO4‬غ ه‪ ْ٤‬طـ‪٤‬شح ُِـجوخ األؽبد‪٣‬خ اُغض‪٣‬ئخ ‪.am‬‬ ‫أ‪ - 2- 11-1-‬أٓب ثبُ٘غجخ ُ ‪ OMWBZ‬كوذ أظ‪ٜ‬شد ٗزبئظ آزضاص ‪ KMnO4‬ر‪ٞ‬اكوًب ع‪٤‬ذًا ٓغ ٓؼبدُخ‬ ‫كش‪٘٣‬ذُ‪٤‬ش )‪ٓ (a/m=KC1/n‬غ ه‪ٔ٤‬خ ػبُ‪٤‬خ ٗغج‪ً٤‬ب ﻟ ‪.am‬‬ ‫أ‪ ٝ -3-11-1-‬أٓب آزضاص ‪ KMnO4‬ػِ‪ OMWBZ-PC ٠‬كوذ أٗزظ ر٘بعجبً ؿشد‪ً٣‬ب ٓغ اُزشاً‪٤‬ض‬ ‫اُظـ‪٤‬شح )‪ٓ ( a=amKC‬غ ه‪ٔ٤‬خ رغش‪٣‬ج‪٤‬خ ُ ‪ am‬روزشة ٖٓ ه‪ٔ٤‬ز‪ٜ‬ب ثبُ٘غجخ ﻟ ‪ِٗ ٝ .OMWBZ‬خض‬ ‫ٗزبئظ آزضاص ‪ KMnO4‬ػِ‪ ٠‬أُ٘زغبد أُجزٌشح اُغذ‪.)21( ٍٝ‬‬ ‫اندذٔل ) ‪( 21‬ه‪ٛ‬ى ‪ Δam ٔ am‬ن ايزضاص ‪ KMnO4‬ػهٗ ‪BZ, OMWBZ, OMWBZ-PC‬‬ ‫ك‪ ٙ‬دسخخ زشاسح انـشكخ‪.‬‬ ‫انًجبدل األ‪ َٕٙٚ‬انًبص‬

‫‪ am‬ي‪ٛ‬ه‪ ٙ‬يٕل‪/100‬ؽ ‪Δam‬ي‪ٛ‬ه‪ ٙ‬يٕل ‪/100‬ؽ‬

‫‪BZ‬‬

‫‪2.920‬‬

‫‪0‬‬

‫‪OMWBZ‬‬ ‫‪OMWBZ-PC‬‬

‫‪10.282‬‬ ‫‪10.268‬‬

‫‪7.362‬‬ ‫‪7.348‬‬

‫انًؼبدنخ‬ ‫‪KC‬‬ ‫‪1  KC‬‬

‫‪‬‬

‫)‪(a/m=KC1/n‬‬ ‫)‪( a=amKC‬‬

‫أ‪1-‬ة‪٣ -4-11-‬ؼٌظ اُغذ‪ ( 21 ) ٍٝ‬ئع‪ٜ‬بٓب ًج‪٤‬شاً ُ ‪ OMWW‬ك‪ ٢‬اُلؼبُ‪٤‬خ االٓزضاص‪٣‬خ ٌَُ ٖٓ‬ ‫‪ OMWBZ-PC ٝOMWBZ‬ثبُٔوبسٗخ ٓغ كؼبُ‪٤‬خ ‪.BZ‬‬ ‫أ‪ -12-1-‬عش‪ ٟ‬اخزجبس اُلظَ اُغض‪٣‬ئ‪ ٢‬ك‪ ٢‬اُغَٔ اُض٘بئ‪٤‬خ اُغبئِخ اُوـج‪٤‬خ ‪ ٝ‬اُالهـج‪٤‬خ ػِ‪ ٠‬عـ‪ٞ‬ػ‬ ‫أُ٘زغبد أُجزٌشح ُِغِٔخ اُغبئِخ ‪٣ ٝ CCL4 -CH3OH‬ج‪ ٖ٤‬اُغذ‪ ٍٝ‬اُ٘زبئظ ؽغت ٓؼبدُخ ع‪٤‬جظ‬ ‫‪15‬‬

‫) ‪ m, 2 ( K  1) X 1 (1  X 1‬‬ ‫‪1  ( K1, 2  1) X 1‬‬

‫‪G1 ‬‬

‫‪ ٝ‬رج‪ ٖ٤‬األشٌبٍ (‪٘ٓ ) 10,9,8‬ؾ٘‪٤‬بد ع‪٤‬جظ اُزغش‪٣‬ج‪٤‬خ‪,‬‬

‫‪ِٗ ٝ‬خض ك‪ ٢‬اُغذ‪ٗ )22( ٍٝ‬زبئظ ‪ٛ‬ز‪ ٙ‬اُذساعخ‪.‬‬ ‫اندذٔل ) ‪(22‬ه‪ٛ‬ى ‪ αٔ KB‬ثبنُغجخ اليزضاص ‪ CH3OHٔ CCl4‬ػهٗ انًُزدبد‬ ‫‪ BZ,OMWBZ-PC,OMWBZ‬ثذسخخ زشاسح انـشكخ‬ ‫انًجبدل‬ ‫‪OMWBZ‬‬ ‫‪OMWBZ-PC‬‬ ‫‪BZ‬‬

‫‪CCl4‬‬ ‫‪Kß‬‬ ‫‪20.753‬‬ ‫‪37.735‬‬ ‫‪20.753‬‬

‫‪CH3OH‬‬ ‫‪αm‬‬ ‫‪0.107‬‬ ‫‪0.148‬‬ ‫‪0.127‬‬

‫‪Kß‬‬ ‫‪37.735‬‬ ‫‪53.778‬‬ ‫‪81.000‬‬

‫‪αm‬‬ ‫‪0.0826‬‬ ‫‪0.156‬‬ ‫‪0.100‬‬

‫رج‪ٗ ٖ٤‬زبئظ اُغذ‪٤ٓ ٍٝ‬الً أًجش ٗؾ‪ ٞ‬االٓزضاص اُالهـج‪ ٢‬ػ٘ذ ‪ٓ OMWBZ-PC‬غ ر٘بهض ك‪ ٢‬االٓزضاص‬ ‫اُوـج‪ ٢‬ثبُ٘غجخ ٍ ‪ OMWBZ ٝOMWBZ-PC‬ثبُٔوبسٗخ ٓغ خ‪ٞ‬اص اُلظَ اُغض‪٣‬ئ‪BZ ُ٢‬‬ ‫‪ٓ2-16‬زشاً ‪ٝ.‬‬ ‫أ‪٣ -13-1-‬ز‪ٞ‬ػغ اُج‪ ِٕٞ٤‬اُغ‪ٞ‬س‪ ١‬اُخبّ هشة ؽِت ثـجوبد عٔبًز‪ٜ‬ب رزشا‪ٝ‬ػ ث‪ٖ٤‬‬ ‫‪٣‬خزِق ػٖ ثو‪٤‬خ اُـؼبس‪٣‬بد ك‪ ٢‬أٗ‪٣ ٚ‬ؾز‪ ١ٞ‬ػِ‪ٗٞٓ50-55 % ٠‬زٔ‪ٞ‬س‪٤ِٗٞ٣‬ذ ئػبكخ ئُ‪ ٠‬ثبُ‪٤‬ل‪ٞ‬سعِ‪٤‬ذ‬ ‫‪ ٝ‬اٌُبؤ‪٤٘٤ُٝ‬ذ ‪ ٝ‬اُ‪٤ٜ‬ذس‪ٌ٤ٓٝ‬ب ‪ ٝ‬اٌُ‪ٞ‬اسرض ‪ ٝ‬اٌُشث‪ٗٞ‬بد اٌُِغ‪٤‬خ ‪ ٝ‬أُـ٘ض‪٤ٓٞ٣‬خ ‪ ٝ‬ؿ‪٤‬ش‪ٛ‬ب ‪ٗ ٝ‬ش‪ ٟ‬رشً‪٤‬ج‪ٚ‬‬ ‫اٌُ‪٤ٔ٤‬بئ‪ ٢‬ك‪ ٢‬اُغذ‪ ٝ(1 ) ٍٝ‬هذ ٗششٗب ك‪ ٢‬أُشعغ ]‪[ 7-4‬دساعخ ٓلظِخ ػٖ اُج‪ ِٕٞ٤‬اُغ‪ٞ‬س‪.١‬‬ ‫أ‪٣- -14-1-‬الؽظ ك‪ ٢‬عٔ‪٤‬غ ٓخــبد اُ ‪ٝ DTA‬ع‪ٞ‬د كؼَ ٓبص ُِؾشاسح ًج‪٤‬ش ك‪ٛ ٢‬ز‪ ٙ‬أُجبدالد‬ ‫ك‪ ٢‬دسعبد اُؾشاسح أُ٘خلؼخ هجَ ‪ ٝ‬ثؼذ اُز٘ش‪٤‬ؾ ج ‪ٔٓ NaCl‬ب ‪٣‬ذٍ ػِ‪ٝ ٠‬ع‪ٞ‬د صٓش ‪٤ٛ‬ذس‪ًٝ‬غ‪٤ِ٤‬خ ‪,‬‬ ‫‪ٛٝ‬ز‪ ٙ‬اُضٓش رِؼت د‪ٝ‬س‪ٛ‬ب ك‪ ٢‬ػِٔ‪٤‬خ االٓزضاص أُِؾن (‪.)12,11‬‬ ‫أ‪٣ ُْ --15-1-‬الؽظ أ‪ ١‬اخزالف ك‪ٓ ٢‬خــبد‪ُِٔ X.R.D‬جبدالد( ‪,OMWBZ,OMWBZ-PC‬‬ ‫‪ ٖٓ)BZ‬ؽ‪٤‬ش هْٔ اُج٘ز‪٤ٗٞ‬ذ ‪ ٝ‬اُض‪٤ُٞ٣‬ذ أُٔ‪٤‬ضح ‪٣ ُْٝ ,‬إصش اُز٘ش‪٤‬ؾ ث ‪ NaCl‬أُِؾن (‪.)14,13‬‬ ‫أ‪ -16-1-‬ال ‪ٞ٣‬عذ ٓؼبدٕ صو‪ِ٤‬خ ٗبرغخ ػٖ أُجبدالد أُؾؼشح ًٔب ‪ٓ ٞٛ‬ج‪ٗ ٖٓ ٖ٤‬زبئظ رؾِ‪ َ٤‬اُؼ‪٘٤‬بد‬ ‫أُبئ‪٤‬خ أُؼبُغخ ث‪ٜ‬ز‪ ٙ‬أُجبدالد ث‪ٞ‬اعـخ ع‪ٜ‬بص االٓزظبص اُزس‪ GBC 932 AA١‬أُِؾن (‪. )1‬‬

‫‪16‬‬

‫أ‪ -2-‬انشعٕو ٔ انًخططبد ٔ انًالزن‬ ‫انًخطط انظُبػ‪ ٙ‬إلصانخ يبء اندلذ ‪OMWW‬‬ ‫ٓبء اُغلذ‬ ‫ص‪٤ُٞ٣‬ذ ػٔبٗ‪A ٢‬‬

‫ث‪ ِٕٞ٤‬ؽِج‪٢‬‬

‫ٓضط‬

‫ر‪ٜ‬ؼ‪ْ٤‬‬

‫ك‪ٞ‬سّ أُذ‪٤ٛ‬ذ‬

‫ٓبءاد األٓ‪ّٞ٤ٗٞ‬‬ ‫رٌض‪٤‬ق ك‪ ٢‬اُذسعخ‬ ‫‪ْ ّ 60-50‬‬

‫رؾض‪٤‬ش‬

‫رغل‪٤‬ق‬

‫رٌِ‪٤‬ظ‬

‫رجش‪٣‬ذ‬

‫رخض‪ٖ٣‬‬

‫‪17‬‬

‫‪0.008‬‬ ‫‪0.007‬‬ ‫‪0.006‬‬

‫‪1/S2‬‬

‫‪0.005‬‬ ‫‪0.004‬‬ ‫‪0.003‬‬ ‫‪0.002‬‬ ‫‪0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.170 0.190‬‬ ‫‪2‬‬

‫‪C 1S2/C 2‬‬

‫(‪ S2/1 )1‬بدالنة ‪ C 1S2/C 22‬في اندرجة ‪ 30‬و ْ نهمبادل ‪OMWBZ‬‬ ‫انشكم ‪2‬‬

‫‪0.008‬‬ ‫‪0.007‬‬ ‫‪0.006‬‬

‫‪1/S2‬‬

‫‪0.005‬‬ ‫‪0.004‬‬ ‫‪0.003‬‬

‫‪0.250‬‬

‫‪0.150‬‬

‫‪0.200‬‬

‫‪0.050‬‬

‫‪0.100‬‬

‫‪0.002‬‬ ‫‪0.000‬‬

‫‪C1S 2/C22‬‬

‫‪3‬‬

‫‪2‬‬

‫انشكم (‪ S2/1 ) 4‬بدالنت ‪ C1S2/C2‬في اندرجت ‪30‬وْ نهمببدل ‪OMWBZ-PC‬‬

‫‪0.012‬‬ ‫‪0.011‬‬ ‫‪0.010‬‬ ‫‪0.009‬‬

‫‪0.007‬‬ ‫‪0.006‬‬ ‫‪0.005‬‬ ‫‪0.140‬‬

‫‪0.120‬‬

‫‪0.100‬‬

‫‪0.080‬‬

‫‪0.060‬‬

‫‪0.040‬‬

‫‪0.020‬‬

‫‪C1S2/C22‬‬ ‫‪ S2/1 ) 7‬بدالنت ‪ C1S2/C22‬في اندرجت ‪30‬وْ نهمببدل ‪BZ‬‬ ‫انشكم ( ‪4‬‬

‫‪18‬‬

‫‪0.004‬‬ ‫‪0.000‬‬

‫‪1/S2‬‬

‫‪0.008‬‬

‫‪1.600‬‬ ‫‪1.400‬‬ ‫‪1.200‬‬ ‫‪0.800‬‬

‫‪Ln K‬‬

‫‪1.000‬‬ ‫‪0.600‬‬ ‫‪0.400‬‬ ‫‪0.200‬‬ ‫‪0.0033‬‬

‫‪0.0032‬‬ ‫‪-1‬‬

‫)ْ‪(K‬‬

‫‪0.0031‬‬

‫‪0.000‬‬ ‫‪0.003‬‬

‫‪1/T‬‬

‫انشكم (‪ LnK )5‬ثذالنخ ‪ 1/T‬نهًجبدل ‪BZ‬‬ ‫‪1.400‬‬ ‫‪1.000‬‬ ‫‪0.600‬‬

‫‪0.0033‬‬

‫‪0.0031‬‬

‫‪0.0032‬‬

‫‪LnK‬‬

‫‪0.200‬‬

‫‪-0.200‬‬ ‫‪0.0030‬‬ ‫‪-0.600‬‬ ‫‪-1.000‬‬

‫‪(Kْ)-1‬‬

‫‪-1.400‬‬

‫‪1/T‬‬

‫انشكم (‪ LnK )6‬ثذالنخ ‪ 1/T‬نهًجبدل ‪OMWBZ‬‬ ‫‪1.400‬‬ ‫‪1.000‬‬ ‫‪0.600‬‬

‫‪0.0033‬‬

‫‪0.0031‬‬

‫‪0.0032‬‬

‫‪Ln K‬‬

‫‪0.200‬‬

‫‪-0.200‬‬ ‫‪0.003‬‬ ‫‪-0.600‬‬ ‫‪-1.000‬‬

‫‪(Kْ)-1‬‬

‫‪-1.400‬‬ ‫‪1/T‬‬

‫انشكم (‪ LnK )7‬ثذالنخ ‪ 1/T‬نهًجبدل ‪OMWBZ-PC‬‬

‫‪19‬‬

‫‪0.1‬‬

‫‪0.08‬‬

‫‪0.06‬‬

‫‪0.04‬‬

‫‪0.02‬‬

‫‪0‬‬ ‫‪1.2‬‬

‫‪1‬‬

‫‪0.8‬‬

‫‪0.6‬‬

‫‪0.4‬‬

‫‪0.2‬‬

‫‪0‬‬

‫‪G‬‬ ‫‪-0.02‬‬

‫ٓ‪/ٍٞ‬ؽ‬ ‫‪-0.04‬‬

‫‪-0.06‬‬

‫‪-0.08‬‬

‫‪-0.1‬‬

‫‪-0.12‬‬

‫‪X‬‬

‫انشكم (‪ )8‬االيزضاص ك‪ ٙ‬اندًهخ انثُبئ‪ٛ‬خ ‪ CCL4-CH3OH‬ن ‪OMWBZ‬‬

‫‪20‬‬

‫‪0.1000‬‬

‫‪0.0800‬‬

‫‪0.0600‬‬

‫‪0.0400‬‬

‫‪0.0200‬‬

‫‪1.2000‬‬

‫‪1.0000‬‬

‫‪0.8000‬‬

‫‪0.6000‬‬

‫‪0.4000‬‬

‫‪0.2000‬‬

‫‪0.0000‬‬ ‫‪0.0000‬‬

‫‪G‬‬ ‫‪-0.0200‬‬

‫ٓ‪/ٍٞ‬ؽ‬ ‫‪-0.0400‬‬

‫‪-0.0600‬‬

‫‪-0.0800‬‬

‫‪-0.1000‬‬

‫‪X‬‬

‫انشكم (‪ )9‬االيزضاص ك‪ ٙ‬اندًهخ انثُبئ‪ٛ‬خ ‪ CCL4-CH3OH‬ن ‪OMWBZ-PC‬‬

‫‪21‬‬

‫‪-0.1200‬‬

‫‪0.1‬‬

‫‪0.08‬‬

‫‪0.06‬‬

‫‪0.04‬‬

‫‪0.02‬‬

‫‪0‬‬ ‫‪0.8‬‬

‫‪G‬‬

‫‪1.2‬‬

‫‪1‬‬

‫‪0.6‬‬

‫‪0.4‬‬

‫‪0.2‬‬

‫‪0‬‬ ‫‪-0.02‬‬

‫ٓ‪/ٍٞ‬ؽ‬ ‫‪-0.04‬‬

‫‪-0.06‬‬

‫‪-0.08‬‬

‫‪-0.1‬‬

‫‪-0.12‬‬ ‫‪X1‬‬

‫انشكم (‪ )10‬االيزضاص ك‪ ٙ‬اندًهخ انثُبئ‪ٛ‬خ ‪ CCL4-CH3OH‬ﻟ ‪BZ‬‬

‫‪22‬‬

OMWBZ-PC ٙ‫ٕي‬ٚ‫انظٕد‬

11

23

OMWBZ-PC

12

24

OMWBZ-PC

X.R.D

13

25

OMWBZ-PC ٙ‫ٕي‬ٚ‫انظٕد‬

X.R.D

26

14

‫انًهسن (‪)1‬‬ ‫َزبئح رسه‪ٛ‬م انًؼبدٌ انثو‪ٛ‬هخ‬

‫انًجبدل هجم انزُش‪ٛ‬ط‬ ‫انً‪ٛ‬بِ انًهٕثخ‬ ‫ي‪ٛ‬بِ يهٕثخ‪OMWBZ+‬‬ ‫ي‪ٛ‬بِ يهٕثخ‪OMWBZ-PC+‬‬ ‫ي‪ٛ‬بِ يهٕثخ‪BZ+‬‬

‫رشك‪ٛ‬ض انًؼبدٌ ثو‪ٛ‬هخ ( ي‪ٛ‬كشٔؿشاو‪/‬نزش)‬ ‫‪Mn‬‬ ‫‪Pb‬‬ ‫‪Zn‬‬ ‫‪Cu‬‬ ‫‪Cd‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫رشك‪ٛ‬ض انًؼبدٌ ثو‪ٛ‬هخ (ي‪ٛ‬كشٔؿشاو‪/‬نزش)‬ ‫‪Mn‬‬ ‫‪Pb‬‬ ‫‪Zn‬‬ ‫‪Cu‬‬ ‫‪Cd‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬

‫انًجبدل ثؼذ انزُش‪ٛ‬ط‬ ‫ي‪ٛ‬بِ يهٕثخ‬ ‫ي‪ٛ‬بِ يهٕثخ‪OMWBZ+‬‬ ‫ي‪ٛ‬بِ يهٕثخ‪OMWBZ-PC+‬‬ ‫ي‪ٛ‬بِ يهٕثخ‪BZ+‬‬

‫‪27‬‬

‫أ‪ -3-‬االدػبءاد انًطهٕة زًب‪ٚ‬زٓب‬ ‫أ‪ – 1-3-‬ؿش‪٣‬وخ ُِزخِض ٖٓ ٓ‪٤‬ب‪ ٙ‬اُغلذ أُِ‪ّٞ‬صخ )‪ (OMWW‬ثزؾ‪ِٜ٣ٞ‬ب اُ‪ٓ ٠‬جبدالد أ‪٤ٗٞ٣‬خ رشبسً‪٤‬خ‬ ‫ٓزؼذدح األؿشاع ٓإُلخ ٖٓ أٌُ‪ٗٞ‬بد (‪ + OMWW‬ث‪ ِٕٞ٤‬ع‪ٞ‬س‪ + ١‬ص‪٤ُٞ٣‬ذ ػٔبٗ‪.)A ٢‬‬ ‫أ‪ -2-3-‬رؾؼ‪٤‬ش ٓجبدٍ عذ‪٣‬ذ ‪ ٖٓ OMWBZ-PC‬أٌُ‪ٗٞ‬بد (‪ + OMWW‬ث‪ ِٕٞ٤‬ع‪ٞ‬س‪+ ١‬‬ ‫ص‪٤ُٞ٣‬ذ ػٔبٗ‪ٓ )A ٢‬غ رٌبصق ػِ‪ ٠‬اُغـؼ ٌُِٔ‪ٗٞ‬بد اُل‪٤ُٞ٘٤‬خ ُ ‪.OMWW‬‬ ‫أ‪ -3-3-‬رؾؼ‪٤‬ش ٓجبدٍ ‪ OMWBZ‬ثذ‪ ٕٝ‬ثِٔشح ٌٓ‪ٗٞ‬بد ‪.OMWW‬‬ ‫أ‪ -4-3-‬رؾؼ‪٤‬ش ٓجبدٍ ٖٓ اُض‪٤ُٞ٣‬ذ اُؼٔبٗ‪ ٝ A ٢‬اُج‪ ِٕٞ٤‬اُؾِج‪٘ٓ ٢‬لشد‪.BZ ٖ٣‬‬ ‫أ‪ٓ -5-3-‬ؼبُغخ أُ‪٤‬ب‪ ٙ‬اُوبع‪٤‬خ ث‪ٜ‬ز‪ ٙ‬أُجبدالد (‪ٝ ,)OMWBZ, OMWBZ-PC, BZ‬ؽغبة صبثذ‬ ‫اُز‪ٞ‬اصٕ ‪ ٝ‬عؼخ االٓزظبص اُؼظٔ‪ُِٔ ٠‬جبدالد ‪ ٝ‬ؽغبة األثؼبد اُزشٓ‪ٞ‬د‪٘٣‬بٓ‪٤ٌ٤‬خ ُ‪ٜ‬ز‪ ٙ‬أُجبدالد‪.‬‬ ‫أ‪ -6-3-‬اُزخِض ٖٓ أ‪ٗٞ٣‬بد اُ٘زشاد ‪ ٝ‬األٓ‪ ّٞ٤ٗٞ‬ك‪ ٢‬أُ‪٤‬ب‪ ٙ‬أُِ‪ٞ‬صخ ث‪ٜ‬ب ثبُٔجبدالد ( ‪OMWBZ,‬‬ ‫‪.)OMWBZ-PC, BZ‬‬ ‫أ‪ -7-3-‬آزضاص ثشٓ٘ـ٘بد اُج‪ٞ‬ربع‪ ٖٓ ّٞ٤‬أُؾبُ‪ َ٤‬أُبئ‪٤‬خ ػِ‪ٛ ٠‬ز‪ ٙ‬أُ٘زغبد( ‪OMWBZ,‬‬ ‫‪.)OMWBZ-PC, BZ‬‬ ‫أ‪ -8-3-‬اُلظَ اُغض‪٣‬ئ‪ ٢‬ك‪ ٢‬اُغَٔ اُغبئِخ اُوـج‪٤‬خ ‪ ٝ‬اُالهـج‪٤‬خ ‪ ٝ‬ػِ‪ ٠‬عـ‪ٞ‬ػ أُ٘زغبد أُجزٌشح‬ ‫ُِغِٔخ اُغبئِخ ‪. CH3OH- CCl4‬‬ ‫أ‪ -9-3-‬رؼ‪ٓ ٖ٤٤‬خــبد ‪ُٜ DTA, XRD‬ز‪ ٙ‬أُجبدالد (‪.)OMWBZ, OMWBZ-PC, BZ‬‬ ‫أ‪- -10-3-‬عٔ‪٤‬غ األكٌبس اُز‪ ٢‬رًشد ر٘ـجن ػِ‪ ًَ ٠‬أٗ‪ٞ‬اع اُض‪٤ُٞ٣‬ذ ‪ ٝ A‬اُج٘ز‪٤ٗٞ‬ذ ٓغ ٓ‪٤‬ب‪ ٙ‬اُغلذ‪.‬‬

‫‪28‬‬

‫أ‪ -4-‬انًهخــــض‬

‫رى ألٔل يشح انزخهض يٍ ي‪ٛ‬بِ اندلذ انًهٕثخ نهج‪ٛ‬ئخ ‪ OMWW‬ثزسٕ‪ٚ‬هٓب إنٗ يجبدالد‬ ‫أ‪َٕٛٚ‬خ رشبسك‪ٛ‬خ ػذ‪ٚ‬ذح انٕظبئق يغ انض‪ٕٚ‬ن‪ٛ‬ذ انؼًبَ‪ ٔ A ٙ‬انج‪ٛ‬هٌٕ انغٕس٘‪.‬‬ ‫أدد َغجخ أهم يٍ ‪ % 1‬يٍ انًبدح اندبكخ انًكهغخ انُبردخ ػٍ اَزشبس ‪ OMWW‬ك‪ٙ‬‬ ‫انًجبدل أٔ ػٍ ركبثق يزؼذد انل‪ُٕٛ‬الد انذاخهخ ك‪ ٙ‬رشك‪ٛ‬جٓب ػهٗ انغطر‬ ‫انلؼبن‪ٛ‬خ انزجبدن‪ٛ‬خ ثًب ‪ٚ‬وبسة‬

‫إنٗ ص‪ٚ‬بدح ك‪ٙ‬‬

‫‪ % 31‬يٍ أخم األ‪َٕٚ‬بد راد األهطبس انظـ‪ٛ‬شح‬

‫)‪ ٔ (Ca+2,Mg+2‬ص‪ٚ‬بدح هذسْب ‪ % 200‬روش‪ٚ‬ج ًب ك‪ ٙ‬زبنخ االيزضاص اندض‪ٚ‬ئ‪ ٙ‬نجشيُـُبد‬ ‫انجٕربع‪ٕٛ‬و‪.‬‬ ‫إضبكخ إنٗ طالز‪ٛ‬خ انًجبدالد انُبردخ ك‪ ٙ‬إصانخ األ‪َٕٚ‬بد راد األهطبس انكج‪ٛ‬شح َغج‪ً ٛ‬ب يثم‬ ‫‪ ٔ, NH4+ ٔ NO3‬هذسرٓب ػهٗ انلظم ك‪ ٙ‬اندًم انثُبئ‪ٛ‬خ انوطج‪ٛ‬خ ٔ انالهطج‪ٛ‬خ ٔ نى‬‫‪ٚ‬ؼشف يُزح كٓزا ك‪ ٙ‬أ٘ يشكض ثسث‪ ٙ‬ك‪ ٙ‬انؼبنى ززٗ ا‪.ٌٜ‬‬

‫انكهًبد انًلزبز‪ٛ‬خ ‪ٓ:‬بء اُغلذ ‪ ,OMWW‬أُجبدٍ األ‪ ٢ٗٞ٣‬أُظ٘غ ٖٓ‬ ‫ص‪٤ُٞ٣‬ذ)‪ ,‬ئصاُخ ٓبء اُغلذ‪ٓ ,‬جبدالد أ‪٤ٗٞ٣‬خ‪.‬‬

‫‪29‬‬

‫(ٓبء اُغلذ ‪ ,‬ث‪,ِٕٞ٤‬‬

‫ انًشاخغ‬-5-‫أ‬ ‫ذ‬ٛ‫ٕن‬ٚ‫يشاخغ انض‬ 1 Breck D.W. 1974Zeolite Molecular Sieves-Structure,Chemistry and Use. Wiley Interscience, New York. 2 Breck, Zeolite Molecular Sieves, New York: Wiley(1979); cited in Rompp, Chemie Lexikon, Band 6,9. Auflage (1992), Georg Thieme Verlag, Stuttgart. 3 Allen, H.E.,Cho S.H. Neubecker T. A. 1983. Ion exchange and hydrolysis of type A Zeolite in natural water. Water Res. 17, 1871, 1879. ٘‫ذ انغٕس‬َٕٛ‫يشاخغ انجُز‬ 4 Y. W. Bizreh, Damascus University Journal Vol (18) N ْ= 5, part (2) page 7-38, (1989) 5 Hamwee, N. master degree dissertation P.29-39 Supervisered by Prof. Y. W. Bizreh, Damascus University (1996). 6 Shaheen Abeer, master degree dissertation P.47-52 Supervised by Prof. Y. W. Bizreh, Damascus University. 7 Abudullah, Suzan master degree dissertation P.39-74 Supervised by Prof. Y. W. Bizreh, Damascus University, Faculty of sciences (2003). ‫يشاخغ يبء اندلذ‬ 8 Isabel P. Marques. Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation. Departamento de Energias Renováveis, Instituto Nacional de Engenharia e Tecnologia Industria, 21 August 2000. 9 Basheer Sobhi,* Sabbah Isam, Yazbek Ahmad, Haj Jacob, Saleeba. Ahlam REDUCING THE ENVIRONMENTAL IMPACT OF OLIVE MILL WASTEWATER IN JORDAN, PALESTINE . 10 The treatment of olive oil milling wastewater. Objective and results of the CAT-MED. 5TH FRAMEWORK PROGRAMME -INCO-MED PROGRAMMECONFIRMING THE INTERNATIONAL ROLE OF COMMUNITY RESEARCH Shared Cost Actionsww2.unime.it/catalysis/cat-med. 11 MOUS: Food and agriculture organization of the United Nations, Online under URL: www.fao.org [last Access on 23.03.2005]. 12 MULINACCI, N., et al. (2001): Polyphenolic Content in Olive Oil Waste Waters and Related Olive Samples, Journal of Agricultural and Food Chemistry (2001) 49: Page: 1005 – 1009.

30

13 FIORENTINO, A., et al. (2003): Environmental effects caused by olive oil mill wastewaters: Toxicity comparison of low-molecularweight phenol components, Journal of Agricultural and Food Chemistry (2003) 51: Page: 1005 – 1009. 14 Igor Kobek," Waste Treatment- TDC-OLIVE project" Framework Programme of the European Union http://www.tdcolive.net/documents/booklet/D14k_Waste_Treatment_ V1.0.pdf 15 ANONYMOUS: Food and agriculture organization of the United Nations, Online under URL: www.fao.org [last Access on 23.03.2005]. 16 ANONYMOUS: International Olive Oil Council, Online under URL: www.internationaloliveoil.org [last Access on 23.03.2005] 17 ANONYMOUS (2004): Project INASOOP - Integrated Approach to Sustainable Olive Oil and Table Olive Production (COLL-CT-2003500467) - Report on Relevant Olive Oil and Table Olives Production Techniques and Technologies, Pages: 20. ‫ ئداسح‬٢‫ضخ ك‬٣‫بد اُؾذ‬ٛ‫ االرغب‬. ‫خ‬٤‫ئ‬٤‫ اُضبُش ُإلداسح اُج‬٢‫ أُإرٔش اُؼشث‬. ٖ٤ٛ‫ ؽبكظ شب‬18 ‫ب‬ٜ‫ت ٓؼبُغز‬٤ُ‫أعب‬ٝ ‫ئخ‬٤‫صخ ُِج‬ُِٞٔ‫اع أُُخِلبد ا‬ٞٗ‫أ‬ٝ ّٜٞ‫ئخ ٓل‬٤‫صخ ُِج‬ُِٞٔ‫أُُخِلبد ا‬ Management of Olive Mills Wastes in the Palestinian ‫ عبٓؼخ‬،‫٘ذعخ‬ُٜ‫خ ا‬٤ًِ , ‫خ‬٤٘٤‫ أُ٘بؿن اُلِغـ‬٢‫ب ك‬ٜ‫ئداسر‬ٝ ٕٞ‫ز‬٣‫ٓخِلبد اُض‬Territories .ٖ٤‫كِغـ‬-‫ٗبثِظ‬,‫خ‬٤٘‫ؿ‬ُٞ‫اُ٘غبػ ا‬ ٕٞ‫ز‬٣‫ذ اُض‬٣‫ ص‬٢‫خ ك‬٤‫ؼ‬٤‫خ اُـج‬٤ُٞ٘٤‫ٗغت أُشًجبد اُل‬ٝ ‫اع‬ٞٗ‫ذ أ‬٣‫رؾذ‬ٝ ‫ دساعخ‬.‫ت ٗذاف‬٣‫ ٓؾٔذ د‬19 ‫ذف‬ٜ‫ أُشآثبد ث‬ٙ‫ز‬ٛ ٖٓ ٙ‫ا‬ٞ‫ ٓؾز‬٠ِ‫ذ ػ‬٣‫وخ اعزخالص اُض‬٣‫ش ؿش‬٤‫ رأص‬ٟ‫ٓذ‬ٝ ١‫س‬ٞ‫اُجٌش اُغ‬ ‫خ‬٤‫اُالره‬-‫خ‬٣‫س‬ٞ‫ ع‬,ٖ٣‫ عبٓؼخ رشش‬- ‫خ اُضساػخ‬٤ُ‫ آ‬-‫خ‬٣‫ّ األؿز‬ِٞ‫ هغْ ػ‬." ‫دح‬ٞ‫ٖ اُغ‬٤‫رؾغ‬ ‫ عبٓؼخ دٓشن‬. ٕٞ‫ز‬٣‫ اُ٘ظبس أؽٔذ ٓؾٔذ"ؿش ٓؼبُغخ ٓبء اُغلذ اُ٘برظ ػٖ ػظش اُض‬20 .‫ب‬٣‫س‬ٞ‫خ ع‬٤‫٘ذعخ اُضساػ‬ُٜ‫خ ا‬٤ًِ " ..‫ ػبٓش‬٢‫ أ ؽو‬.‫ا‬ٞ‫ كشاٗغ‬,‫ذ‬٤‫ ث‬ٙ‫ هش‬.ّ.‫د‬.‫أ‬.‫ ٓؾٔذ‬,٢ِ‫د أُ٘غذ ػ‬.‫ أ‬.‫ ٓؾٔذ‬,‫ش‬٤ٜ‫بشْ ش‬ٛ ‫د‬.‫ أ‬21 ‫ٕ ثبعزخذاّ روبٗبد األًغذح أُزوذٓخ‬ٞ‫ز‬٣‫خ اُ٘برغخ ػٖ ٓؼبطش اُض‬٤‫ اُظ٘بػ‬ٙ‫ب‬٤ُٔ‫ٓؼبُغخ ا‬ .‫ عبٓؼخ دٓشن‬,ِّٞ‫خ اُؼ‬٤ًِ , ‫ش‬٤‫اهَ" سعبُخ ٓبعغز‬ُٞ٘‫د أٗظبف ا‬ٞ‫ع‬ٞ‫ ث‬ٝ ً‫ب‬٤‫ئ‬ٞ‫أُؾلضح ػ‬ .2004 ‫خ‬ٚ‫يشاخغ انًجبدالد انشبسد‬ 22-Andrei A , Zagordni” Ion exchange Materials properties and Applications “ Elsvier, 2007.

31

‫ة – ششذ يلظم نالخزشاع‬ ‫ة‪ -1-‬يٍ ز‪ٛ‬ث اندذح‬ ‫ة‪ 1-1-‬اطـ٘ؼ٘ب ػذح ٓ‪ٞ‬اد ٓبصح ٖٓ أٌُ‪ٗٞ‬بد اُزبُ‪٤‬خ‪:‬‬ ‫‪ٓ -1‬بء اُغلذ ‪ٓ -2‬غؾ‪ٞ‬م اُخلبٕ اُجبصُز‪ ٢‬هـش ؽج‪٤‬جبر‪ -3 ِْٓ)0.5-0.1 ( ٚ‬اُظ‪ٞ‬ف اُجبصُز‪-4 ٢‬‬ ‫اُخلبٕ اُجبصُذ اُؾج‪٤‬ج‪٣ ٝ ٢‬زٔ‪٤‬ض ثزغبٗظ عـؼ اُؾج‪٤‬جخ ػِ‪ ٠‬شٌَ ًش‪.١ٝ‬‬ ‫ة‪ 2-1-‬رظ٘‪٤‬غ ٗ‪ٞ‬ع عذ‪٣‬ذ ٖٓ اُظبث‪ ٕٞ‬ثبعزخذاّ ٌٓضق ‪.OMWW‬‬ ‫ة‪ 2-‬يٍ ز‪ٛ‬ث انخطٕح االثزكبس‪ٚ‬خ‬ ‫ة‪ 1-2-‬رْ أل‪ٓ ٍٝ‬شح اُزخِض ٖٓ ٓبء اُغلذ ‪ OMWW‬ثادخبُ‪ًٌٗٞٓ ٚ‬ب ‪ٛ‬بٓبً ٓغ اُخلبٕ اُجبصُز‪ ٢‬ك‪٢‬‬ ‫رظ٘‪٤‬غ ٓبدح ٓبصح إلصاُخ أ‪ٗٞ٣‬بد اُ٘زشاد ٖٓ أُ‪٤‬ب‪. ٙ‬‬ ‫ة‪ 2-2-‬ئدخبٍ ٌٓضق ‪ OMWW‬ك‪ ٢‬ط٘بػخ اُظبث‪ًٔ ٕٞ‬بدح ٓؾغ٘خ ُِشؿ‪ٞ‬ح ‪ٓ ٝ‬ؼبدح ُِزأًغذ‪.‬‬ ‫ة ‪-3 -‬هبثه‪ٛ‬خ انزطج‪ٛ‬ن انظُبػخ ‪ٗ :‬ش‪ ٟ‬رُي ك‪ ٢‬أُخـؾ اُظ٘بػ‪ ٢‬أُشكن (‬ ‫اُجشاءح أُوزشؽخ ‪.‬‬

‫‪32‬‬

‫‪ ٝ ) 46,45‬ك‪ٗ ٢‬ض‬

‫ة‪ 4-‬انسبنخ انزوُ‪ٛ‬خ نالخزشاع‬ ‫ة‪ 1-4-‬ك‪ ٢‬أ‪ٓ ٖٓ ١‬شاًض اُجؾش ك‪ ٢‬اُذ‪ ٍٝ‬أُ‪ٜ‬زٔخ ثٔبء اُغلذ‬

‫‪٣ ُْ OMWW‬زْ اُزخِض ؽز‪٠‬‬

‫اُ‪ٓ ٖٓ ّٞ٤‬بء اُغلذ أُِ‪ِٞ‬س ثزؾ‪ ِٚ٣ٞ‬ئُ‪ٓ ٠‬جبدالد أ‪٤ٗٞ٣‬خ ثبالشزشاى ٓغ اُج‪ ِٕٞ٤‬اُغ‪ٞ‬س‪ ١‬اُؾب‪١ٝ‬‬ ‫‪ٗٞٓ55%‬زٔ‪ٞ‬س‪٤ِِٗٞ٣‬ذ ‪ ٝ‬اُض‪٤ُٞ٣‬ذ اُؼٔبٗ‪ ٝ A ٢‬رؾ‪ ِٚ٣ٞ‬أ‪٣‬ؼًب ئُ‪ٓ ٠‬بدح ٓبصح ثبالشزشاى ٓغ ٓغؾ‪ٞ‬م‬ ‫اُخلبٕ اُجبصُز‪ ٝ ٢‬اُظ‪ٞ‬ف اُجبصُز‪ ٢‬ر‪ ٝ‬اُزشً‪٤‬ت اٌُ‪٤ٔ٤‬بئ‪ ٢‬أُج‪ ٖ٤‬ك‪ ٢‬اُغذ‪. ) 1 ( ٍٝ‬‬ ‫اندذٔل (‪ )1‬انزشك‪ٛ‬ت انك‪ًٛٛ‬بئ‪ ٙ‬نهخلبٌ انجبصنز‪ٙ‬‬ ‫انزشك‪ٛ‬ت انك‪ًٛٛ‬بئ‪ٙ‬‬ ‫‪MgO‬‬

‫‪(4.50-8.99)%‬‬

‫‪SiO2‬‬

‫‪(41.82-47.09)%‬‬

‫‪Na2O‬‬

‫‪(2.05-4.83)%‬‬

‫‪Al2O3‬‬

‫‪(12.42-18.8)%‬‬

‫‪K2O‬‬

‫‪(0.88-1.90)%‬‬

‫‪TiO2‬‬

‫‪(1.050-3.37)%‬‬

‫‪CaO‬‬

‫‪(8.41-11.93)%‬‬

‫‪Fe2O3‬‬

‫‪(4.03-15.35)%‬‬

‫‪FeO‬‬

‫‪(3.40-10.34)%‬‬

‫ال عذ‪٣‬ذًا ٖٓ اُظبث‪ ٕٞ‬اُـج‪٤‬ؼ‪ ٢‬ثاػبكخ ٌٓضق ‪OMWW‬‬ ‫ة‪ًٔ 2-4-‬ب ٗؼزوذ أٗ٘ب أٗزغ٘ب أل‪ٓ ٍٝ‬شح شٌ ً‬ ‫ئُ‪ ٠‬اُـ‪ٞ‬س اُغبئَ اُغبخٖ ٖٓ اُظبث‪ٓ ٝ ٕٞ‬ضع‪ٜٔ‬ب ٓؼبً هجَ اُزظِت‪.‬‬ ‫‪٣ ٝ‬ج‪ ٖ٤‬اُغذ‪ )2 ( ٍٝ‬اُزشً‪٤‬ت اٌُ‪٤ٔ٤‬بئ‪ًٔOMWW ِ ٢‬ب ‪٣‬ج‪ ٖ٤‬اُشٌَ ( ‪ )1‬ط‪٤‬ؾ ‪ ٝ‬أشٌبٍ اُل‪ٞ٘٤‬الد‬ ‫أُزؼذدح أُ‪ٞ‬ع‪ٞ‬دح ك‪OMWW ٢‬‬ ‫اندذٔل (‪ ) 2‬يٕاطلبد ًَٕرج ػٍ ي‪ٛ‬بِ اندلذ انُبردخ ػٍ طش‪ٚ‬وز‪ ٙ‬انضـط ٔ انطشد انًشكض٘‬ ‫انًبدح‬ ‫األط انٓ‪ٛ‬ذسٔخ‪ُٙٛ‬‬ ‫انًٕاد اندبكخ‬ ‫انكثبكخ‬ ‫انض‪ٚ‬ذ‬ ‫انغكبكش انًشخؼخ‬ ‫انل‪ُٕٛ‬الد انًزؼذدح‬ ‫أٔسرٕ د٘ ك‪ُٕٛ‬ل‬ ‫ْ‪ٛ‬ذسٔكغ‪ ٙ‬ر‪ٛ‬شٔصٔل‬ ‫سيبد‬

‫انٕزذح‬ ‫‪pH‬‬ ‫‪g/l‬‬ ‫‬‫‪g/l‬‬ ‫‪g/l‬‬ ‫‪g/l‬‬ ‫‪g/l‬‬

‫انطش‪ٚ‬وخ انزوه‪ٛ‬ذ‪ٚ‬خ‬ ‫‪5.73-4.73‬‬ ‫‪266.00-15.50‬‬ ‫‪1.09-1.02‬‬ ‫‪11.50-0.12‬‬ ‫‪67.10-9.70‬‬ ‫‪14.30-1.40‬‬ ‫‪13.30-0.90‬‬

‫انطش‪ٚ‬وخ انسذ‪ٚ‬ثخ‬ ‫‪4.55-5.89‬‬ ‫‪161.20-9.50‬‬ ‫‪1.046-1.007‬‬ ‫‪29.80-0.41‬‬ ‫‪34.70-1.60‬‬ ‫‪7.10-0.40‬‬ ‫‪6.00-0.30‬‬

‫‪mg/l‬‬

‫‪937-71‬‬

‫‪426-43‬‬

‫‪g/l‬‬

‫‪42.60-4.00‬‬

‫‪12.5-0.40‬‬

‫‪33‬‬

199.20-15.20 966-140 485-42 124-18 2500-630 200-47 180-60 31.50-8.80 3.42-1.16 4.48-1.42 5.20-0.87 1.44-0.29 48.00-0.12 0.72-0.35

389.50-42.00 1106-154 915-157 285-38 5000-1500 408-58 337-90 86.40-16.40 4.75-1.10 6.50-1.60 8.90-2.16 1.58-0.44 0.96-0.18 1.85-0.40 O

g/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l HO

OH

HO

COD ٕ٘‫ٍ ػض‬ٛ‫َزشٔخ‬ ٙ‫كٕعلٕس كه‬ ‫ٕو‬ٚ‫طٕد‬ ‫ٕو‬ٛ‫ثٕربع‬ ‫ٕو‬ٛ‫كبنغ‬ ‫ٕو‬ٚ‫يـُض‬ ‫ذ‬ٚ‫زذ‬ ‫َسبط‬ ‫صَك‬ ‫ض‬ُٛ‫يُـ‬ ‫كم‬َٛ ‫كٕثبنذ‬ ‫سطبص‬ O

O

OH

OH

OH OH

OH

OH

p-hydroxybenzoic acid (p-HBA)

Gallic acid (GA)

O

O

OH

O

O

CH3

3,4-Dihydroxybenzoic acid Di-HBA

OH

CH3

O

OH

OH

Syringic acid (SA)

Vanillic acid (VA)

CH3

OH

HO O

tyrosol (Ty)

OH

OH

O

O

OH

OH

OH cinnamic acid CA

p-hydroxycinnamic acid p-HCA

o-hydroxycinnamic acid o-HCA

OH

HO O H3C

OH

OH

OH O O ferulic acid (FA)

3,4-Dihydroxycinnamic acid Di-HCA

ٌٕ‫ز‬ٚ‫بِ يؼبطش انض‬ٛ‫ ي‬ٙ‫خ ٔ انًٕخٕدح ك‬ٛ‫ُٕن‬ٛ‫خ نجؼض انًشكجبد انل‬ٛ‫بئ‬ًٛٛ‫ؾ انك‬ٛ‫(انظ‬1 ) ‫انشكم‬ 34

‫ة‪ -5-‬طش‪ٚ‬وخ انزسض‪ٛ‬ش‬ ‫ة‪ 1-5-‬رسض‪ٛ‬ش انًبدح انًبصح ‪BW-PC‬‬ ‫أػ‪٤‬ق ‪ OMWW َٓ 300‬ئُ‪ 18 ٠‬ؽ ط‪ٞ‬ف ثبصُز‪ ٝ ٢‬رشًذ اٌُزِخ ُزغق كٌبٕ ‪ٝ‬صٕ اُ٘برظ ‪ 37‬ؽ‬ ‫‪ .‬ه‪٤‬غذ دسعخ ؽشاسح اٌُزِخ اُغبكخ كٌبٗذ ‪ , ّْ 34‬أػ‪٤‬ق ُ‪ٜ‬ب ‪ ٖٓ َٓ 12‬األٓ‪٤ٗٞ‬ب أُشًضح ( ‪ٝ )%36‬‬ ‫‪ ٖٓ َٓ 6‬اُل‪ٞ‬سّ أُذ‪٤ٛ‬ذ ‪ ٝ‬رْ ٓضط أُغٔ‪ٞ‬ػخ اُ٘برغخ ؽز‪ ٠‬اُزغبٗظ ؽ‪٤‬ش ُ‪ٞ‬ؽظ اسرلبع ك‪ ٢‬دسعخ‬ ‫اُؾشاسح اٌُزِخ ؽز‪ٔٓ ّْ38 ٠‬ب ‪٣‬ذٍ ػِ‪ ٠‬ؽظ‪ ٍٞ‬رلبػَ ٗبشش ُِؾشاسح‪ ,‬صْ عش‪ ٟ‬ثؼذ رُي رغل‪٤‬ق اٌُزِخ‬ ‫ك‪ ٢‬اُ‪ٜٞ‬اء اُؼبد‪ ١‬كٌبٕ ‪ٝ‬صٗ‪ٜ‬ب ‪37.8‬ؽ ‪ٝٝ ,‬ػؼذ ك‪ ٢‬اُلشٕ ك‪ ٢‬دسعخ اُؾشاسح‬

‫‪ُٔ ّْ 400‬ذح ‪4‬‬

‫عبػبد‪ ,‬كٌبٕ ‪ٝ‬صٕ اُ٘برظ ثؼذ اُزجش‪٣‬ذ ‪ 25.6‬ؽ ‪.‬‬ ‫ة‪ 2-5-‬رسض‪ٛ‬ش انًبدح انًبصح ‪BG-PC‬‬ ‫ٓضط ‪ 18‬ؽ خلبٕ ثبصُز‪ ٢‬ؽج‪٤‬ج‪ٓ ٢‬غ‬

‫‪ 27‬ؽ ٓبدح ٌٓضلخ ٗبرغخ ػٖ رٌض‪٤‬ق‬

‫‪ OMWW‬ك‪ ٢‬دسعخ‬

‫اُؾشاسح اُؼبد‪٣‬خ‪ ,‬صْ أػ‪٤‬ق ‪ َٓ 20‬أٓ‪٤ٗٞ‬ب ٓشًضح ( ‪ َٓ 10 ٝ )%36‬ك‪ٞ‬سّ أُذ‪٤ٛ‬ذ ئُ‪ ٠‬أُض‪٣‬ظ اُغبثن‬ ‫اُز‪ً ١‬بٗذ دسعخ ؽشاسر‪ ّْ 31.2 ٚ‬كبسرلؼذ ئُ‪ ّْ 33.8 ٠‬ثؼذ اإلػبكخ اُغبثوخ ‪ ٝ‬أُضط اُغ‪٤‬ذ‪ .‬عش‪ٟ‬‬ ‫ثؼذ رُي رغل‪٤‬ق أُض‪٣‬ظ ك‪ ٢‬اُ‪ٜٞ‬اء اُؼبد‪ ١‬كؾظِ٘ب ػِ‪ً ٠‬زِخ ‪ٝ‬صٗ‪ٜ‬ب ‪44.26‬ؽ ‪ ,‬رْ ‪ٝ‬ػؼ‪ٜ‬ب ك‪ ٢‬كشٕ‬ ‫دسعخ ؽشاسر‪ُٔ ّْ 400 ٚ‬ذح ‪ 4‬عبػبد كٌبٕ ‪ٝ‬صٕ اُ٘برظ ثؼذ اُزجش‪٣‬ذ ‪ 21.77‬ؽ‪.‬‬ ‫ة‪ 3-5-‬رسض‪ٛ‬ش انًبدح انًبصح ‪BG‬‬ ‫ٓضط ‪ 18‬ؽ ثبصُذ ؽج‪٤‬ج‪ٓ ٢‬غ ‪ 27‬ؽ ٖٓ أُبدح أٌُضلخ ِ ‪ . OMWW‬أخز ‪ 35‬ؽ ٖٓ أُض‪٣‬ظ اُغبثن‬ ‫‪ٝٝ‬ػغ ك‪ ٢‬أعـ‪ٞ‬اٗخ ٓـِوخ ك‪ ٢‬كشٕ دسعخ ؽشاسر‪ُٔ ّْ 400 ٚ‬ذح ‪ 4‬عبػبد كٌبٕ ‪ٝ‬صٕ اُ٘برظ ‪ 19.9‬ؽ‪.‬‬ ‫ة‪ 4-5-‬رسض‪ٛ‬ش انًبدح انًبصح ‪BS‬‬ ‫أػ‪٤‬ق ئُ‪ 18 ٠‬ؽ خلبٕ ثبصُز‪ٓ ٢‬ـؾ‪ٗ ٕٞ‬ظق هـش ؽج‪٤‬جبر‪ 27 ِْٓ)0.5-0.1 ( ٚ‬ؽ ٖٓ أُبدح أٌُضلخ‬ ‫اُ٘برغخ ػٖ رغل‪٤‬ق ‪ OMWW‬ك‪ ٢‬اُ‪ٜٞ‬اء اُؼبد‪ٝ .١‬ػغ ‪ 30‬ؽ ٖٓ أُض‪٣‬ظ اُغبثن ك‪ ٢‬أعـ‪ٞ‬اٗخ ٓـِوخ‬ ‫ك‪ ٢‬كشٕ دسعخ ؽشاسر‪ُٔ ّْ400 ٚ‬ذح ‪ 4‬عبػبد ‪ ,‬كٌبٕ ‪ٝ‬صٕ اُ٘برظ ثؼذ رجش‪٣‬ذ‪ 14 ٙ‬ؽ‪.‬‬ ‫ة‪ -5-5-‬رسض‪ٛ‬ش انظبثٌٕ انسبٔ٘ ‪OMWW‬‬ ‫عش‪ ٟ‬رٌض‪٤‬ق ‪ OMWW‬ك‪ٝ ٢‬ػبء ‪ٝ‬اعغ اُغـؼ ك‪ ٢‬أُخزجش ث‪ٞ‬اعـخ أشؼخ اُشٔظ‪ .‬ؽظِ٘ب ػِ‪27 ٠‬‬ ‫‪ 1 ±‬ؽ ٖٓ أٌُضق ٖٓ ‪ OMWW َٓ500‬أُبئغ‪ .‬أػ‪٤‬لذ ‪ 10‬ؽ ٖٓ ‪ٛ‬زا أٌُضق ئُ‪ 490 ٠‬ؽ ٖٓ‬ ‫اُظبث‪ ٕٞ‬اُغبخٖ اُ٘برظ ر َ‪ٞ‬آًٖ ‪ٝ‬ػبء اُزظ٘‪٤‬غ ٓغ أُضط اُغ‪٤‬ذ ‪ ,‬عش‪ ٟ‬ثؼذ رُي ‪ٝ‬ػغ اُ٘برظ أُزغبٗظ‬ ‫اُغبئَ ك‪ ٢‬اُوبُت أُشؿ‪ٞ‬ة ؽز‪ ٠‬اُزظِت ٓغ ئػـبء اُشٌَ أُشؿ‪ٞ‬ة‪.‬‬

‫‪35‬‬

‫ة‪ -6-‬انو‪ٛ‬بعبد‬ ‫ة‪ 1-6-‬اخزجش أداء أُ‪ٞ‬اد أُؾؼشح ‪ BW-PC,BG-PC,BG,BS‬ك‪ ٢‬ئصاُخ اُ٘زشاد ٖٓ ٓ‪٤‬ب‪ ٙ‬ثئش‬ ‫ٓؼذح ُِششة ك‪٘ٓ ٢‬ـوخ اُش‪٣‬ؾبٕ ثذ‪ٓٝ‬ب ثبعزخذاّ اُـش‪٣‬وخ اُشاًذح ؽ‪٤‬ش ‪ ٝ‬ػغ‬

‫‪1‬ؽ ٖٓ ًَ ٖٓ‬

‫أُغزؾؼشاد ك‪ ٖٓ َٓ 50 ٢‬أُ‪٤‬ب‪ُٔ ٙ‬ذح ‪ 48‬عبػخ ‪ ٝ‬ه‪٤‬غذ ثؼذ‪ٛ‬ب رشً‪٤‬ض ًَ ٖٓ أ‪ٗٞ٣‬بد اُ٘زشاد ‪ٝ‬‬ ‫اُوِ‪٣ٞ‬خ ‪ ٝ M‬اُوِ‪٣ٞ‬خ ‪ ٝ P‬اُوِ‪٣ٞ‬خ اٌُِ‪٤‬خ ئػبكخ ُزؾذ‪٣‬ذ اِ ‪pH‬‬ ‫ة‪ 7-‬انُزبئح‬ ‫اندذٔل (‪)3‬يوبسَخ أداء انًٕاد انًبصح انًسضشح ك‪ ٙ‬إصانخ انُزشاد يٍ ػ‪ُٛ‬خ ي‪ٛ‬بِ يُطوخ دٔيب ثٕخٕد‬ ‫األ‪َٕٚ‬بد انغبنجخ األخشٖ ػُذ دسخخ زشاسح ‪ْ 29.7‬و‬ ‫اعى انؼ‪ُٛ‬خ‬

‫ػ‪ُٛ‬خ انً‪ٛ‬بِ ‪BW-PC BG-PC‬‬

‫‪BG‬‬

‫‪BS‬‬

‫‪pH‬‬

‫‪8.13‬‬

‫‪9.96‬‬

‫‪10.27‬‬

‫‪10.02‬‬

‫‪10.53‬‬

‫انوهٕ‪ٚ‬خ ‪ P‬ػهٗ أعبط كشثَٕبد انكبنغ‪ٕٛ‬و يهؾ‪/‬ل‬

‫‪40‬‬

‫‪600‬‬

‫‪400‬‬

‫‪400‬‬

‫‪660‬‬

‫انوهٕ‪ٚ‬خ ‪ M‬ػهٗ أعبط كشثَٕبد انكبنغ‪ٕٛ‬و يهؾ‪/‬ل‬

‫‪340‬‬

‫‪700‬‬

‫‪840‬‬

‫‪580‬‬

‫‪900‬‬

‫انوهٕ‪ٚ‬خ انكه‪ٛ‬خ ‪ T‬يهؾ‪/‬ل‬

‫‪380‬‬

‫‪1300‬‬

‫‪1240‬‬

‫‪980‬‬

‫‪1560‬‬

‫رشك‪ٛ‬ض أ‪NO3 - ٌٕٚ‬‬

‫‪338.12‬‬

‫‪233.26‬‬

‫‪126.26‬‬

‫‪173.34‬‬

‫‪111.28‬‬

‫أظ‪ٜ‬شد اُ٘زبئظ اُ‪ٞ‬اسدح ك‪ ٢‬اُغذ‪ )3 (ٍٝ‬إٔ أداء اأُ‪ٞ‬اد أُبصح ‪ٝ‬كوًب ُِ٘غجخ أُئ‪٣ٞ‬خ إلصاُخ أ‪ ٕٞ٣‬اُ٘زشاد‬ ‫ٓشرجخ ػِ‪ ٠‬اُشٌَ اُزبُ‪. BG< BG-PC < BW-PC < BS ٢‬‬ ‫ة‪ 8-‬انذساعخ انسشك‪ٛ‬خ‬ ‫‪ -‬أعش‪٣‬ذ اُذساعخ اُؾشً‪٤‬خ ػِ‪ ٠‬أُؾؼش‬

‫‪ٗ BS‬ظشًا ألدائ‪ ٚ‬اُغ‪٤‬ذ ك‪ ٢‬ئصاُخ اُ٘زشاد ‪ ٝ‬رٌِلز‪ٚ‬‬

‫االهزظبد‪٣‬خ أُ٘خلؼخ ٓوبسٗخ ثجو‪٤‬خ أُؾؼشاد ؽ‪٤‬ش ‪ٝ‬ػغ ‪1‬ؽ ٖٓ ‪ BS‬ك‪ ٖٓ َٓ 50 ٢‬ػ‪٘٤‬خ أُ‪٤‬ب‪ٙ‬‬ ‫أُخزجشح ‪ ٝ‬رْ ه‪٤‬بط رشً‪٤‬ض أ‪ NO3 - ٕٞ٣‬ك‪ ٢‬أصٓ٘خ ٓخزِلخ‪ًٝ ،‬بٗذ اُ٘زبئظ ًٔب ‪ٝ ٢ٛ‬اسدح ك‪ ٢‬اُغذ‪ٍٝ‬‬ ‫(‪ ٝ )4‬اُز‪٣ ١‬ؼجش ػ٘‪ ٚ‬اُشٌَ ( ‪. )2‬‬

‫‪36‬‬

‫اندذٔل (‪)4‬انذساعخ انسشك‪ٛ‬خ نهًبدح انًبصح ‪BS‬‬ ‫انضيٍ (عبػخ)‬ ‫‪0.00‬‬ ‫‪24.00‬‬ ‫‪30.00‬‬ ‫‪36.00‬‬ ‫‪42.00‬‬ ‫‪48.00‬‬

‫انزشك‪ٛ‬ض يهؾ‪/‬ل‬ ‫‪308.57‬‬ ‫‪120.00‬‬ ‫‪105.00‬‬ ‫‪96.43‬‬ ‫‪92.14‬‬ ‫‪77.14‬‬

‫انُغجخ انًئٕ‪ٚ‬خ نإلصانخ‪%‬‬ ‫‪0.00‬‬ ‫‪61.11‬‬ ‫‪65.97‬‬ ‫‪68.75‬‬ ‫‪70.14‬‬ ‫‪75.00‬‬

‫انكً‪ٛ‬خ انًضانخ يهؾ‪/‬ل‬ ‫‪0.00‬‬ ‫‪188.57‬‬ ‫‪203.57‬‬ ‫‪212.14‬‬ ‫‪216.43‬‬ ‫‪231.43‬‬

‫‪٣‬ج‪ ٖ٤‬اُغذ‪ ٝ)4( ٍٝ‬اُشٌَ ( ‪)2‬إٔ كؼبُ‪٤‬خ أُبدح أُبصح ثِـذ ‪ %61.11‬ثؼذ ‪ 24‬عبػخ ‪ ٖٓ ٝ‬صْ اسرلؼذ‬ ‫ئُ‪ %75 ٠‬ثؼذ ‪ 48‬عبػخ‪ٛ ٝ ,‬زا ‪٣‬ؼـ‪٘٤‬ب كٌشح ػٖ اُضٖٓ اُالصّ ُزخل‪٤‬غ رشً‪٤‬ض أ‪ ٕٞ٣‬اُ٘زشاد ئُ‪٠‬‬ ‫أُغز‪٣ٞ‬بد أُـِ‪ٞ‬ثخ ‪ٝ‬رُي ثؼذ ٓؼشكخ اُزشً‪٤‬ض االثزذائ‪ ٢‬أل‪ ٕٞ٣‬اُ٘زشاد ٓٔب ‪٣‬غب‪ ْٛ‬ك‪ ٢‬ر‪ٞ‬ك‪٤‬ش عبػبد‬ ‫اُؼَٔ اُز‪٣ ١‬إصش ػِ‪ ٠‬اُ٘بؽ‪٤‬خ االهزظبد‪٣‬خ اُخبطخ ثظش‪ٝ‬ف اُزشـ‪.َ٤‬‬ ‫ة‪ – 9-‬زغبة األثؼبد االيزضاص‪ٚ‬خ‬ ‫أعش‪٣‬ذ اُذسعخ االٓزضاص‪٣‬خ ػِ‪ ٠‬أُبدح أُبصح ‪ BS‬األًجش كؼبُ‪٤‬خ ‪ ٝ‬رُي ثزؾؼ‪٤‬ش عِغِخ ٖٓ اُزشاً‪٤‬ض‬ ‫ٓأخ‪ٞ‬رح ٖٓ اُؼ‪٘٤‬خ األطِ‪٤‬خ ‪ٝ‬رْ ‪ٝ‬ػغ ‪1‬ؽ ٖٓ ‪ BS‬ك‪ ٖٓ َٓ 50 ٢‬اُؼ‪٘٤‬بد أُبئ‪٤‬خ أُخزِلخ اُزشً‪٤‬ض‬ ‫‪ٝ‬ؽغجذ اُ٘زبئظ ‪ٝ‬كن اُغذ‪.)5( ٍٝ‬‬ ‫اندذٔل (‪)5‬انؼالهخ ث‪ ٍٛ‬ايزضاص أ‪ ٌٕٚ‬انُزشاد ثبخزالف رشك‪ٛ‬ض انًسهٕل ػهٗ انًبدح انًبصح ‪BS‬‬ ‫انزشك‪ٛ‬ض‬ ‫االثزذائ‪ٙ‬‬ ‫أل‪ٌٕٚ‬‬ ‫انُزشاد‬ ‫يهؾ‪/‬ل‬ ‫‪321.429‬‬ ‫‪312.857‬‬ ‫‪295.714‬‬ ‫‪231.429‬‬ ‫‪190.714‬‬ ‫‪162.857‬‬ ‫‪130.714‬‬ ‫‪105.000‬‬

‫رشك‪ٛ‬ض أ‪ٌٕٚ‬‬ ‫انُزشاد ثؼذ‬ ‫االيزضاص‬ ‫( يهؾ‪/‬ل)‬ ‫‪106.071‬‬ ‫‪90.000‬‬ ‫‪85.714‬‬ ‫‪32.143‬‬ ‫‪26.786‬‬ ‫‪21.429‬‬ ‫‪18.214‬‬ ‫‪19.286‬‬

‫انزشك‪ٛ‬ض‬ ‫الثزذائ‪ٙ‬‬ ‫(ي‪ٛ‬ه‪ٙ‬‬ ‫يٕل‪/‬ل)‬ ‫‪5.184‬‬ ‫‪5.046‬‬ ‫‪4.770‬‬ ‫‪3.733‬‬ ‫‪3.076‬‬ ‫‪2.627‬‬ ‫‪2.108‬‬ ‫‪1.694‬‬

‫‪C‬انزشك‪ٛ‬ض‬ ‫انزٕاصَ‪ٙ‬‬ ‫(ي‪ٛ‬ه‪ ٙ‬يٕل‬ ‫‪/‬ل )‬ ‫‪1.711‬‬ ‫‪1.452‬‬ ‫‪1.382‬‬ ‫‪0.518‬‬ ‫‪0.432‬‬ ‫‪0.346‬‬ ‫‪0.294‬‬ ‫‪0.311‬‬

‫كً‪ٛ‬خ‪α‬‬ ‫انًبدحانًًزضح‬ ‫ػهٗ ‪1‬ؽ (‬ ‫ي‪ٛ‬ه‪ ٙ‬يٕل‪/‬ؽ)‬ ‫‪0.174‬‬ ‫‪0.180‬‬ ‫‪0.169‬‬ ‫‪0.161‬‬ ‫‪0.132‬‬ ‫‪0.114‬‬ ‫‪0.091‬‬ ‫‪0.069‬‬

‫‪37‬‬

‫‪1/C‬‬ ‫‪(1/ α‬ي‪ٛ‬ه‪ٙ‬‬ ‫(ي‪ٛ‬ه‪ٙ‬‬ ‫‪1‬‬‫‪ 1‬يٕل‪/‬ؽ)‬‫يٕل‪/‬ل)‬ ‫‪0.585‬‬ ‫‪0.689‬‬ ‫‪0.723‬‬ ‫‪1.929‬‬ ‫‪2.315‬‬ ‫‪2.893‬‬ ‫‪3.404‬‬ ‫‪3.215‬‬

‫‪5.758‬‬ ‫‪5.564‬‬ ‫‪5.905‬‬ ‫‪6.222‬‬ ‫‪7.564‬‬ ‫‪8.768‬‬ ‫‪11.022‬‬ ‫‪14.467‬‬

‫‪α/αm‬‬

‫‪0.660‬‬ ‫‪0.683‬‬ ‫‪0.644‬‬ ‫‪0.611‬‬ ‫‪0.502‬‬ ‫‪0.433‬‬ ‫‪0.345‬‬ ‫‪0.263‬‬

‫‪a‬‬ ‫‪KC‬‬ ‫‪‬‬ ‫‪a‬‬ ‫‪1  KC‬‬ ‫‪m‬‬

‫‪ ٝ‬هذ رج‪ ٖ٤‬إٔ ‪ٛ‬ز‪ ٙ‬اُ٘زبئظ رزجغ ٓؼبدُخ الٗـٔ‪ٞ٤‬س ك‪ ٢‬االٓزضاص‬

‫‪ ‬‬

‫ؽ‪٤‬ش ‪ :θ‬دسعخ آزالء اُغـؼ أُبص ثبُٔبدح أُٔزضح‬ ‫‪٤ًٔ = a‬خ أُبدح أُٔزضح ػِ‪ 1 ٠‬ؽ ٖٓ أُبدح أُبصح‬ ‫‪٤ًٔ = a‬خ أُبدح أُٔزضح ك‪ ٢‬اُـجوخ أُٔزضح أؽبد‪٣‬خ اُغض‪١‬ء ػِ‪ 1 ٠‬ؽ ٖٓ أُبدح أُبصح‬

‫‪m‬‬

‫‪ =K‬صبثذ اُز‪ٞ‬اصٕ االٓزضاص‪١‬‬ ‫‪ = C‬اُزشً‪٤‬ض اُز‪ٞ‬اصٗ‪ُِٔ ٢‬بدح أُٔزضح‬

‫‪1‬‬

‫‪1‬‬ ‫‪ ٝ‬رْ اعز٘زبط ه‪ٔ٤‬خ ‪ ٖٓ a‬سعْ ربثؼ‪٤‬خ ) (‪ ƒ‬‬ ‫‪m‬‬ ‫‪‬‬ ‫‪C‬‬

‫‪ ٝ‬ثزؾذ‪٣‬ذ ٓوِ‪ٞ‬ة ٗوـخ روبؿغ اُخؾ اُج‪٤‬بٗ‪٢‬‬

‫ٓغ ٓؾ‪ٞ‬س اُؼ‪٘٤‬بد‬ ‫)‪a = 1/3.6= 0.277 (mmol/g‬‬ ‫‪m‬‬

‫‪ُ ٝ‬ؾغبة صبثذ اُز‪ٞ‬اصٕ االٓزضاص‪ٗ ١‬ؾغت ٓ‪ َ٤‬أُغزو‪ ْ٤‬اُوبؿغ ُٔؾ‪ٞ‬س اُؼ‪٘٤‬بد ك‪ ٢‬اُشٌَ ( ‪)3‬‬ ‫‪1‬‬ ‫‪mK‬‬

‫‪ٚ٘ٓ ٝ tng ‬‬

‫‪1‬‬ ‫‪ m .tng‬‬

‫‪K ‬‬

‫‪6.4  3.6‬‬ ‫‪1‬‬ ‫‪ 2.33  K ‬‬ ‫‪ 1.547‬‬ ‫‪1.2  0‬‬ ‫‪2.33 * 0.277‬‬

‫‪tng ‬‬

‫‪ٝ‬ػ٘ذ رؼ‪ ٖ٤٤‬صبثذ اُز‪ٞ‬اصٕ ك‪ٓ ٢‬غبٍ اُزشاً‪٤‬ض اُظـ‪٤‬شح ( ٓغبٍ ‪٘ٛ‬ش‪ ( )١‬أ‪ ١‬ػ٘ذٓب رٌ‪1 >> KC ٕٞ‬‬ ‫را ‪٣‬ؼـ‪:٢‬‬ ‫ك‪ ٢‬ػالهخ الٗـٔ‪ٞ٤‬س) ؽ‪٤‬ش ‪ٗ θ =KC‬ؾغت ٓ‪ َ٤‬أُٔبط ُِٔ٘ؾ٘‪ ٢‬ك‪ ٢‬اُشٌَ(‪ )4‬ف‬ ‫‪0.28  0‬‬ ‫) ‪ 1.4(mmol 1‬‬ ‫‪0  0.20‬‬

‫‪K  tng ‬‬

‫أ‪ ١‬إٔ ه‪ K ْ٤‬رشا‪ٝ‬ؽذ ث‪(mmol) -1 1.4 ٝ1.547 ٖ٤‬‬ ‫ة‪ 10-‬انذساعخ انغطس‪ٛ‬خ ٔ انط‪ٛ‬ل‪ٛ‬خ ‪ IR‬يب ث‪ ٍٛ‬أ‪َٕٚ‬بد انُزشاد ٔ انًبدح انًبصح‬ ‫دسط آزضاص اُ٘زش‪ٝ‬ع‪ ٖ٤‬ك‪ ٢‬اُذسعخ ‪ ّْ 196 -‬ثغ‪ٜ‬بص ( ‪ )Micromeritics – Gemini‬ئػبكخ ئُ‪٠‬‬ ‫ٓزضاص اُ٘زشاد ٖٓ أُ‪٤‬ب‪ ٙ‬أُِ‪ٞ‬صخ ث‪ٜ‬ب‪.‬‬ ‫ة‪٣ 1-10-‬الؽظ ٖٓ اُشٌِ‪ )4ٝ3 ( ٖ٤‬اٗـجبهًب ٓوج‪ٞ‬الً ُِٔؼـ‪٤‬بد ػِ‪ٓ ٠‬ؼبدُخ الٗـٔ‪ٞ٤‬س ٓٔب ‪٣‬ذٍ ػِ‪٠‬‬ ‫رغبٗظ عـؼ أُغزؾؼش ‪ ٞٛ ٝ BS‬األًجش كؼبُ‪٤‬خ ثبُ٘غجخ الٓزضاص اُ٘زشاد ‪ ٝ‬ػِ‪ ٠‬ػذّ ؽظ‪ٍٞ‬‬ ‫رشاًْ ُِغض‪٣‬ئبد أُٔزضح‪.‬‬ ‫‪38‬‬

‫ة‪ٗ ُْ 2-10-‬ؾظَ ػِ‪ ٠‬ا‪٣‬ض‪ٝ‬رشّ ُِٔ‪ٞ‬اد أُبصح اُغذ‪٣‬ذح ثغجت عؼخ االٓزضاص ‪ ٝ‬ؿج‪٤‬ؼخ اُغـؼ‬ ‫اُؾبَٓ‪.‬‬ ‫ة‪ 11-‬رٔذ اُو‪٤‬بعبد اُـ‪٤‬ل‪٤‬خ ػِ‪ ٠‬ع‪ٜ‬بص ‪ )Jascom FT/IR-300E ( IR‬األشٌبٍ(‪ ٝ )16-5‬رُي‬ ‫ثـؾٖ ‪ِٓ 0.3-0.2‬ؾ ٖٓ أُشًت أُذس‪ٝ‬ط ٓغ ‪0.1‬ؽ ٖٓ ثش‪٤ٓٝ‬ذ اُج‪ٞ‬ربع‪ ّٞ٤‬اُغبف‪ ,‬صْ ‪ٝ‬ػؼذ‬ ‫ًٔ‪٤‬خ ٖٓ أُض‪٣‬ظ أُـؾ‪ ٕٞ‬ث‪ ٖ٤‬هشط‪ٓ ٖ٤‬ؼذٗ‪ٗ ٝ ٖ٤٤‬ز‪٤‬غخ اُؼـؾ رؾ‪ُٞ‬ذ أُبدح ئُ‪ ٠‬هشص شلبف‬ ‫ٓزٔبعي ػٖٔ ٓبعي خبص ‪ٝٝ‬ػغ ثؼذ رُي ك‪ٓ ٢‬ـ‪٤‬بف األشؼخ رؾذ اُؾٔشاء ‪.‬‬ ‫ة‪ 1-11-‬رزغِغَ أُ‪ٞ‬اد أُبصح أُذس‪ٝ‬عخ ‪ٝ‬كوًب ُلؼبُ‪٤‬ز‪ٜ‬ب ك‪ ٢‬اُزخِض ٖٓ أ‪ ٕٞ٣‬اُ٘زشاد ػِ‪ ٠‬اُشٌَ‬ ‫اُزبُ‪٣ٝ , BG< BG-PC < BW-PC < BS ٢‬لغش رـ‪٤‬ش ‪ٛ‬ز‪ ٙ‬اُلؼبُ‪٤‬خ ٖٓ خالٍ دساعخ ٓخــبد‬ ‫‪ُِٞٔ IR‬اد أُبصح أُذس‪ٝ‬عخ ( ‪ ٝ‬اُز‪ ٢‬رؼزجش ٓٔ‪٤‬ضح ُغـؼ ًَ ٓبدح ) صْ ٓوبسٗز‪ٜ‬ب ٓغ ؿ‪٤‬ق األشؼخ‬ ‫ُِؾبَٓ األعبع‪( ٢‬اُخلبٕ اُجبصُز‪ُِٔ ٝ )٢‬بدح أُبصح هجَ ‪ٝ‬ثؼذ االٓزضاص األشٌبٍ( ‪ًٝ , )16-5‬زُي ٖٓ‬ ‫ؽغبة صبثذ اُز‪ٞ‬اصٕ االٓزضاص‪:K ١‬‬ ‫كوذ ُ‪ٞ‬ؽظ رشٌَ ػظبثبد آزظبص ‪ٝ‬اػؾخ ‪ ٝ‬عذ‪٣‬ذح ثؼذ ر‪ٞ‬ػغ ٗ‪ٞ‬ارظ رٌِ‪٤‬ظ أُبدح‬ ‫‪OMWW‬ػِ‪ ٠‬اُؾبَٓ ( خلبٕ ثبصُز‪ٓ ٢‬ـؾ‪ -ٕٞ‬ط‪ٞ‬ف ثبصُز‪ ) ٢‬ثبُ٘غجخ ُِٔبدر‪ ٖ٤‬أُبصر‪ٝ BS ٖ٤‬‬ ‫‪BW-PC‬اُشٌَ ( ‪ ٝ )9,6‬ؿ‪٤‬بة ٓؼظْ ‪ٛ‬ز‪ ٙ‬اُؼظبثبد ثؼذ ؽذ‪ٝ‬س االٓزضاص ػِ‪ٛ ٠‬بر‪ ٖ٤‬أُبدر‪ٖ٤‬‬ ‫اُشٌَ (‪٣ٝ ,)10,7‬لغَش رُي ثؾذ‪ٝ‬س اسرجبؽ ه‪ ١ٞ‬ث‪ ٖ٤‬أُشاًض اُلؼبُخ ك‪ ٢‬أُبدح أُٔزضح أُُؾذصخ ‪ٝ‬ث‪ٖ٤‬‬ ‫أ‪ ٕٞ٣‬اُ٘زشاد أد‪ ٟ‬ئُ‪ ٠‬رـ‪٤‬ش ػظبثبد االٓزظبص ثبُ٘غجخ ُِٔبدح أُبصح هجَ االٓزضاص ‪ٝ‬ثبُزبُ‪ ٢‬صادد‬ ‫اُلؼبُ‪٤‬خ االٓزضاص‪٣‬خ‪٣ٝ ,‬ز‪ٞ‬اكن رُي ٓغ ه‪ ْ٤‬صبثذ اُز‪ٞ‬اصٕ االٓزضاص‪ ١‬ثبُ٘غجخ ُِٔبدح أُبصح اُز‪ ٢‬أػـذ‬ ‫أكؼَ اُ٘زبئظ كِ‪ٞ‬ؽظ إٔ ‪ K>1‬ؽ‪٤‬ش رذٍ ‪ K‬ػِ‪ ٠‬ه‪ ْ٤‬أٌُ‪ ٕٞ‬االٓزضاص‪ ١‬أ‪ ١‬ػِ‪ ٠‬اُلؼَ أُزجبدٍ ث‪ٖ٤‬‬ ‫عض‪٣‬ئبد أُبدح أُٔزضح ‪ٝ‬أُشاًض اُلؼبُخ ػِ‪ ٠‬اُغـؼ اعز٘بداً ئُ‪ ٠‬ه‪ٞ‬اٗ‪ ٖ٤‬اُزشٓ‪ٞ‬د‪٘٣‬بٓ‪٤‬ي اإلؽظبئ‪٢‬‬ ‫ُِـجوخ اُغـؾ‪٤‬خ‪.‬‬ ‫ة‪ 2 - 11-‬أدخِ٘ب ٌٓضق ‪ ( OMWW‬ثٔؼذٍ عضء ‪ٝ‬صٗ‪ ٖٓ ٢‬أٌُضق ئُ‪ 99 ٠‬عضء ‪ٝ‬صٗ‪ ٖٓ ٢‬ؿ‪ٞ‬س‬ ‫اُغبئَ اُظبث‪ ٢ٗٞ‬اُغبخٖ اُ٘‪ٜ‬بئ‪ ٢‬اُ٘برظ ٖٓ أُظ٘غ) ك‪ ٢‬ط٘بػخ اُظبث‪ ٕٞ‬اُظ٘بػ‪ ٢‬ؿ‪٤‬ش اُزشً‪٤‬ج‪٢‬‬ ‫‪ٝ‬اعزلذٗب ٖٓ اُل‪ٞ٘٤‬الد أُزؼذدح ك‪ ٢‬أٌُضق ٌُ‪ٜٗٞ‬ب ٓؼبدح ُِزأًغذ ‪ ٝ‬ثزُي أٌٖٓ اُزخِض ًِ‪٤‬بً ‪ ٝ‬ثذ‪ٕٝ‬‬ ‫كؼالد ٖٓ ‪ OMWW‬ثـش‪٣‬وخ ٓل‪٤‬ذح ‪ٓ ٝ‬شثؾخ ‪٣ ُْٝ ,‬الؽظ ٗٔ‪ُِ ٞ‬لـش‪٣‬بد أ‪ ٝ‬اُغشاص‪٘ٓ ْ٤‬ز إٔ رْ‬ ‫ط٘بػخ اُظبث‪ ٕٞ‬ئُ‪ ٠‬ا‪ ٕ٥‬أ‪ُٔ ١‬ذح رزغب‪ٝ‬ص عزخ أش‪ٜ‬ش ‪.‬‬

‫‪39‬‬

‫‪٣ ٝ‬ؼبدٍ ‪ٝ‬صٕ ٌٓضق ‪ OMWW‬أُؼبف ئُ‪ 99 ٠‬عضء ‪ٝ‬صٗ‪ ٖٓ ٢‬اُظبث‪ ٖٓ ٕٞ‬اُـ‪ٞ‬س اُغبئَ‬ ‫اُغبخٖ ٖٓ اُظبث‪ ٕٞ‬اُخبسط ٖٓ ‪ٝ‬ػبء اُزلبػَ ‪ً 200‬ؾ ٖٓ ‪ OMWW‬اُغبئِخ اُؼبد‪٣‬خ هجَ اُزٌض‪٤‬ق‬ ‫ٌَُ ؿٖ ٖٓ اُظبث‪ ٕٞ‬اُ٘برظ ‪.‬‬ ‫ة‪ٛٝ 3-11-‬ز‪ ٙ‬اُـش‪٣‬وخ ‪ ٌٖٔ٣‬اعزخذآ‪ٜ‬ب ػِ‪ٗ ٠‬ـبم ‪ٝ‬اعغ ‪ ٝ‬ال ‪ٞ٣‬عذ ك‪ٜ٤‬ب أ‪ٓ ١‬خِلبد ٗبرغخ ػٖ‬ ‫اعزؼٔبٍ ‪. OMWW‬‬ ‫ة‪ٝ 4-11-‬اعز٘بداً ئُ‪ٓ ٠‬ؼـ‪٤‬بر٘ب كإ اعزؼٔبٍ ‪ OMWW‬ك‪ ٢‬ؽبُز‪ ٚ‬االػز‪٤‬بد‪٣‬خ ؿ‪٤‬ش أٌُضلخ ٓؾذ‪ٝ‬د‬ ‫ثبؽز‪ٞ‬اء اُشبٓج‪ ٞ‬ػِ‪ٗ ٠‬غجخ ‪ OMWW ٖٓ %0.09 - %0.18‬ؿ‪٤‬ش أٌُضق‪ ,‬أ‪ ١‬أٗ‪ ٌٖٔ٣ ٚ‬اُزخِض‬ ‫ٖٓ (‪ً)1.8-0.9‬ؾ كوؾ ٖٓ ‪ OMWW‬اُؼبد‪ ١‬ؿ‪٤‬ش أٌُضق ثبؽز‪ٞ‬ائ‪ ٚ‬ك‪ 1 ٢‬ؿٖ روش‪٣‬جًب ٖٓ اُشبٓج‪,ٞ‬‬ ‫ث‪ٔ٘٤‬ب ‪ ٌٖٔ٣‬اُزخِض ٖٓ ‪ً 200‬ؾ ‪ OMWW‬ثؼذ رٌض‪٤‬ل‪ٜ‬ب ‪ ٝ‬ئػبكخ أٌُضق ئُ‪ ٠‬ؿٖ ٖٓ اُظبث‪ٕٞ‬‬ ‫أُ‪ٞ‬ط‪ٞ‬ف ك‪ ٢‬اُؼَٔ ؽغت ؿش‪٣‬وز٘ب أُوزشؽخ ك‪ ٢‬اُج٘ذ ة‪ ٝ 2-11-‬ة‪.3-11-‬‬

‫‪40‬‬

‫‪-3‬انشعٕيبد ٔ انًخططبد‬ ‫‪80‬‬

‫‪60‬‬ ‫‪50‬‬ ‫‪40‬‬ ‫‪30‬‬ ‫‪20‬‬ ‫‪10‬‬

‫اننسبت انمئويت إلزانت اننتراث‪% NO3 -‬‬

‫‪y = -0.038x2 + 3.3211x + 0.5225‬‬ ‫‪R2 = 0.9932‬‬

‫‪70‬‬

‫‪0‬‬ ‫‪54‬‬

‫‪48‬‬

‫‪36‬‬

‫‪42‬‬

‫‪24‬‬

‫‪30‬‬

‫‪12‬‬

‫‪18‬‬

‫‪0‬‬

‫‪6‬‬

‫انسمن (سبعت)‬ ‫ان شكم ( ‪ )12‬اندراست انحركيت نهمبدة ان مبزة ‪BS‬‬

‫‪16.00‬‬ ‫‪14.00‬‬ ‫‪y = 2.2546x + 3.7193‬‬

‫‪1/α‬‬

‫‪(mmol/g)_ 12.00‬‬ ‫‪1‬‬ ‫‪10.00‬‬

‫‪2‬‬

‫‪R = 0.7035‬‬

‫‪6.00‬‬ ‫‪4.00‬‬

‫‪1/a‬‬ ‫‪(mmol/g)-1‬‬

‫‪8.00‬‬

‫‪2.00‬‬ ‫‪4.000‬‬

‫‪3.500‬‬

‫‪3.000‬‬

‫‪2.500‬‬

‫‪2.000‬‬

‫‪1.500‬‬

‫‪1.000‬‬

‫‪0.500‬‬

‫‪0.00‬‬ ‫‪0.000‬‬

‫‪1/C (mmol/l)-1‬‬

‫‪ 1/C‬نهًغزسضش ‪BS‬‬ ‫‪1/αa\1‬‬ ‫اثؼ‪ٛ‬خ‬ ‫(‪) 3)1‬‬ ‫انشكم (‬ ‫بدالنةه ‪C\1‬‬ ‫تابعية‬ ‫انشكم‬ ‫‪ 0.800‬‬ ‫‪ m 0.700‬‬ ‫‪0.500‬‬ ‫‪0.400‬‬ ‫‪0.300‬‬ ‫‪0.200‬‬ ‫‪0.100‬‬ ‫‪1.800‬‬

‫‪1.600‬‬

‫‪1.400‬‬

‫‪1.200‬‬

‫‪1.000‬‬

‫‪0.800‬‬

‫‪0.600‬‬

‫‪0.400‬‬

‫‪0.200‬‬

‫‪C mmol/l‬‬

‫‪ a/am‬نهتركيس انتوازني ‪ C‬نهًغزسضش ‪BS‬‬ ‫‪α/αm‬‬ ‫(‪ )3‬تببعيت‬ ‫انشكم)‪(4‬‬ ‫‪41‬‬

‫‪0.000‬‬ ‫‪0.000‬‬

‫‪a/am mmol/g‬‬

‫‪0.600‬‬

IR

BS IR

NO3-

BS IR

42

5

6

7

IR

8

BW-PC IR

NO3 -

BW-PC

43

9

IR

10

IR

BG-PC

NO3 -

IR

BG-PC IR 44

11

12

13

IR

BG

NO3 -

IR

BG IR 45

14

15

16

‫انًخطط انظُبػ‪ ٙ‬نهزخهض يٍ ‪ OMWW‬ثزسً‪ٛ‬هّ ػهٗ انخلبٌ انجبصنز‪ ٙ‬انغٕس٘ نظُبػخ انًٕاد‬ ‫انًبصح أل‪َٕٚ‬بد انُزشاد يٍ انً‪ٛ‬بِ‬

‫‪OMWW‬‬

‫ٌٓضق ‪OMWW‬‬

‫ٓضط‬

‫رغل‪٤‬ق‬

‫رٌِ‪٤‬ظ ثبُذسعخ‬ ‫‪ْ ّ 400‬‬

‫رجش‪٣‬ذ‬

‫رخض‪ٖ٣‬‬

‫‪46‬‬

‫خلبٕ ثبصُز‪٢‬‬ ‫ثبألشٌبٍ أُخزلِخ‬

‫انًخطط انظُبػ‪ ٙ‬لنزخهض يٍ ‪ OMWW‬ثزكث‪ٛ‬لّ ٔ اعزخذاو يكثلّ ك‪ ٙ‬طُبػخ انظبثٌٕ انظهت‬ ‫انطج‪ٛ‬ؼ‪ٙ‬‬ ‫ًَ ‪ 1‬ؿٖ ٖٓ اُظبث‪ ٕٞ‬اُؾب‪ ١ٝ‬ػِ‪ OMWW ٠‬اُ٘برظ ‪٣‬غز‪ِٜ‬ي ‪ً 10‬ؾ ٖٓ ٌٓضق ‪ ٝ OMWW‬اُز‪٢‬‬ ‫ر٘زظ ػٖ رٌض‪٤‬ق ‪ً 200‬ؾ ٖٓ ‪ٛٝ , OMWW‬ز‪ ٙ‬اُـش‪٣‬وخ ٓشثؾخ ُِزخِض ٖٓ ‪ OMWW‬ثذ‪ٕٝ‬‬ ‫ٓخِلبد‪.‬‬ ‫رٌض‪٤‬ق ثبُـبهخ اُشٔغ‪٤‬خ أ‪ ٝ‬ؿ‪٤‬ش‪ٛ‬ب‬ ‫‪OMWW‬‬

‫اُ٘برظ أٌُضق ِ‬ ‫‪OMWW‬‬

‫رخض‪ ٖ٣‬أٌُضق‬ ‫‪OMWW‬‬

‫≈ ‪%1‬‬ ‫خالؽ‬

‫روغ‪٤‬خ اُظبث‪ٕٞ‬‬ ‫ػِ‪ ٠‬عـؼ‬ ‫ٓؾظ‪ٞ‬س‬

‫رشٌ‪ َ٤‬هـغ‬ ‫اُظبث‪ٕٞ‬‬

‫يالزظخ‪ ٌٖٔ٣ :‬روذ‪ ْ٣‬ػ‪٘٤‬خ ٖٓ‬ ‫اُظبث‪ ٕٞ‬أُشبس ئُ‪ ٚ٤‬ك‪٢‬‬ ‫اُجشاءح ػ٘ذ اُـِت‪.‬‬

‫اُزؼجئخ‬

‫اُزخض‪ٖ٣‬‬

‫‪47‬‬

‫≈ ‪W%99‬‬

‫ٓظذس اُـ‪ٞ‬س‬ ‫اُغبئَ اُغبخٖ‬ ‫اُ٘‪ٜ‬بئ‪ُِ ٢‬ظبث‪ٕٞ‬‬

‫‪ -4‬االدػبءاد انًطهٕة زًب‪ٚ‬زٓب‬ ‫‪ 1-4‬اُزخِض ٖٓ ٓبء اُغلذ ‪ٝ OMWW‬اعزخذاّ ٌٓضل‪ ٚ‬ثبُزؾٔ‪ َ٤‬ػِ‪ ٠‬اُخلبٕ اُجبصُز‪ ٢‬اُغ‪ٞ‬س‪١‬‬ ‫ُِؾظ‪ ٍٞ‬ػِ‪ٞٓ ٠‬اد ٓبصح ُِزخِض ٖٓ أ‪ٗٞ٣‬بد اُ٘زشاد ك‪ ٢‬أُ‪٤‬ب‪ ٙ‬أُِ‪ٞ‬صخ ث‪ٜ‬ب‪.‬‬ ‫‪ 2-4‬اعزخذاّ اُخلبٕ اُجبصُز‪ ٝ ٢‬اُظ‪ٞ‬ف اُجبصُز‪ ٢‬اُغ‪ٞ‬س‪ً ١‬ؾبَٓ ك‪ ٢‬ط٘بػخ أُ‪ٞ‬اد أُبصح ‪.‬‬ ‫‪ 3-4‬ئػبدح اعزؼٔبٍ اُخلبٕ اُجبصُز‪ ٢‬ك‪ ٢‬ط٘بػخ أُبدح أُبصح‪.‬‬ ‫‪ 4-4‬اعزخذاّ ٓضائظ ث٘غت ٓخزِلخ ٖٓ اُخلبٕ اُجبصُز‪ ٝ ٢‬اُج٘ز‪٤ٗٞ‬ذ ك‪ ٢‬ط٘بػخ أُبدح أُبصح ُِ٘زشاد‬ ‫‪ 5-4‬اعزخذاّ ٌٓضق ‪ OMWW‬ك‪ ٢‬ط٘بػخ اُظبث‪ ٕٞ‬اُظِت‪.‬‬ ‫‪ 6-4‬اُزخِض ٖٓ ‪ OMWW‬ػِ‪ٗ ٠‬ـبم ‪ٝ‬اعغ ثزٌض‪٤‬ل‪ ٚ‬ث‪ٞ‬اعـخ اُـبهخ اُشٔغ‪٤‬خ ‪ ٝ‬اعزخذآ‪ًٔ ٚ‬بدح‬ ‫ٓؼبكخ راد خ‪ٞ‬اص ٓؼبدح ُِزأًغذ ‪٘ٓ ٝ‬ؼٔخ ك‪ ٢‬ط٘بػخ ٗ‪ٞ‬ع عذ‪٣‬ذ ٖٓ اُظبث‪.ٕٞ‬‬

‫‪48‬‬

‫‪ - 5‬انًهخض‬ ‫عش‪ ٟ‬اُزخِض ٖٓ ٓبء اُغلذ ‪ٝ OMWW‬اعزخذاّ ٌٓضل‪ ٚ‬ثبُزؾٔ‪ َ٤‬ػِ‪ ٠‬اُخلبٕ اُجبصُز‪ ٝ ٢‬اُظ‪ٞ‬ف‬ ‫اُجبصُذ اُغ‪ٞ‬س‪ُِ ١‬ؾظ‪ ٍٞ‬ػِ‪ٞٓ ٠‬اد ٓبصح ُِزخِض ٖٓ أ‪ٗٞ٣‬بد اُ٘زشاد ك‪ ٢‬أُ‪٤‬ب‪ ٙ‬أُِ‪ٞ‬صخ ث‪ٜ‬ب‪ًٔ .‬ب‬ ‫اعزخذاّ ٌٓضق ‪ OMWW‬ث‪ٞ‬اعـخ اُـبهخ اُشٔغ‪٤‬خ ًٔبدح ٓؼبكخ راد خ‪ٞ‬اص ٓؼبدح ُِزأًغذ‬ ‫‪٘ٓٝ‬ؼٔخ ك‪ ٢‬ط٘بػخ ٗ‪ٞ‬ع عذ‪٣‬ذ ٖٓ اُظبث‪ ٕٞ‬اُظِت‪.‬‬

‫‪OMWW‬‬ ‫‪,‬‬

‫‪49‬‬

‫ انًشاخغ‬- 6 1- P.K.GOEL, Water Pollution-Causes, Effects and control, P(197-198). New Delhi.1997. 2- Yazjy, Wareef, M.Sc. Thesis P(10-11) Damascus University, Faculty of sciences, (2004). 3- T.M. Addiscott, NITRATE, AGRICULTURE AND THE ENVIRONMENT, UK, P (27-28,30-40) , 2005 ‫صاسح‬ٝ ,45 ْ‫ سه‬.٠ُٝ‫ اُششة أُشاعؼخ األ‬ٙ‫ب‬٤ٓ ,١‫س‬ٞ‫خ اُغ‬٤‫ظ اُؼشث‬٤٣‫أُوب‬ٝ ‫اطلبد‬ُٞٔ‫ئخ ا‬٤ٛ - 4 .1994 ,‫اُظ٘بػخ‬ ‫ أُؼبُغخ ألؿشاع‬٢‫ اُظشف اُظؾ‬ٙ‫ب‬٤ٓ ,‫خ‬٣‫س‬ٞ‫خ اُغ‬٤‫ظ اُؼشث‬٤٣‫أُوب‬ٝ ‫اطلبد‬ُٞٔ‫ئخ ا‬٤ٛ - 5 .2003 ,‫صاسح اُظ٘بػخ‬ٝ .2752 ْ‫ سه‬,١‫اُش‬ ‫خ‬٤ًِ ,‫خ‬٤‫بء اُ٘جبر‬٤‫ هغْ ػِْ األؽ‬, ١‫ اُغضء اُ٘ظش‬-ٙ‫ب‬٤ُٔ‫ب ا‬٤‫ع‬ُٞٞ٤‫ث‬ٝ‫ٌش‬٤ٓ ,ٕ‫ ػذٗب‬, ّ‫ ٗظب‬٢ِ‫ ػ‬.‫ د‬- 6 .2004-2003 ,‫ عبٓؼخ دٓشن‬, ِّٞ‫اُؼ‬ 7- M. Matosic, I. Mijatouic, and E. Hodzic , Nitrate Removal from Drinking Water Using Ion Exchange – Comparison of Chloride and Bicarbonate Form of the Resins, Chem.Biochem. Eng, P(141-146) ,2000. 8- Manal F. Abou Taleba, , Ghada A. Mahmouda, Samia M. Elsigenyb, El-Sayed A. Hegazya. , Adsorption and desorption of phosphate and nitrate ions using quaternary (polypropylene-g-N,N-dimethylamino ethylmethacrylate) graft copolymer, Journal of Hazardous Materials , P(372–379) ,2008.www.elsevier.com/locate/jhazmat 50

9- Stephany burge,Rolf Halden, Nitrat and Perchlorate Removal from Ground water by Ion exchange , University of Idaho Moscow,1999. 10- Aušra Mažeikienė1, Marina Valentukevičienė, Mindaugas Rimeika, Algirdas Bronislovas Matuzevičius, Regimantas Dauknys, Removal Of Nitrates and Ammonium Ions from water using natural sorbent Zeolite (Clinoptilolite), Dept of Water Management, Vilnius Gediminas Technical University, P(38–44) ,2008. ‫ب‬٣‫س‬ٞ‫ ع‬٢‫ارظ اُجشً٘خ ك‬ُٞ٘ ‫خ‬٣‫كبم االهزظبد‬٥‫ ا‬,ّ‫ػجذ اُغال‬.٢ٗ‫ اُزشًٔب‬,‫م‬ٝ‫كبس‬.١‫اُؼٔبد‬

- 11

‫س داخَ أُإعغخ‬ٞ‫ش ٓ٘ش‬٣‫روش‬, )‫ اُـق‬ٝ ‫ب‬٣‫س‬ٌٞ‫خ ع‬٤‫س اُجبصُز‬ٞ‫ اُظخ‬-‫خ‬٤‫ز‬٤ً‫س اُزشا‬ٞ‫(اُظخ‬ .2004 ,‫ دٓشن‬,‫خ‬٤ٗ‫ح أُؼذ‬ٝ‫ اُضش‬ٝ ‫ب‬٤‫ع‬ُٞٞ٤‫اُؼبٓخ ُِغ‬ ( ( ٕٞ‫ز‬٣‫ ػظش اُض‬ٙ‫ب‬٤ٓ ٖٓ ‫ اُزخِض‬,٢‫بصع‬٤ُ‫ق ا‬٣‫س‬ٝ ,‫ت‬٣‫ ػذٗبٕ د‬.‫ د‬,‫ذ اُجضسح‬٤ُٝ ٠٤‫ؾ‬٣.‫د‬.‫ أ‬- 12 ٍ‫ ٓجبد‬٠ُ‫ ) ئ‬ٚٗٝ‫ ثذ‬ٝ ‫ اُغـؼ‬٠ِ‫خ ػ‬٤ُٞ٘٤‫ٗبد اُل‬ٌُٞٔ‫ ( ٓغ رٌبصق ا‬ِٚ٣ٞ‫ ثزؾ‬OMWW ٝ ‫ االطـ٘بع‬-І

‫ اُظ٘بػخ‬٢‫ أُغزخذٓخ ك‬ٙ‫ب‬٤ُٔ‫ظبئق ُٔؼبُغخ ا‬ُٞ‫ ٓشزشى ٓزؼذد ا‬١‫شبسد‬

ِّٞ‫ ٓغِخ عبٓؼخ دٓشن ُِؼ‬,‫شح‬٤‫ٗبد راد األهـبس اُظـ‬ٞ٣‫ األ‬٠ِ‫خ ػ‬٣ٝ‫ اُؾب‬ٙ‫ب‬٤ُٔ‫ٓؼبُغخ ا‬ .2009 ,ٍٝ‫ اُؼذد األ‬25 ‫خ –أُغِذ‬٤‫األعبع‬ 13-

Francis Rouessac, Annich Rouessac, Chemical Analysis-

Second Edition, University of Lemans, France. 2007. 14-

Standard Methods for the Examination of Water and

Wastewater 20 th Edition, American Public Health Association, American Water Works association, Water Environment Federation,1999. ‫ أُشاكن‬ٝ ٕ‫صاسح اإلعٌب‬ٝ , ‫ اُششة‬ٙ‫ب‬٤ٓ ‫دح‬ٞ‫خ ُٔشاهجخ ع‬٣‫َ أُخجش‬٤ُ‫َ ؿشائن اُزؾب‬٤ُ‫ د‬- 15 .2001 ,‫ دٓشن‬,‫غق‬٤ٗٞ٣ ‫ُخ‬ٞ‫ٕ ٓغ ٓ٘ظٔخ األْٓ أُزؾذح ُِـل‬ٝ‫ثبُزؼب‬ ْ‫ هغ‬,٢ِٔ‫ اُوغْ اُؼ‬-‫بد أُظبٗغ‬٣‫ ٗلب‬ٝ ٙ‫ب‬٤ُٔ‫ ٓؼبُغخ ا‬,٢ِ‫ ٓؾٔذ ػ‬,‫ اُشؼبس‬.‫د‬.‫أ‬

- 16

.2008-2007.‫ عبٓؼخ دٓشن‬,‫خ‬٤ُٝ‫ اُجزش‬ٝ ‫خ‬٤‫بئ‬٤ٔ٤ٌُ‫٘ذعخ ا‬ُٜ‫خ ا‬٤ًِ ,‫خ‬٤‫٘ذعخ اُـزائ‬ُٜ‫ا‬ 17 - LEO M. L. NOLLET , Handbook of water analysis- Second edition ,Boca Raton London New York, P(201-217) , 2007. 51

18- YA. GIRASIMOV and others, Physical Chemistry, Vol 1, P(487), Mir Publishers, Mosco,1974. 2009 /2008 , 5654 ْ‫خ سه‬٣‫س‬ٞ‫ اُجشاءح اُغ‬,-19 examined by WIPO ( IC/09/2843/SY-BG )

52

Patent No.5627

‫ جسئٍ ًب فً الكٍروسٍن السبئل من‬C10-C14 ‫صنبعت مصفبة جسٌئٍت هجٍنت جذٌذة لفصل البرافٍنبث السلسلٍت‬ ) Vegobond A ‫حذىٌر السٌىلٍج االصطنبعً ( األلىمٍنى سٍلٍكبث البلّىرٌت‬

Hybrid Molecular Sieve Produced From The Modification Of Crystalline Sodium Aluminum Silicate (Vegobond A) For Partial Separation C10 – C14 Linear Paraffin's From Liquid Kerosene

‫ ٌذٍى ولٍذ البسرة‬. ‫ د‬.‫أ‬ Prof. Yahya Walid Al-Bizreh

‫خ‬ٛ‫ٍ انخبو انغبئم ػٍ ثق‬ٛ‫شٔع‬ٛ‫ب يٍ انك‬ٛ‫ خضئ‬C10-C14 ‫خ‬ٛ‫ُبد انخغ‬ٛ‫خ نفصم انجشاف‬ٛ‫ئ‬ٚ‫رىّ ألٔل يشّح اثزكبس يصفبح خض‬ ‫ُبد‬ٛ‫ نهجشاف‬ٙ‫شاٌ يٍ خٓخ ; ٔيصفبح يقزشزخ نهفصم انكه‬ٛ‫ٍ انغ‬ٛ‫شٔع‬ٛ‫انًكَِٕبد نهسصٕل ػهٗ قغفخ رصهر نك‬ ‫ذ‬ٛ‫ٕن‬ٚ‫شانض‬ٕٚ‫ ٔرنك ثزس‬.ٖ‫ صُبػخ انًُظفبد يٍ خٓخ أخش‬ٙ‫ انًؼقذح العزؼًبنٓب ف‬UOP ‫ضاد‬ٛٓ‫ رد‬ٙ‫انًزكٕسح ف‬ ‫ؼًم‬ٚ ٘‫ش خٓبص يخجش‬ٕٚ‫ يغ رغ‬ٙ‫ذ انغٕس٘ انًسغٍّ نالعزخذاو انصُبػ‬َٕٛ‫غ ثبنجُز‬ُٛ‫ انزص‬َٙ‫ انؼًب‬Vegobon A . ‫خ‬ٛ‫ئ‬ٚ‫خ انًصفبح اندض‬ٛ‫رسذ انضغظ ٔانخالء ٔ دسخبد انسشاسح انًخزهفخ نهكشف ػٍ فؼبن‬

A new hybrid molecular sieve for partial separating of linear C10-C14 paraffin's from liquid kerosene's has been invented from modified zeolite Vegobond A of Oman Chemicals with improved Syrian Bentonite for industrial use. This molecular sieve makes it possible to receive a fraction of avia –kerosene in terms of this work .On the other hand; it may be considered for full deparaffinization in terms of UOP plant in conditions of use in detergent industry. In addition, a new device has been developed to detect the efficiency of molecular sieves under different temperatures,vacuums, and pressures.

page ‫الصفذت‬ 1

2-3

5

4

6

Contents Technical condition of the invention

‫ الذبلت الخقنٍت لالخخراع‬-1

Technical Description of the invention

‫ الىصف الفنً لالخخراع‬-2

Manufacturing scheme

Claims to be protected

References

Appendix (1) Chemical structure of Zeolite and Bentonite

7

8

10- 11

12

13-14

15

16

‫المذخىٌبث‬

ً‫ المخطط الصنبع‬- -3 ‫ اإلدعبءاث المطلىة دمبٌخهب‬-4 ‫ المراجع‬-5 )1( ‫ ملذق‬-6 ‫الخركٍت الكٍمٍبئً للسٌىلٍج والبنخىنٍج‬

Appendix (2) Syrian Kerosene Analyses

)2( ‫ ملذق‬-7 ‫الخذلٍل الكٍمٍبئً للكٍروسٍن السىري‬

The surface parameters Table (1), Fig (1)

‫ الذراست السطذٍت‬-8

Explanation to Table (1) and Fig (1)

DTA results

XRD image

Experimental results

17-18

The pilot plant image

19

The G.C image

‫ حىضٍخ للذراست السطذٍت‬-9 ً‫– نخبئج الخذلٍل الذراري الخفبضل‬10 ‫ – نخبئج انعراج األشعت السٍنٍت‬11 ‫– النخبئج الخجرٌبٍت‬12 ‫ – صىرة الجهبز المقخرح‬13 G.C ‫ – صىرة‬14

‫الذبلت الخقنٍت لالخخراع‬ ‫ش‬ٕٚ‫( ٔ نزنك خشٖ رس‬Oman Chemicals) Vegobond A ‫ف ج‬ٛ‫ًكٍ انزك‬ٚ ‫خ ٔنى‬ٛ‫ئ‬ٚ‫ذ يُفشداً كًصفبح خض‬َٕٛ‫ؼًم انجُز‬ٚ ‫نى‬ ‫شْب يغ‬ٛ‫ رأث‬ٙ‫خ رزًبثم ف‬ٛ‫ئ‬ٚ‫ صُبػخ انًُظفبد نهٕصٕل إنٗ يصفبح خض‬ٙ‫ ٔ يبدح ثُبء ف‬َٕٙٚ‫ انًغزخذو كًجبدل أ‬ٙ‫ذ االصغُبػ‬ٛ‫ٕن‬ٚ‫انض‬ ٍ‫ ي‬C10 –C14 ‫خ‬ٛ‫ُبد انخغ‬ٛ‫ّخ نفصم انجشاف‬ًٛ‫ انصُبػخ انؼبن‬ٙ‫ انًغزخذيخ ف‬UOP ‫خ انًصُؼّخ انخبصخ ج‬ٛ‫ئ‬ٚ‫انًصفبح اندض‬ ˚‫ و‬180 ‫ خٕ ٔ دسخخ انسشاسح‬30 ‫ ششٔط يزًبثهخ رسذ انضغظ‬ٙ‫ظ ف‬ٛ‫ٍ إنٗ ػًٕد اإليزضاص ثبنزُق‬ٛ‫شٔع‬ٛ‫ٔ قذ أدخم انك‬.ٍٛ‫شٔع‬ٛ‫انك‬ ‫خ يٍ ْزا انُٕع‬ٛ‫ئ‬ٚ‫ صُبػخ يصفبح خض‬ٙ‫ذ ف‬ٛ‫ٕن‬ٚ‫غزخذو ْزا انُٕع يٍ انض‬ٚ ‫ خٓبص صًى نٓزا انغشض ٔ نى‬ٙ‫ٍ ف‬ٛ‫ خٕ يٍ انُزشٔخ‬ٙ‫ف‬ . ٌٜ‫ززٗ ا‬ ‫ ػًٕد‬ٙ‫ش انًًزض ثئَقبص انضغظ ف‬ٛ‫ٍ غ‬ٛ‫شٔع‬ٛ‫ ٔقذ رى أخز انك‬. ٘‫ذ انغٕس‬َٕٛ‫ انجُز‬ٙٓ‫ش ف‬ٕٚ‫ انزس‬ٙ‫خ ف‬ٛ‫غ‬ٛ‫أيب انًبدح انشئ‬ (2) ٔ (1) ‫خ فقذ رى أخزْب ػهٗ دفؼبد‬ٛ‫ئ‬ٚ‫ انًصفبح اندض‬ٙ‫ رى ايزضاصْب ف‬ٙ‫خ انز‬ٛ‫ُبد انخغ‬ٛ‫اإليزضاصززٗ انضغظ اندٕ٘ أيب انجبساف‬ . ‫ف‬ٛ‫خ نهزكث‬َٛ‫ٍ ٔ زهضَٔبد يؼذ‬ٛ‫ّخ ٔ ثٕخٕد انُزشٔخ‬ٛ‫ثٕاعغخ يخه‬ (2) ٔ (1) ٍٛ‫ انًهسق‬ٙ‫ٍ انغٕس٘ ف‬ٛ‫شٔع‬ٛ‫ذ ٔ انك‬َٕٛ‫ذ انًذسٔط ٔ انجُز‬ٛ‫ٕن‬ٚ‫ نكم يٍ انض‬ٙ‫بئ‬ًٛٛ‫م انك‬ٛ‫ٔ قذ أٔسدَب َزبئح انزسه‬

Technical Condition Of The Invention

The synthetic crystalline zeolite Vegobnd A (Oman chemical) used in the detergent industry as co-builder has been modified to manage to receive a molecular sieve similar to that used by UOP in the world-wide industry for separating linear C10-C14 paraffin's from kerosene's under similar conditions: pressure 30 atm, t = 180 C˚ in a special developed device filled with nitrogen, and molecular sieve , kerosene was dropped into the adcorption column. Syrian bentonite has been one of the main materials used for the modification of the of mentioned zeolite in this work .Unadsorbed liquid fraction of kerosene was removed when pressur was decreased in the adsorption column to normal. Desorption of adsorbed linear paraffin's took place under vacuum by means of a vacuum pump and spiral metallic tubes for condensation . Chemical structures of Vegobond A (Oman chemical) Syrian bentonite and kerosene are given in Appendix 1, 2

(1)

‫الىصف الفنً لالخخراع‬ ‫زج‪ٛ‬جبد ث‪ٛ‬ضبء ضبسثخ إنٗ انصفشح قغشِ ا ‪ 1-0.5‬يهى صهجخ نذسخخ كبف‪ٛ‬خ أخش‪ٚ‬ذ ػه‪ٓٛ‬ب انذساعبد انزبن‪ٛ‬خ‪:‬‬ ‫‪ –1‬دساعخ انًغبزخ انغغس‪ٛ‬خ ثبيزضاص انُزشٔخ‪ ٍٛ‬ف‪ ٙ‬انذسخخ ‪ 196-‬و˚ ز‪ٛ‬ث ث‪ُٛ‬ذ ْزِ انذساعخ أٌ أقغبس انًغبيبد أصغش يٍ قغش‬ ‫خض٘ء انُزشٔخ‪ ٍٛ‬ث‪ًُٛ‬ب ث‪ُٛ‬ذ ردبسة انفصم ٔخٕد يغبيبد ايزألد ثبنجبساف‪ُٛ‬بد انخغ‪ٛ‬خ ] انشكم ‪ ٔ 1‬اندذٔل‪. [ 1‬‬ ‫‪ – 2‬دساعخ انزسه‪ٛ‬م انسشاس٘ انزفبضه‪ :ٙ‬رج‪ ٍٛ‬دساعخ يُسُ‪ٛ‬بد انزسه‪ٛ‬م انسشاس٘ انزفبضه‪ ٙ‬نهض‪ٕٚ‬ن‪ٛ‬ذ انصبف‪(Vegobond A) ٙ‬‬ ‫(انشكم ‪ ٔ )2‬نهض‪ٕٚ‬ن‪ٛ‬ذ َفغّ انًسٕس (انشكم ‪ )3‬ظٕٓس قًخ َبششح نهسشاسح ف‪ ٙ‬يدبل ‪ 308‬و˚ ] ركٕ‪ ٍٚ‬يشكت خذ‪ٚ‬ذ يغ‬ ‫انجُزَٕ‪ٛ‬ذ انًسغٍّ [ ٔ رشك‪ٛ‬م ث‪ٛ‬كبد صغ‪ٛ‬شح يبصخ نهسشاسح ػُذ دسخبد انسشاسح األػهٗ يًب‪ٚ‬ذل ػهٗ ٔخٕد صيش ‪OH‬‬ ‫انًشرجغخ ك‪ًٛٛ‬بئ‪ًٛ‬ب ف‪ ٙ‬انًصفبح اندض‪ٚ‬ئ‪ٛ‬خ انُبردخ ‪ ٔ .‬الَدذ ْزِ انج‪ٛ‬كبد ف‪ ٙ‬انض‪ٕٚ‬ن‪ٛ‬ذ ‪ Vegobond A‬انًغخٍ إنٗ ‪ 400‬و˚‬ ‫ٔ انز٘ ‪ٚ‬زً‪ٛ‬ض ثبززٕائّ ػهٗ قًخ ٔاضسخ خذًا ف‪ ٙ‬دسخخ انسشاسح ‪ 889‬و˚‪ ,‬يقبثم فؼه‪ ٍٛ‬ضؼ‪ٛ‬ف‪( ٍٛ‬انشكم ‪ )3‬ف‪ ٙ‬انًشكت اندذ‪ٚ‬ذ‬ ‫يًب ‪ٚ‬ذل ػهٗ ٔخٕد رفبػالد ك‪ًٛٛ‬بئ‪ٛ‬خ ث‪ ٍٛ‬انًكَِٕبد ف‪ ٙ‬انسبنز‪. ٍٛ‬‬ ‫‪ – 3‬دساعخ اَؼشاج األشؼخ انغ‪ُٛٛ‬خ‪ :‬رجذ٘ يُسُ‪ٛ‬بد اَؼشاج أشؼخ سَٔزدٍ (انشكم ‪ )4‬نهًصفبح اندض‪ٚ‬ئ‪ٛ‬خ انُبردخ صٕسح ًَٕرخ‪ٛ‬خ‬ ‫نهض‪ٕٚ‬ن‪ٛ‬ذ انًجهٕس ٔ انًسٕس ثبنجُزَٕ‪ٛ‬ذ رً‪ٛ‬ض انًصفبح اندض‪ٚ‬ئ‪ٛ‬خ اندذ‪ٚ‬ذح ‪.‬‬ ‫‪َ – 4‬زبئح دساعخ انفصم‪َ :‬شٖ َزبئح فصم اندض‪ٚ‬ئبد انخغ‪ٛ‬خ ‪ C10-C14‬يٍ انك‪ٛ‬شٔع‪ ٍٛ‬انخبو انغبئم ف‪ ٙ‬انششع‪ٍٛ‬‬ ‫] ‪ 30‬خٕ‪ 180 +‬و˚[ يٍ اندذٔل (‪ )2‬ز‪ٛ‬ث َؼجش ج ‪ I/N‬ػٍ َغجخ األ‪ٚ‬ضٔ ثبسا ف‪ I ٌٙ‬إنٗ انجبساف‪ ٍٛ‬انخغ‪N ٙ‬‬ ‫نكم يٍ انك‪ٛ‬شٔع‪ ٍٛ‬انخبو ٔ انك‪ٛ‬شٔع‪ ٍٛ‬انًكشس نكم يٍ انًصفبح اندض‪ٚ‬ئ‪ٛ‬خ ‪ ٔ VBP ٔ UOP‬ثئخشاء انًقبسَخ يٍ أخم انقغفخ‬ ‫انُٓبئ‪ٛ‬خ ثى يٍ أخم انقغفخ قجم انُٓبئ‪ٛ‬خ ث‪ ٍٛ‬انًصفبر‪ ٍٛ‬اندض‪ٚ‬ئ‪ٛ‬ز‪ ٍٛ‬انًزكٕسر‪ ٍٛ‬فغٕف َشٖ ثٕضٕذ أٌ كهزب انًصفبر‪ٍٛ‬‬ ‫اندض‪ٚ‬ئ‪ٛ‬ز‪ ٍٛ‬يزقبسثزبٌ يٍ ز‪ٛ‬ث قذسرًٓب ػهٗ فصم خض‪ٚ‬ئبد انجبساف‪ ٍٛ‬انخغ‪ٛ‬خ يٍ انك‪ٛ‬شٔع‪ ٍٛ‬ف‪ ٙ‬انششٔط انًزكٕسح أػالِ‬ ‫‪ – 5‬صٕسح اندٓبص انًغزخذو ٔ ششزٓب ٔ اإلشبسح إنٗ أخضائّا( انشكم ‪.) 5‬‬ ‫‪ – 6‬أخش‪ٚ‬ذ رسبن‪ٛ‬م انجشاف‪ُٛ‬بد ف‪ ٙ‬انك‪ٛ‬شٔع‪ ٍٛ‬ػهٗ خٓبص ‪ CARLO ERBA GC‬خبص ثًؼًم إَزبج انك‪ٛ‬م انخغ‪LAB ٙ‬‬ ‫ْٕٔ يدٓض ثكًج‪ٕٛ‬رش ٔيكبيم ٔ ػًٕد خبص ثزسه‪ٛ‬م انجبساف‪ُٛ‬بد انًٕخٕدح ف‪ ٙ‬انك‪ٛ‬شٔع‪ ٍٛ‬ػهٗ إَٔاػٓب( انشكم ‪. ) 6‬‬ ‫‪ًٚ – 7‬كٍ إػغبء ػ‪ُٛ‬خ يٍ انًُزح إرا عُهجذ ‪.‬‬ ‫يالزظخ‪ :‬رؼزجش عش‪ٚ‬قخ انق‪ٛ‬بط َصف انصُبػ‪ٛ‬خ انًجغغخ انز‪ ٙ‬عٕسَب يؤششًا خ‪ٛ‬ذًا ػهٗ أداء انًُزح ٔ ‪ٚ‬ؼٕد رنك إنٗ ضخبيخ‬ ‫انًُشأح انصُبػ‪ٛ‬خ ٔ ثبنزبن‪ ٙ‬انًُٕرج َصف انصُبػ‪ٔ ٙ‬انزؼق‪ٛ‬ذ انؼبن‪ ٙ‬نٓب‪.‬‬

‫)‪(2‬‬

Technical Description Of The Invention Solid White – yellow granulated material (Ф=0.5-1mm) underwent tests results of which are summarized in the followings 1- Nitrogen adsorption at -196C˚resulted poor adsorption of nitrogen [table (1), fig (1)] which can be attributed to smaller diameters of the zeolite pores than the diameter of Nitrogen molecule. The observed ability of the new adsorbent to separate C10-C14 linear paraffin's molecules from liquid kerosene is a good evidence of the existence of pores fitting those molecules. 2- A Comparison between the DTA diagrams of the preheated at 400C˚for 4 hours Vegobond A [Fig ( 2 )] and the modified Vegobond A [fig ( 3 )] shows the appearance of small exothermal pick at about308 C˚ [formation of anew compound with the improved bentonite] and new Endothermic picks at higher temperatures indicating the presence of chemically bonded OH groups in the new molecular sieve where as those picks do not exist in the simple preheated at 400C˚Vegobond A [fig ( 2)] which is characterized with a substantial exothermic pick at 889C˚. Instead, two small picks appear at this temperature in the molecular sieve [fig (3)] which, in both cases, may be attributed to chemical reaction between the components of the zeolite and improved bentonite. 3- The X ray Diffraction [fig 4] shows a very typical zeolite and bentonite crystalline structures Of the new molecular sieveVBP. 4- Results of separating C10-C14 molecules from liquid kerosene are listed in Table [2]. In which the content of leaner paraffin's is expressed with the ratio of Isoparafines (I) to the normal (linear) paraffin's (N) for raw and refined by means of UOP and VBP molecular sieves. When the comparison is conducted between the final and the pre-final fractions in table (2) It would be obvious that both molecular sieves are functioning nearly close to each other under the same mentioned above conditions. 5- Due to the complexity of both UOP refinery and its pilot plant, we believe that our suggested relatively simple device is a good indicator for such molecular sieve performance[ fig5]. 6- Analysis of paraffin's in kerosene were conducted by means of CARLA ERBA GC equipped with integrator and a column special for LAB plants to detect different molecules of paraffin's in kerosene's[fig6]. 7-Asample of the produced molecular sieve is available if required. (3)

(5)

‫اإلدعبءاث المطلىة دمبٌخهب‬ .‫خ‬ٛ‫ُبد انخغ‬ٛ‫خ نفصم انجبساف‬ٛ‫ئ‬ٚ‫ش يصفبح خض‬ٕٚ‫نزغ‬Vegobond A ‫ذ‬ٛ‫ٕن‬ٚ‫اعزخذاو انض‬-1 .‫ش‬ٕٚ‫ ْزا انزغ‬ٙ‫ ف‬A ‫ذ‬ٛ‫ٕن‬ٚ‫ذ انغٕس٘ يغ انض‬َٕٛ‫اعزخذاو انجُز‬-2 .‫غجق صُؼٓب يٍ قجم يٍ انًكَٕبد انًزكٕسح‬ٚ ‫ذح نى‬ٚ‫ُخ خذ‬ٛ‫خ ْد‬ٛ‫ئ‬ٚ‫م يصفبح خض‬ٛ‫ رشك‬-3 ‫ اإليزضاص‬ٙ‫ز‬ٛ‫ ػًه‬ٙ‫) ٔ اعزخذايّ ف‬ٙ‫ش خٓبص انفصم (يخجش٘ َصف صُبػ‬ٕٚ‫ يالزظخ رغ‬-4 . ‫خ‬ٛ‫ئ‬ٚ‫خ انًصفبح اندض‬ٛ‫ٔ ػكظ اإليزضاص كًؤشش ػهٗ فؼبن‬

Claims To Be Protected 1- Use of the crystalline zeoletite A already implemented in detergent industry, to developed a molecular sieve for linear C10-C14 separation from kerosin 2- Use of Syrian Bentonite for this perpose. 3- A hybrid new molecular sieve formed from the above mentioned compounds. 4- Development of a laboratory pilotplant for this purpose is to be observed.

(5)

‫المراجع‬ References References on Zeolite 1- Breck D.W.1974 Zeolite Molecular Sieves-Structure, Chemistry and Use. Wiley Interscience, New York 2- Breck, Zeolite Molecular Sieves, New York: Wiley (1979); cited in: Römpp, Chemie Lexikon, Band 6, 9.Auflage (1992), Georg Thieme Verlag, Stuttgart 3- Allen, H.E., Cho S.H. Neubecker T.A.1983. Ion exchange and hydrolysis of type A Zeolite in natural waters. Water Res. 17, 1871-1879

References on Syrian Bentonite 4- Y.W.Bizreh, Damascus University journal Vol (18) N˚‗5, part (2) page7-38 (1989) 5- Hamwee, N. master degree dissertation P.29-39 Supervisered by Prof .Y.W.Bizreh, Damascus University (1996) 6- Shaheen Abeer, master degree dissertation Supervised by Prof .Y.W.Bizreh, P.47-52 7- Abdullah, Suzan master degree dissertation Supervised by Prof.Y.W.Bizreh P.39-74 Damascus University, Faculty of sciences (2003)

(6)

Patent No.5333

‫ﺍﻟﺒﺮﺍءﺓ ﺭﻗﻢ ‪5224‬‬

‫‪Patent No.5190‬‬ ‫‪New perborate activator for bleaching powders‬‬ ‫ﺍﺻﻄﻨﺎﻉ ﻣﺎﺩﺓ ﻣﻨﺸﻄﺔ ﺟﺪﻳﺪﺓ ﻟﺘﻔﺎﻋﻞ ﺗﻔﻜﻴﻚ ﺍﻟﺒﺮﺑﻮﺭﺍﺕ ﻓﻲ ﻣﺴﺎﺣﻴﻖ ﺍﻟﺘﻨﻈﻴﻒ‬

Patent No.5044

‫ﺍﻟﺒﺮﺍءﺓ ﺭﻗﻢ ‪4532‬‬

‫ﺍﻟﺒﺮﺍءﺓ ﺭﻗﻢ ‪4216‬‬ ‫ﺗﻄﻮﻳﺮ ﻃﺮﻳﻘﺔ ﻻﺳﺘﺜﻤﺎﺭ ﻓﺤﻢ ﺍﻟﻜﻮﻙ ﺍﻟﺒﺘﺮﻭﻟﻲ ﺍﻟﻤﺸﻮﺏ ﺑﻨﺴﺐ ﻣﺮﺗﻔﻌﺔ ﻣﻦ ﺍﻟﻜﺒﺮﻳﺖ ﻓﻲ‬ ‫ﻣﺠﺎﻝ ﺗﻮﻟﻴﺪ ﺍﻟﻄﺎﻗﺔ‬

‫ﺍﻟﺒﺮﺍءﺓ ﺭﻗﻢ ‪4153‬‬

Fe3+, Co2+, Ni2+, Cr3+, Hg2+

5729 5654

2

2

16400

11400

0.56 7 1

100

2 3 ppm 1000 1

1 25

1000

1000

1000

1000

1000

ppm

8.79

19.1

8.670

0.472

17

ppm

99.12

98.09

99.13

99.95

98.3

2

0.27

25

1000

1000

1000

1000

1000

ppm

1.384

5.6

0

0.397

5

ppm

99.86

99.44

100

99.96

99.5

100 99

2010

5729

1

2009

5654

2

5729

6564

Removal And Recirculation of Heavy Metal Cations Fe3+, Co2+, Ni2+, Cr3+, Hg2+ From Their Water Solution By Adsorbents Made Of Olive Mill Waste Water

Appendix To Patents 5654 & 5729

Prof. YAHYA WALID AL BIZREH Prof. MALAK AL JAUB'E Ass. Prof. ADNAN DEAB Ass. LUBNA AL-HAMOUD

ABSTRACT Heavy metal cations have been removed from their water solution by means of adsorbents prepared from olive mill waste water. Removal of these cations has reached a value of 99 – 100 %.

Technical description of the invention: A- Condition: black powder may be carried on aluminsilicate carriers Density: 0.56 cm3/gr Surface area: 16400 cm2/gr Average diameter: 7 A° B- As for the invention: 1- No body has removed heavy metal cations from their water solutions by means of adsorbents prepared from olive mill waste water and recirculated those cations 2- As for the innovating step: A 99% - 100% removal of heavy metal cations from water solutions and recirculating those cations by our adsorbents in un preceded step. 3- Industrial application ability: this point is explained in the industrial scheme. C- Experiential results: 1- Water solutions of 1000 ppm concentration were prepared for each of Fe3+, Co2+, Ni2+, Cr3+, Hg2+ cations starting from their nitrate salts. 2- One gram of the adsorbent produced from carrying the OMWW coal on aluminosilicate was immersed in 25 ml of

each the above mentioned solutions for 3 days in a statical state. The resulting filtered solutions were almost free of the polluting cations. Results for the purifying efficiency of the suggested adsorbent are listed in the following table: Hg2+

Fe3+

Cr3+

Ni2+

Before Adsorption ppm

1000

1000

1000

1000 1000

After Adsorption ppm

17

0.472

8.670

19.1

98.3

99.95

99.13 99.09 99.12

Cation

Removal %

Co2+

8.79

When 25 ml of the polluted waters was treated with 0.27 gr. of the invented material, in the same way mentioned above, similar results listed in the following table were received: Hg2+

Fe3+

Cr3+

Ni2+

Before Adsorption ppm

1000

1000

1000

1000 1000

After Adsorption ppm

5

0.397

0

99.5

99.96

100

Cation

Removal %

5.6

Co2+

1.384

99.44 99.86

What is claimed to: Adsorption of Hg2+, Fe3+, Cr3+, Ni2+, Co2+, on active carbon produced from olive mill waste water and their recirculation.

Industrial Chart

Original References: 1- Syrian Patent 5654/ 2009 2- Syrian Patent 5729 / 2010