(OAc)2 (M is Mn, Fe, Co, Ni, Cu

0 downloads 0 Views 1MB Size Report
May 4, 2017 - [Mn(C2H8N2)3](C2H3O2)2. [Fe(C2H8N2)3](C2H3O2)2 ..... 42, 339–341. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta.

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316839626

The first-row transition-metal series of tris(ethylenediamine) diacetate complexes [ M (en) 3 ](OAc) 2 ( M is Mn, Fe, Co, Ni, Cu, and Zn) Article  in  Acta crystallographica. Section C · June 2017 DOI: 10.1107/S2053229617006738

CITATIONS

READS

3

29

4 authors, including: Duyen Pham

Mrittika Roy

University of Massachusetts Dartmouth

University of California, Davis

19 PUBLICATIONS   8 CITATIONS   

18 PUBLICATIONS   9 CITATIONS   

SEE PROFILE

James A. Golen University of Massachusetts Dartmouth 391 PUBLICATIONS   2,903 CITATIONS    SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Transition metal complexes and pedagogical demonstrations View project

Crystalline Covalent Metal Organic Networks View project

All content following this page was uploaded by Mrittika Roy on 03 July 2019.

The user has requested enhancement of the downloaded file.

SEE PROFILE

research papers

ISSN 2053-2296

The first-row transition-metal series of tris(ethylenediamine) diacetate complexes [M(en)3](OAc)2 (M is Mn, Fe, Co, Ni, Cu, and Zn) Duyen N. K. Pham, Mrittika Roy, James A. Golen and David R. Manke*

Received 21 February 2017 Accepted 4 May 2017 Edited by G. P. A. Yap, University of Delaware, USA Keywords: transition metals; ethylenediamine; crystal structure; coordination chemistry; isomorphs; acetate; periodic trends. CCDC references: 1547938; 1547937; 1547936; 1547935; 1547934; 1547933 Supporting information: this article has supporting information at journals.iucr.org/c

Chemistry & Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Rd, North Dartmouth, MA 02747, USA. *Correspondence e-mail: [email protected]

The crystal structures of the first-row transition-metal series of tris(ethylenediamine-2N,N0 )metal(II) diacetate, [M(C2H8N2)3](CH3CO2)2, with M = Mn, Fe, Co, Ni, Cu, and Zn, are reported. The complexes are all isostructural, crystallizing in a centrosymmetric triclinic cell and possessing an asymmetric unit composed of one [M(en)3]2+ cation and two symmetrically independent acetate anions. In the unit cell, the two complex cations are inversion-generated enantiomers, possessing the energetically favoured () and () configurations. The complex cations and acetate anions combine through a series of N—H  O hydrogen bonds to generate a three-dimensional network in the crystals. The other notable feature of the series is a significant Jahn–Teller distortion for the d9 Cu2+ complex.

1. Introduction Tris(ethylenediamine) complexes of transition metals have been studied for more than 100 years, with Werner notably examining a [Co(en)]3+ complex in his study of chirality in coordination compounds (Werner, 1912). His explanations of the enantiomeric nature of these complexes were later verified by X-ray crystallography (Saito et al., 1955). Despite the persistence of M(en)3 complexes and the historical significance of these compounds to coordination chemistry, we could only find one example of the M(en)3 series from Mn to Zn, characterized crystallographically, where the counter-anion and charge of the metals are unchanged (Varand et al., 1967). This was a powder study that indexed the unit-cell parameters, but did not provide information on the atomic positions. Having a full series characterized by single-crystal diffraction

# 2017 International Union of Crystallography

442

allows for the direct structural comparison of the complex ions, with the only variance being the metal ion and the d-electron count in the system. Such a series has great pedagogical importance in the discussion of periodic trends.

https://doi.org/10.1107/S2053229617006738

Acta Cryst. (2017). C73, 442–446

research papers Table 1 Experimental details. The data collection temperature was 200 K for each determination.

Crystal data Chemical formula Mr Crystal system, space group ˚) a, b, c (A , ,  ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2 (I)] reflections Rint ˚ 1) (sin /)max (A Refinement R[F 2 > 2 (F 2)], wR(F 2), S No. of reflections No. of parameters, restraints H-atom treatment ˚ 3)  max,  min (e A

Crystal data Chemical formula Mr Crystal system, space group ˚) a, b, c (A , ,  ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2 (I)] reflections Rint ˚ 1) (sin /)max (A Refinement R[F 2 > 2 (F 2)], wR(F 2), S No. of reflections No. of parameters, restraints H-atom treatment ˚ 3)  max,  min (e A

[Mn(en)3](OAc)2

[Fe(en)3](OAc)2

[Co(en)3](OAc)2

[Mn(C2H8N2)3](C2H3O2)2 353.34 Triclinic, P1 8.3860 (9), 9.1422 (9), 12.9405 (14) 69.526 (4), 87.160 (4), 76.788 (4) 904.33 (16) 2 Mo K 0.75 0.28  0.20  0.18

[Fe(C2H8N2)3](C2H3O2)2 354.25 Triclinic, P1 8.3426 (9), 9.1332 (10), 12.8165 (14) 70.423 (5), 86.074 (4), 75.628 (5) 891.19 (17) 2 Cu K 7.00 0.20  0.17  0.14

[Co(C2H8N2)3](C2H3O2)2 357.33 Triclinic, P1 8.3029 (8), 9.1295 (10), 12.7175 (13) 71.021 (4), 85.776 (4), 75.146 (4) 881.09 (16) 2 Mo K 1.00 0.18  0.14  0.08

Bruker CMOS Multi-scan (SADABS; Bruker, 2014) 0.817, 0.877 25301, 3332, 3047

Bruker CMOS Multi-scan (SADABS; Bruker, 2014) 0.335, 0.441 11719, 3214, 2950

Bruker CMOS Multi-scan (SADABS; Bruker, 2014) 0.841, 0.925 18117, 3228, 2900

0.030 0.605

0.042 0.603

0.029 0.604

0.023, 0.060, 1.05 3332 229, 12 H atoms treated by a mixture of independent and constrained refinement 0.29, 0.18

0.032, 0.080, 1.04 3214 229, 12 H atoms treated by a mixture of independent and constrained refinement 0.32, 0.23

0.023, 0.056, 1.08 3228 229, 12 H atoms treated by a mixture of independent and constrained refinement 0.25, 0.21

[Ni(en)3](OAc)2

[Cu(en)3](OAc)2

[Zn(en)3](OAc)2

[Ni(C2H8N2)3](C2H3O2)2 357.11 Triclinic, P1 8.2974 (11), 9.0619 (11), 12.5998 (17) 71.960 (4), 85.204 (5), 74.321 (4) 867.29 (19) 2 Mo K 1.14 0.21  0.17  0.12

[Cu(C2H8N2)3](C2H3O2)2 361.94 Triclinic, P1 8.2953 (8), 8.9144 (8), 12.7148 (12)

[Zn(C2H8N2)3](C2H3O2)2 363.77 Triclinic, P1 8.3223 (5), 9.1059 (5), 12.7492 (7)

75.244 (4), 85.082 (4), 71.226 (4) 860.84 (14) 2 Mo K 1.29 0.20  0.15  0.10

70.855 (2), 85.800 (2), 75.434 (2) 883.34 (9) 2 Mo K 1.41 0.50  0.40  0.40

Bruker CMOS Multi-scan (SADABS; Bruker, 2014) 0.796, 0.875 25372, 3175, 3010

Bruker CMOS Multi-scan (SADABS; Bruker, 2014) 0.782, 0.882 30526, 3287, 2965

Bruker CMOS Multi-scan (SADABS; Bruker, 2014) 0.538, 0.602 14208, 3450, 3242

0.028 0.604

0.042 0.612

0.019 0.618

0.019, 0.049, 1.07 3175 229, 12 H atoms treated by a mixture of independent and constrained refinement 0.27, 0.23

0.025, 0.065, 1.03 3287 228, 12 H atoms treated by a mixture of independent and constrained refinement 0.51, 0.28

0.020, 0.051, 1.08 3450 229, 12 H atoms treated by a mixture of independent and constrained refinement 0.30, 0.24

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Acta Cryst. (2017). C73, 442–446

Pham et al.



[M(en)3](OAc)2 (M = Mn, Fe, Co, Ni, Cu, and Zn)

443

research papers Herein, we report the complete structural series of the form [M(en)3](OAc)2 from Mn to Zn (see Scheme 1).

2. Experimental

in calculated positions with appropriate riding parameters: ˚ (CH2) and Uiso(H) = 1.5Ueq(C) C—H = 0.98 (CH3) or 0.99 A for methyl H atoms and 1.2Ueq(C) otherwise. Nonzero extinction values were found for all the metal complexes except the copper compound.

2.1. Synthesis and crystallization

Approximately 25 mg of each metal diacetate was dissolved in ethylenediamine (3 ml) in a 20 ml vial under an atmosphere of dinitrogen and heated to 353 K. Single crystals suitable for X-ray diffraction studies formed from the solution over a period of 24–72 h. 2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All structural solutions were by intrinsic phasing. To obtain consistency in the data analysis for these isostructural compounds, all the structures were refined using the framework parameters found for the nickel structural solution. H atoms on N atoms (N1–N6) were found from Fourier difference maps and were allowed to ˚ refine isotropically with fixed N—H distances of 0.87 (1) A and with Uiso(H) = 1.2Ueq(N). All other H atoms were placed

3. Results and discussion The asymmetric units of the compounds [M(en)3](OAc)2 (M = Mn, Fe, Co, Ni, Cu, and Zn) are all isostructural and consist of one MII ion coordinated by three bidentate ethylenediamine ligands and two symmetrically independent noncoordinated acetate anions (Fig. 1). The tris-chelate complex ions possess a distortion from octahedral to pseudo-D3 symmetry enforced by N—M—N bite angles ranging from 77.37 (4) to 83.22 (6) . The structures can be described as trigonal antiprisms, defined by the twist angle between the N1—N4—N5 and N2—N3—N6 planes. Across the six compounds, these twist angles range from 45.8972 (6) for the Mn compound to 50.4226 (3) for the Ni compound, which are similar to those observed in previously reported M(en)3 complexes. The average M—N distance for each complex follows a trend, viz. decreasing from Mn to Ni and then increasing from

Figure 1 The isostructural asymmetric units of the six title [M(en)3](OAc)2 complexes shown along the pseudo-C3 axis of the cation. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radius.

444

Pham et al.



[M(en)3](OAc)2 (M = Mn, Fe, Co, Ni, Cu, and Zn)

Acta Cryst. (2017). C73, 442–446

research papers Table 2 ˚ ) for the [M(en)3](OAc)2 series. Selected bond lengths (A

M1—N1 M1—N2 M1—N3 M1—N4 M1—N5 M1—N6 M—N (average)

Mn

Fe

Co

Ni

Cu

Zn

2.2459 (12) 2.2740 (13) 2.2680 (12) 2.2797 (13) 2.2699 (13) 2.2784 (13) 2.2693

2.1880 (17) 2.2147 (18) 2.2062 (16) 2.2183 (18) 2.2115 (19) 2.2124 (18) 2.2085

2.1455 (14) 2.1735 (14) 2.1625 (13) 2.1757 (14) 2.1708 (15) 2.1687 (15) 2.1661

2.1073 (12) 2.1225 (12) 2.1140 (12) 2.1326 (12) 2.1192 (12) 2.1274 (12) 2.1205

2.0461 (15) 2.3705 (16) 2.0400 (15) 2.0706 (16) 2.4123 (18) 2.0765 (15) 2.1693

2.1570 (12) 2.1927 (12) 2.1795 (11) 2.1992 (12) 2.1816 (13) 2.1979 (13) 2.1847

Ni to Zn, which is consistent with the atomic radii of the M2+ ions themselves (Table 2). In five of the structures, the M—N distances do not exhibit any major variances. The exception is the d9 CuII structure, which shows a textbook Jahn–Teller

distortion, with axial elongation [Cu—N = 2.4123 (18) and ˚ ] and equatorial compression [Cu—N = 2.3705 (16) A ˚ ]. The 2.0400 (15), 2.0461 (15), 2.0706 (16), and 2.0765 (16) A copper acetate salt is the one member of this series that has

Figure 2 The molecular packing of [Ni(en)3](OAc)2, shown along (a) the a axis, (b) the b axis, and (c) the c axis. H atoms not involved in intermolecular interactions have been omitted for clarity. Acta Cryst. (2017). C73, 442–446

Pham et al.



[M(en)3](OAc)2 (M = Mn, Fe, Co, Ni, Cu, and Zn)

445

research papers been reported previously, i.e. as a communication to the Cambridge Structural Database (Groom et al., 2016), with data collection at a different temperature (Tasker et al., 2005). Jahn–Teller distortion is also observed in that data set and also in the structure of the trifluoroacetate salt (Karpova et al., 2008). The crystals of the title compounds are racemates, with the cations in the asymmetric unit possessing a chiral () configuration, while the other inversion-generated cations in the unit cell are the () enantiomer. These configurations are the lowest-energy conformations and are consistent with most literature structures of M(en)3 complexes (Beattie, 1971). The  and  conformations of each five-membered M— N—C—C—N ring are defined by the direction of the puckering in the complex. The degree of ring puckering can be defined by the N—C—C—N torsion angle of each ethylenediamine ligand. The distorted copper complex demonstrates the extremes of puckering in this series, with torsion angles ranging from 54.766 (6) to 60.833 (4) . For the noncopper structures, the torsion angles range from a minimum of 57.532 (5) in the Co compound to a maximum of 60.226 (4) in the Mn compound. The two acetate ions take part in N—H  O hydrogen bonding with the amine groups. Each structure shows 12 distinct hydrogen bonds, involving all available N—H donor groups. These are a mix of strong and weak hydrogen bonds, ˚ with N  O separations ranging from 2.793 (2) to 3.646 (2) A across the six structures in the series. The complete set of hydrogen bonds for [Ni(en)3](OAc)2 are listed in Table 3 to provide a representative look at these interactions. Each acetate anion interacts with three neighboring [M(en)3]2+ cations, and each [M(en)3]2+ cation interacts with six acetate anions. These interactions combine to join the ions together in a three-dimensional network (Fig. 2). The monohydrate of [Ni(en)3](OAc)2 has been reported previously and demonstrates a different hydrogen-bonding network incorporating the water molecules (Cramer et al., 1976). The similar compound tris(ethylenediamine)nickel(II) bis(trifluoroacetate) has been reported with a network involving N—H  F hydrogen bonds (Urrutigoı¨ty et al., 1996). In summary, the current study presents the first-row transition-metal series (Mn–Zn) of tris(ethylenediamine) diacetate complexes. The full data sets for the sequence of isomorphous complexes allows for the comparison of the complex cations in the system, with the only significant variation being the metal atom and the d-electron count. Such series have significance for pedagogical applications in

446

Pham et al.



[M(en)3](OAc)2 (M = Mn, Fe, Co, Ni, Cu, and Zn)

Table 3 ˚ ,  ) for [Ni(en)3](OAc)2. Hydrogen-bond geometry (A D—H  A i

N1—H1NA  O4 N1—H1NB  O4 N2—H2NA  O1ii N2—H2NB  O1iii N3—H3NA  O2iii N3—H3NB  O2 N4—H4NA  O1ii N4—H4NB  O3iv N5—H5NA  O4i N5—H5NB  O2 N6—H6NA  O2iii N6—H6NB  O3

D—H

H  A

D  A

D—H  A

0.86 (1) 0.88 (1) 0.87 (1) 0.87 (1) 0.86 (1) 0.86 (1) 0.87 (1) 0.87 (1) 0.86 (1) 0.87 (1) 0.87 (1) 0.87 (1)

2.29 (1) 2.08 (1) 2.11 (1) 2.23 (1) 2.33 (1) 2.09 (1) 2.25 (1) 2.21 (1) 2.09 (1) 2.44 (1) 2.48 (1) 2.08 (1)

3.0370 (17) 2.9536 (17) 2.9690 (18) 3.0444 (17) 3.1076 (17) 2.9316 (17) 3.0762 (17) 2.9916 (16) 2.9105 (17) 3.2254 (19) 3.3102 (19) 2.9395 (18)

145 (1) 172 (2) 170 (2) 157 (2) 150 (1) 168 (2) 160 (2) 150 (2) 158 (2) 151 (2) 159 (2) 171 (2)

Symmetry codes: (i) x þ 1; y þ 1; z þ 2; (ii) x; y þ 1; z; (iii) x þ 1; y þ 1, z þ 1; (iv) x þ 1; y; z.

discussions of inorganic chemistry tenets, including periodic trends, the ligand field, and oxidation-state formalisms (Wolczanski, 2017).

Funding information Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. CHE-1429086).

References Beattie, J. K. (1971). Acc. Chem. Res. pp. 253–259. Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Cramer, R. E., Van Doorne, W. & Huneke, J. T. (1976). Inorg. Chem. 15, 529–535. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Karpova, E. V., Zakharov, M. A., Boltalin, A. I. & Rybakov, V. B. (2008). Acta Cryst. E64, m373. Saito, Y., Nakatsu, K., Shiro, M. & Kuroya, H. (1955). Acta Cryst. 8, 729–730. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Tasker, P., Parkin, A., Squires, C., Parsons, S. & Messenger, D. (2005). Private communication (refcode TAQMAA). CCDC, Cambridge, England. Urrutigoı¨ty, M., Cecutti, C., Senocq, F., Gorrichon, J.-P. & Gleizes, A. (1996). Inorg. Chim. Acta, 248, 15–21. Varand, V. L., Podberzskaya, N. V., Shul’man, V. M., Bakakin, V. V. & Ruchkin, E. D. (1967). Izv. Sib. Otd. Akad. Nauk SSSR, 12, 595– 598. Werner, A. (1912). Chem. Ber. 45, 121–130. Wolczanski, P. T. (2017). Organometallics, 36, 622–631.

Acta Cryst. (2017). C73, 442–446

supporting information

supporting information Acta Cryst. (2017). C73, 442-446

[https://doi.org/10.1107/S2053229617006738]

The first-row transition-metal series of tris(ethylenediamine) diacetate complexes [M(en)3](OAc)2 (M is Mn, Fe, Co, Ni, Cu, and Zn) Duyen N. K. Pham, Mrittika Roy, James A. Golen and David R. Manke Computing details For all compounds, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: SHELXTL (Sheldrick, 2008) for umd905_a, umd815, umd908, umd943_a, umd886; OLEX2 (Dolomanov et al., 2009) for umd906_a. Software used to prepare material for publication: SHELXTL (Sheldrick, 2008) for umd905_a, umd815, umd908, umd943_a, umd886; OLEX2 (Dolomanov et al., 2009) for umd906_a. (umd905_a) Tris(ethylenediamine-κ2N,N′)manganese(II) diacetate Crystal data [Mn(C2H8N2)3](C2H3O2)2 Mr = 353.34 Triclinic, P1 a = 8.3860 (9) Å b = 9.1422 (9) Å c = 12.9405 (14) Å α = 69.526 (4)° β = 87.160 (4)° γ = 76.788 (4)° V = 904.33 (16) Å3

Z=2 F(000) = 378 Dx = 1.298 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 9895 reflections θ = 3.0–25.5° µ = 0.75 mm−1 T = 200 K Block, colourless 0.28 × 0.20 × 0.18 mm

Data collection Bruker CMOS diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) Tmin = 0.817, Tmax = 0.877

25301 measured reflections 3332 independent reflections 3047 reflections with I > 2σ(I) Rint = 0.030 θmax = 25.5°, θmin = 3.1° h = −10→10 k = −11→11 l = −15→15

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.023 wR(F2) = 0.060 S = 1.05 3332 reflections

Acta Cryst. (2017). C73, 442-446

229 parameters 12 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

sup-1

supporting information Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0254P)2 + 0.3555P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.29 e Å−3 Δρmin = −0.18 e Å−3 Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.017 (2)

Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Mn1 O1 O2 N1 H1NB H1NA N2 H2NB H2NA N3 H3NB H3NA N4 H4NB H4NA N5 H5NB H5NA N6 H6NB H6NA C1 H1B H1A C2 H2A H2B C3 H3B

x

y

z

Uiso*/Ueq

0.56819 (2) 0.73843 (14) 0.69158 (18) 0.53719 (16) 0.4532 (16) 0.6238 (15) 0.44821 (15) 0.3727 (16) 0.5213 (17) 0.62665 (14) 0.639 (2) 0.5457 (15) 0.82619 (15) 0.8909 (18) 0.815 (2) 0.62220 (18) 0.674 (2) 0.6819 (19) 0.32040 (16) 0.2509 (19) 0.279 (2) 0.5093 (2) 0.6134 0.4680 0.3843 (2) 0.2797 0.3631 0.77921 (17) 0.7556

0.64374 (2) 0.04560 (14) 0.26521 (16) 0.69532 (15) 0.663 (2) 0.6452 (18) 0.90987 (15) 0.930 (2) 0.9641 (18) 0.61548 (15) 0.5156 (12) 0.6685 (17) 0.68812 (15) 0.6576 (19) 0.7910 (11) 0.37546 (16) 0.322 (2) 0.352 (2) 0.58508 (18) 0.621 (2) 0.632 (2) 0.86951 (19) 0.9043 0.8983 0.95266 (19) 0.9189 1.0702 0.66671 (18) 0.7847

0.712668 (16) 0.55454 (10) 0.59452 (14) 0.87081 (10) 0.9065 (13) 0.9131 (12) 0.65172 (10) 0.6015 (11) 0.6213 (13) 0.54673 (10) 0.5547 (13) 0.4992 (11) 0.68501 (10) 0.7426 (10) 0.6536 (13) 0.80588 (11) 0.7663 (13) 0.8645 (11) 0.70418 (11) 0.7469 (13) 0.6373 (9) 0.84352 (13) 0.8227 0.9085 0.74796 (13) 0.7693 0.7291 0.50754 (12) 0.4715

0.02420 (9) 0.0425 (3) 0.0689 (5) 0.0308 (3) 0.037* 0.037* 0.0296 (3) 0.036* 0.036* 0.0263 (3) 0.032* 0.032* 0.0299 (3) 0.036* 0.036* 0.0366 (3) 0.044* 0.044* 0.0375 (3) 0.045* 0.045* 0.0387 (4) 0.046* 0.046* 0.0379 (4) 0.046* 0.046* 0.0303 (3) 0.036*

Acta Cryst. (2017). C73, 442-446

sup-2

supporting information H3A C4 H4B H4A C5 H5B H5A C6 H6B H6A C7 H7A H7B H7C C8 O3 O4 C10 H10A H10B H10C C9

0.8273 0.90019 (17) 0.9272 1.0027 0.4636 (2) 0.4195 0.4787 0.3439 (2) 0.3869 0.2376 0.9441 (2) 0.9695 1.0283 0.9417 0.77878 (17) 0.06899 (15) 0.24077 (13) −0.0381 (2) −0.1340 −0.0047 −0.0658 0.10177 (18)

0.6182 0.61537 (19) 0.4971 0.6507 0.3318 (2) 0.3669 0.2140 0.4108 (2) 0.3745 0.3802 0.0783 (2) 0.1655 0.0458 −0.0133 0.13513 (16) 0.67463 (17) 0.62274 (15) 0.7387 (3) 0.7952 0.8131 0.6497 0.67380 (19)

0.4524 0.60379 (12) 0.6384 0.5775 0.83653 (13) 0.8985 0.8610 0.73861 (13) 0.6769 0.7590 0.65646 (17) 0.6754 0.6085 0.7241 0.59685 (11) 0.85093 (10) 0.98985 (9) 1.00606 (18) 0.9561 1.0352 1.0673 0.94349 (12)

0.036* 0.0323 (3) 0.039* 0.039* 0.0428 (4) 0.051* 0.051* 0.0417 (4) 0.050* 0.050* 0.0503 (5) 0.075* 0.075* 0.075* 0.0275 (3) 0.0515 (3) 0.0437 (3) 0.0649 (6) 0.097* 0.097* 0.097* 0.0334 (3)

Atomic displacement parameters (Å2)

Mn1 O1 O2 N1 N2 N3 N4 N5 N6 C1 C2 C3 C4 C5 C6 C7 C8 O3 O4 C10 C9

U11

U22

U33

U12

U13

U23

0.02426 (13) 0.0480 (7) 0.0623 (9) 0.0340 (7) 0.0299 (7) 0.0252 (6) 0.0265 (6) 0.0491 (8) 0.0319 (7) 0.0530 (10) 0.0438 (9) 0.0276 (7) 0.0219 (7) 0.0677 (12) 0.0491 (10) 0.0377 (9) 0.0272 (7) 0.0437 (7) 0.0318 (6) 0.0455 (11) 0.0316 (8)

0.02828 (13) 0.0409 (6) 0.0453 (8) 0.0347 (7) 0.0320 (7) 0.0314 (6) 0.0339 (7) 0.0323 (7) 0.0522 (8) 0.0378 (9) 0.0321 (8) 0.0386 (8) 0.0389 (8) 0.0402 (9) 0.0574 (11) 0.0411 (9) 0.0262 (7) 0.0796 (9) 0.0631 (8) 0.0860 (16) 0.0384 (8)

0.02108 (12) 0.0435 (7) 0.1023 (12) 0.0222 (6) 0.0251 (6) 0.0244 (6) 0.0311 (7) 0.0268 (7) 0.0298 (7) 0.0287 (8) 0.0347 (8) 0.0263 (7) 0.0363 (8) 0.0258 (8) 0.0319 (8) 0.0676 (12) 0.0266 (7) 0.0331 (6) 0.0322 (6) 0.0622 (13) 0.0269 (8)

−0.00336 (8) −0.0104 (5) 0.0180 (6) −0.0018 (5) −0.0027 (5) −0.0039 (5) −0.0040 (5) −0.0036 (6) −0.0128 (6) −0.0067 (7) 0.0035 (7) −0.0050 (6) −0.0014 (6) −0.0257 (8) −0.0289 (8) −0.0101 (7) −0.0073 (6) −0.0129 (6) −0.0055 (5) −0.0029 (10) −0.0088 (6)

−0.00323 (8) −0.0117 (5) −0.0411 (8) −0.0055 (5) −0.0068 (5) −0.0040 (5) −0.0090 (5) −0.0106 (6) −0.0041 (5) −0.0059 (7) −0.0037 (7) 0.0013 (6) −0.0025 (6) −0.0006 (8) 0.0031 (7) −0.0207 (9) −0.0026 (6) −0.0099 (5) −0.0088 (5) 0.0068 (10) −0.0037 (6)

−0.01091 (9) −0.0189 (5) −0.0425 (8) −0.0110 (5) −0.0093 (5) −0.0130 (5) −0.0138 (6) −0.0105 (6) −0.0131 (6) −0.0172 (7) −0.0147 (7) −0.0150 (6) −0.0163 (7) −0.0092 (7) −0.0211 (8) −0.0096 (9) −0.0048 (6) −0.0213 (6) −0.0136 (5) −0.0328 (12) −0.0061 (6)

Acta Cryst. (2017). C73, 442-446

sup-3

supporting information Geometric parameters (Å, º) Mn1—N1 Mn1—N3 Mn1—N5 Mn1—N2 Mn1—N6 Mn1—N4 O1—C8 O2—C8 N1—C1 N1—H1NB N1—H1NA N2—C2 N2—H2NB N2—H2NA N3—C3 N3—H3NB N3—H3NA N4—C4 N4—H4NB N4—H4NA N5—C5 N5—H5NB N5—H5NA N6—C6 N6—H6NB N6—H6NA

2.2459 (12) 2.2680 (12) 2.2699 (13) 2.2740 (13) 2.2784 (13) 2.2797 (13) 1.2421 (17) 1.2368 (18) 1.470 (2) 0.875 (9) 0.866 (9) 1.4731 (19) 0.872 (9) 0.869 (9) 1.4686 (19) 0.863 (9) 0.869 (9) 1.4724 (19) 0.868 (9) 0.868 (9) 1.472 (2) 0.866 (9) 0.865 (9) 1.464 (2) 0.871 (9) 0.871 (9)

C1—C2 C1—H1B C1—H1A C2—H2A C2—H2B C3—C4 C3—H3B C3—H3A C4—H4B C4—H4A C5—C6 C5—H5B C5—H5A C6—H6B C6—H6A C7—C8 C7—H7A C7—H7B C7—H7C O3—C9 O4—C9 C10—C9 C10—H10A C10—H10B C10—H10C

1.521 (2) 0.9900 0.9900 0.9900 0.9900 1.5164 (19) 0.9900 0.9900 0.9900 0.9900 1.513 (2) 0.9900 0.9900 0.9900 0.9900 1.511 (2) 0.9800 0.9800 0.9800 1.2392 (19) 1.2495 (18) 1.519 (2) 0.9800 0.9800 0.9800

N1—Mn1—N3 N1—Mn1—N5 N3—Mn1—N5 N1—Mn1—N2 N3—Mn1—N2 N5—Mn1—N2 N1—Mn1—N6 N3—Mn1—N6 N5—Mn1—N6 N2—Mn1—N6 N1—Mn1—N4 N3—Mn1—N4 N5—Mn1—N4 N2—Mn1—N4 N6—Mn1—N4 C1—N1—Mn1 C1—N1—H1NB Mn1—N1—H1NB C1—N1—H1NA

171.45 (5) 91.55 (5) 93.58 (5) 78.00 (5) 98.52 (4) 162.89 (5) 98.33 (5) 89.45 (5) 77.81 (5) 90.21 (5) 94.92 (5) 77.37 (4) 101.35 (5) 93.11 (5) 166.74 (5) 108.21 (9) 108.8 (11) 111.3 (11) 111.3 (11)

C2—C1—H1B N1—C1—H1A C2—C1—H1A H1B—C1—H1A N2—C2—C1 N2—C2—H2A C1—C2—H2A N2—C2—H2B C1—C2—H2B H2A—C2—H2B N3—C3—C4 N3—C3—H3B C4—C3—H3B N3—C3—H3A C4—C3—H3A H3B—C3—H3A N4—C4—C3 N4—C4—H4B C3—C4—H4B

109.9 109.9 109.9 108.3 109.23 (12) 109.8 109.8 109.8 109.8 108.3 109.91 (12) 109.7 109.7 109.7 109.7 108.2 108.81 (11) 109.9 109.9

Acta Cryst. (2017). C73, 442-446

sup-4

supporting information Mn1—N1—H1NA H1NB—N1—H1NA C2—N2—Mn1 C2—N2—H2NB Mn1—N2—H2NB C2—N2—H2NA Mn1—N2—H2NA H2NB—N2—H2NA C3—N3—Mn1 C3—N3—H3NB Mn1—N3—H3NB C3—N3—H3NA Mn1—N3—H3NA H3NB—N3—H3NA C4—N4—Mn1 C4—N4—H4NB Mn1—N4—H4NB C4—N4—H4NA Mn1—N4—H4NA H4NB—N4—H4NA C5—N5—Mn1 C5—N5—H5NB Mn1—N5—H5NB C5—N5—H5NA Mn1—N5—H5NA H5NB—N5—H5NA C6—N6—Mn1 C6—N6—H6NB Mn1—N6—H6NB C6—N6—H6NA Mn1—N6—H6NA H6NB—N6—H6NA N1—C1—C2 N1—C1—H1B

109.5 (11) 107.8 (16) 107.94 (9) 113.3 (11) 109.1 (11) 109.1 (11) 109.2 (11) 108.0 (16) 109.61 (8) 109.1 (11) 108.6 (11) 111.5 (11) 111.0 (11) 106.9 (15) 107.12 (8) 111.1 (11) 117.6 (11) 106.7 (11) 106.3 (11) 107.4 (16) 107.05 (10) 109.9 (12) 111.9 (12) 110.1 (12) 109.7 (12) 108.1 (17) 108.52 (10) 109.5 (13) 111.4 (12) 110.8 (12) 109.8 (12) 106.8 (17) 108.81 (12) 109.9

N4—C4—H4A C3—C4—H4A H4B—C4—H4A N5—C5—C6 N5—C5—H5B C6—C5—H5B N5—C5—H5A C6—C5—H5A H5B—C5—H5A N6—C6—C5 N6—C6—H6B C5—C6—H6B N6—C6—H6A C5—C6—H6A H6B—C6—H6A C8—C7—H7A C8—C7—H7B H7A—C7—H7B C8—C7—H7C H7A—C7—H7C H7B—C7—H7C O2—C8—O1 O2—C8—C7 O1—C8—C7 C9—C10—H10A C9—C10—H10B H10A—C10—H10B C9—C10—H10C H10A—C10—H10C H10B—C10—H10C O3—C9—O4 O3—C9—C10 O4—C9—C10

109.9 109.9 108.3 109.89 (13) 109.7 109.7 109.7 109.7 108.2 109.25 (12) 109.8 109.8 109.8 109.8 108.3 109.5 109.5 109.5 109.5 109.5 109.5 124.20 (14) 118.61 (14) 117.18 (14) 109.5 109.5 109.5 109.5 109.5 109.5 125.15 (15) 117.53 (15) 117.32 (15)

N3—Mn1—N1—C1 N5—Mn1—N1—C1 N2—Mn1—N1—C1 N6—Mn1—N1—C1 N4—Mn1—N1—C1 N1—Mn1—N2—C2 N3—Mn1—N2—C2 N5—Mn1—N2—C2 N6—Mn1—N2—C2 N4—Mn1—N2—C2 N1—Mn1—N3—C3 N5—Mn1—N3—C3 N2—Mn1—N3—C3

49.3 (3) 176.20 (11) −17.47 (10) −105.90 (11) 74.67 (10) −13.44 (10) 174.51 (10) 40.0 (2) 85.03 (10) −107.81 (10) 16.5 (4) −110.19 (10) 81.93 (9)

N1—Mn1—N5—C5 N3—Mn1—N5—C5 N2—Mn1—N5—C5 N6—Mn1—N5—C5 N4—Mn1—N5—C5 N1—Mn1—N6—C6 N3—Mn1—N6—C6 N5—Mn1—N6—C6 N2—Mn1—N6—C6 N4—Mn1—N6—C6 Mn1—N1—C1—C2 Mn1—N2—C2—C1 N1—C1—C2—N2

80.60 (10) −106.24 (9) 28.8 (2) −17.58 (9) 175.94 (9) −102.66 (10) 80.92 (10) −12.87 (10) 179.44 (10) 74.9 (2) 45.50 (15) 41.87 (15) −60.16 (17)

Acta Cryst. (2017). C73, 442-446

sup-5

supporting information N6—Mn1—N3—C3 N4—Mn1—N3—C3 N1—Mn1—N4—C4 N3—Mn1—N4—C4 N5—Mn1—N4—C4 N2—Mn1—N4—C4 N6—Mn1—N4—C4

172.06 (10) −9.36 (9) 162.87 (9) −20.87 (9) 70.29 (10) −118.92 (9) −14.7 (3)

Mn1—N3—C3—C4 Mn1—N4—C4—C3 N3—C3—C4—N4 Mn1—N5—C5—C6 Mn1—N6—C6—C5 N5—C5—C6—N6

38.03 (13) 47.82 (13) −59.09 (16) 45.71 (15) 41.12 (15) −60.23 (18)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

N1—H1NB···O4 N1—H1NA···O4i N2—H2NB···O1ii N2—H2NA···O1iii N3—H3NB···O2 N3—H3NA···O2ii N4—H4NB···O3iv N4—H4NA···O1iii N5—H5NB···O2 N5—H5NA···O4i N6—H6NB···O3 N6—H6NA···O2ii

0.88 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.86 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.87 (1)

2.07 (1) 2.36 (1) 2.18 (1) 2.15 (1) 2.11 (1) 2.23 (1) 2.17 (1) 2.19 (1) 2.44 (1) 2.12 (1) 2.07 (1) 2.83 (1)

2.9413 (18) 3.0600 (17) 3.0169 (16) 3.0050 (18) 2.9638 (18) 3.0677 (18) 2.9839 (16) 3.0392 (18) 3.215 (2) 2.9408 (17) 2.9366 (19) 3.619 (2)

171 (2) 138 (1) 160 (2) 167 (2) 172 (2) 162 (2) 157 (2) 167 (2) 149 (2) 157 (2) 171 (2) 152 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) x+1, y, z.

(umd815) Tris(ethylenediamine-κ2N,N′)iron(II) diacetate Crystal data [Fe(C2H8N2)3](C2H3O2)2 Mr = 354.25 Triclinic, P1 a = 8.3426 (9) Å b = 9.1332 (10) Å c = 12.8165 (14) Å α = 70.423 (5)° β = 86.074 (4)° γ = 75.628 (5)° V = 891.19 (17) Å3

Z=2 F(000) = 380 Dx = 1.320 Mg m−3 Cu Kα radiation, λ = 1.54178 Å Cell parameters from 8016 reflections θ = 6.5–68.4° µ = 7.00 mm−1 T = 200 K Plate, yellow 0.20 × 0.17 × 0.14 mm

Data collection Bruker CMOS diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) Tmin = 0.335, Tmax = 0.441

Acta Cryst. (2017). C73, 442-446

11719 measured reflections 3214 independent reflections 2950 reflections with I > 2σ(I) Rint = 0.042 θmax = 68.4°, θmin = 6.5° h = −10→9 k = −11→11 l = −15→15

sup-6

supporting information Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.032 wR(F2) = 0.080 S = 1.04 3214 reflections 229 parameters 12 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0329P)2 + 0.4027P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.032 Δρmax = 0.32 e Å−3 Δρmin = −0.23 e Å−3 Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0020 (8)

Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Fe1 O1 O2 O3 O4 N1 H1NB H1NA N2 H2NB H2NA N3 H3NB H3NA N4 H4NB H4NA N5 H5NB H5NA N6 H6NB H6NA

x

y

z

Uiso*/Ueq

0.56462 (4) 0.7351 (2) 0.7073 (3) 0.0632 (2) 0.23459 (19) 0.5317 (2) 0.449 (2) 0.618 (2) 0.4475 (2) 0.371 (2) 0.522 (2) 0.6223 (2) 0.633 (3) 0.540 (2) 0.8175 (2) 0.882 (3) 0.806 (3) 0.6332 (3) 0.688 (3) 0.696 (3) 0.3246 (2) 0.250 (2) 0.284 (3)

0.64380 (4) 0.0421 (2) 0.2747 (2) 0.6747 (3) 0.6196 (2) 0.6918 (2) 0.657 (3) 0.638 (3) 0.9036 (2) 0.923 (3) 0.956 (3) 0.6197 (2) 0.5203 (14) 0.675 (2) 0.6856 (2) 0.653 (3) 0.7891 (13) 0.3822 (2) 0.330 (3) 0.360 (3) 0.5854 (3) 0.621 (3) 0.632 (3)

0.71347 (2) 0.55820 (14) 0.5798 (2) 0.85454 (14) 0.99416 (13) 0.87072 (14) 0.9074 (18) 0.9148 (17) 0.65327 (14) 0.6046 (16) 0.6227 (19) 0.54856 (13) 0.5531 (19) 0.5037 (16) 0.69066 (15) 0.7488 (14) 0.6636 (19) 0.79907 (15) 0.7572 (19) 0.8563 (15) 0.70608 (15) 0.7476 (19) 0.6388 (11)

0.02355 (13) 0.0461 (4) 0.0712 (7) 0.0547 (5) 0.0458 (4) 0.0313 (4) 0.038* 0.038* 0.0312 (4) 0.037* 0.037* 0.0271 (4) 0.033* 0.033* 0.0316 (4) 0.038* 0.038* 0.0361 (4) 0.043* 0.043* 0.0377 (4) 0.045* 0.045*

Acta Cryst. (2017). C73, 442-446

sup-7

supporting information C1 H1B H1A C2 H2A H2B C3 H3B H3A C4 H4B H4A C5 H5B H5A C6 H6B H6A C7 H7A H7B H7C C8 C9 C10 H10A H10B H10C

0.5033 (3) 0.6088 0.4594 0.3798 (3) 0.2735 0.3590 0.7750 (3) 0.7497 0.8247 0.8964 (3) 0.9260 0.9989 0.4770 (3) 0.4321 0.4979 0.3530 (3) 0.3955 0.2476 0.9463 (3) 0.9715 1.0340 0.9394 0.7829 (2) 0.0950 (3) −0.0470 (4) −0.1199 −0.1097 −0.0031

0.8651 (3) 0.8982 0.8942 0.9493 (3) 0.9181 1.0667 0.6713 (3) 0.7893 0.6249 0.6167 (3) 0.4984 0.6534 0.3326 (3) 0.3636 0.2148 0.4113 (3) 0.3767 0.3791 0.0730 (3) 0.1579 0.0388 −0.0182 0.1357 (2) 0.6731 (3) 0.7411 (5) 0.6673 0.8449 0.7550

0.84614 (18) 0.8261 0.9121 0.75037 (19) 0.7713 0.7322 0.50936 (16) 0.4763 0.4516 0.60555 (18) 0.6368 0.5799 0.83203 (19) 0.8971 0.8530 0.73725 (18) 0.6731 0.7599 0.6558 (2) 0.6779 0.6081 0.7220 0.59342 (16) 0.94795 (17) 1.0117 (3) 1.0370 0.9634 1.0758

0.0404 (5) 0.048* 0.048* 0.0404 (5) 0.049* 0.049* 0.0322 (5) 0.039* 0.039* 0.0353 (5) 0.042* 0.042* 0.0447 (6) 0.054* 0.054* 0.0422 (6) 0.051* 0.051* 0.0519 (7) 0.078* 0.078* 0.078* 0.0284 (4) 0.0348 (5) 0.0682 (9) 0.102* 0.102* 0.102*

Atomic displacement parameters (Å2)

Fe1 O1 O2 O3 O4 N1 N2 N3 N4 N5 N6 C1 C2 C3 C4 C5

U11

U22

U33

U12

U13

U23

0.02226 (18) 0.0535 (10) 0.0661 (13) 0.0418 (10) 0.0317 (9) 0.0324 (10) 0.0312 (10) 0.0249 (9) 0.0260 (9) 0.0471 (12) 0.0303 (10) 0.0521 (14) 0.0433 (13) 0.0298 (11) 0.0218 (10) 0.0667 (17)

0.02674 (19) 0.0392 (9) 0.0420 (11) 0.0879 (14) 0.0655 (11) 0.0361 (10) 0.0302 (9) 0.0311 (9) 0.0363 (10) 0.0304 (10) 0.0547 (12) 0.0395 (13) 0.0341 (12) 0.0406 (12) 0.0428 (13) 0.0435 (14)

0.02107 (17) 0.0489 (10) 0.1055 (17) 0.0347 (9) 0.0340 (8) 0.0229 (8) 0.0285 (9) 0.0254 (8) 0.0323 (9) 0.0289 (9) 0.0290 (9) 0.0335 (11) 0.0410 (12) 0.0265 (10) 0.0410 (12) 0.0290 (11)

−0.00375 (12) −0.0160 (8) 0.0181 (10) −0.0142 (10) −0.0041 (8) −0.0028 (8) −0.0024 (8) −0.0041 (7) −0.0047 (8) −0.0045 (9) −0.0129 (9) −0.0062 (11) 0.0043 (10) −0.0073 (9) −0.0032 (9) −0.0269 (13)

−0.00380 (11) −0.0171 (8) −0.0449 (12) −0.0100 (7) −0.0104 (7) −0.0052 (7) −0.0098 (7) −0.0046 (7) −0.0090 (7) −0.0112 (8) −0.0009 (8) −0.0066 (10) −0.0055 (10) 0.0022 (8) −0.0017 (9) −0.0007 (11)

−0.00786 (12) −0.0117 (8) −0.0377 (11) −0.0197 (9) −0.0118 (8) −0.0092 (8) −0.0065 (7) −0.0102 (7) −0.0111 (8) −0.0082 (8) −0.0126 (9) −0.0192 (10) −0.0171 (10) −0.0128 (9) −0.0163 (10) −0.0084 (10)

Acta Cryst. (2017). C73, 442-446

sup-8

supporting information C6 C7 C8 C9 C10

0.0490 (14) 0.0375 (13) 0.0259 (10) 0.0305 (11) 0.0424 (16)

0.0564 (15) 0.0427 (14) 0.0286 (11) 0.0415 (12) 0.095 (2)

0.0331 (11) 0.0699 (18) 0.0287 (10) 0.0289 (11) 0.0633 (18)

−0.0288 (12) −0.0077 (11) −0.0071 (9) −0.0094 (10) −0.0005 (16)

0.0017 (10) −0.0226 (12) −0.0008 (8) −0.0039 (9) 0.0047 (13)

−0.0186 (11) −0.0080 (13) −0.0063 (8) −0.0058 (9) −0.0341 (18)

Geometric parameters (Å, º) Fe1—N1 Fe1—N3 Fe1—N5 Fe1—N6 Fe1—N2 Fe1—N4 O1—C8 O2—C8 O3—C9 O4—C9 N1—C1 N1—H1NB N1—H1NA N2—C2 N2—H2NB N2—H2NA N3—C3 N3—H3NB N3—H3NA N4—C4 N4—H4NB N4—H4NA N5—C5 N5—H5NB N5—H5NA N6—C6

2.1880 (17) 2.2062 (16) 2.2115 (19) 2.2124 (18) 2.2147 (18) 2.2183 (18) 1.244 (2) 1.228 (3) 1.239 (3) 1.250 (3) 1.466 (3) 0.871 (10) 0.878 (10) 1.475 (3) 0.871 (10) 0.867 (10) 1.466 (3) 0.872 (10) 0.865 (10) 1.475 (3) 0.870 (10) 0.874 (10) 1.474 (3) 0.872 (10) 0.870 (10) 1.464 (3)

N6—H6NB N6—H6NA C1—C2 C1—H1B C1—H1A C2—H2A C2—H2B C3—C4 C3—H3B C3—H3A C4—H4B C4—H4A C5—C6 C5—H5B C5—H5A C6—H6B C6—H6A C7—C8 C7—H7A C7—H7B C7—H7C C9—C10 C10—H10A C10—H10B C10—H10C

0.867 (10) 0.871 (10) 1.519 (3) 0.9900 0.9900 0.9900 0.9900 1.518 (3) 0.9900 0.9900 0.9900 0.9900 1.510 (4) 0.9900 0.9900 0.9900 0.9900 1.510 (3) 0.9800 0.9800 0.9800 1.516 (4) 0.9800 0.9800 0.9800

N1—Fe1—N3 N1—Fe1—N5 N3—Fe1—N5 N1—Fe1—N6 N3—Fe1—N6 N5—Fe1—N6 N1—Fe1—N2 N3—Fe1—N2 N5—Fe1—N2 N6—Fe1—N2 N1—Fe1—N4 N3—Fe1—N4 N5—Fe1—N4

171.55 (7) 91.93 (7) 93.16 (7) 98.38 (7) 89.16 (6) 79.85 (8) 79.84 (7) 96.26 (7) 166.99 (7) 91.31 (7) 93.38 (7) 79.23 (6) 98.21 (7)

C2—C1—H1B N1—C1—H1A C2—C1—H1A H1B—C1—H1A N2—C2—C1 N2—C2—H2A C1—C2—H2A N2—C2—H2B C1—C2—H2B H2A—C2—H2B N3—C3—C4 N3—C3—H3B C4—C3—H3B

110.0 110.0 110.0 108.4 109.03 (18) 109.9 109.9 109.9 109.9 108.3 109.66 (17) 109.7 109.7

Acta Cryst. (2017). C73, 442-446

sup-9

supporting information N6—Fe1—N4 N2—Fe1—N4 C1—N1—Fe1 C1—N1—H1NB Fe1—N1—H1NB C1—N1—H1NA Fe1—N1—H1NA H1NB—N1—H1NA C2—N2—Fe1 C2—N2—H2NB Fe1—N2—H2NB C2—N2—H2NA Fe1—N2—H2NA H2NB—N2—H2NA C3—N3—Fe1 C3—N3—H3NB Fe1—N3—H3NB C3—N3—H3NA Fe1—N3—H3NA H3NB—N3—H3NA C4—N4—Fe1 C4—N4—H4NB Fe1—N4—H4NB C4—N4—H4NA Fe1—N4—H4NA H4NB—N4—H4NA C5—N5—Fe1 C5—N5—H5NB Fe1—N5—H5NB C5—N5—H5NA Fe1—N5—H5NA H5NB—N5—H5NA C6—N6—Fe1 C6—N6—H6NB Fe1—N6—H6NB C6—N6—H6NA Fe1—N6—H6NA H6NB—N6—H6NA N1—C1—C2 N1—C1—H1B

168.13 (7) 92.37 (7) 107.91 (13) 110.4 (17) 111.5 (16) 112.2 (16) 110.7 (16) 104 (2) 107.38 (13) 111.8 (17) 109.3 (17) 109.4 (16) 109.5 (17) 109 (2) 109.12 (12) 111.0 (16) 109.2 (16) 112.1 (16) 109.4 (16) 106 (2) 106.94 (12) 110.9 (17) 118.2 (17) 107.6 (17) 106.9 (17) 106 (2) 106.44 (15) 109.6 (17) 112.8 (18) 111.5 (17) 109.9 (18) 107 (3) 108.31 (14) 110.3 (18) 113.6 (17) 110.4 (18) 108.9 (18) 105 (3) 108.50 (17) 110.0

N3—C3—H3A C4—C3—H3A H3B—C3—H3A N4—C4—C3 N4—C4—H4B C3—C4—H4B N4—C4—H4A C3—C4—H4A H4B—C4—H4A N5—C5—C6 N5—C5—H5B C6—C5—H5B N5—C5—H5A C6—C5—H5A H5B—C5—H5A N6—C6—C5 N6—C6—H6B C5—C6—H6B N6—C6—H6A C5—C6—H6A H6B—C6—H6A C8—C7—H7A C8—C7—H7B H7A—C7—H7B C8—C7—H7C H7A—C7—H7C H7B—C7—H7C O2—C8—O1 O2—C8—C7 O1—C8—C7 O3—C9—O4 O3—C9—C10 O4—C9—C10 C9—C10—H10A C9—C10—H10B H10A—C10—H10B C9—C10—H10C H10A—C10—H10C H10B—C10—H10C

109.7 109.7 108.2 108.27 (17) 110.0 110.0 110.0 110.0 108.4 109.93 (18) 109.7 109.7 109.7 109.7 108.2 109.20 (18) 109.8 109.8 109.8 109.8 108.3 109.5 109.5 109.5 109.5 109.5 109.5 124.5 (2) 118.5 (2) 117.1 (2) 125.4 (2) 117.3 (2) 117.3 (2) 109.5 109.5 109.5 109.5 109.5 109.5

N3—Fe1—N1—C1 N5—Fe1—N1—C1 N6—Fe1—N1—C1 N2—Fe1—N1—C1 N4—Fe1—N1—C1 N1—Fe1—N2—C2 N3—Fe1—N2—C2

45.7 (5) 172.82 (15) −107.15 (15) −17.32 (14) 74.48 (15) −13.39 (14) 174.18 (14)

N1—Fe1—N5—C5 N3—Fe1—N5—C5 N6—Fe1—N5—C5 N2—Fe1—N5—C5 N4—Fe1—N5—C5 N1—Fe1—N6—C6 N3—Fe1—N6—C6

80.71 (14) −106.03 (13) −17.46 (13) 30.4 (3) 174.41 (13) −102.80 (14) 81.04 (14)

Acta Cryst. (2017). C73, 442-446

sup-10

supporting information N5—Fe1—N2—C2 N6—Fe1—N2—C2 N4—Fe1—N2—C2 N1—Fe1—N3—C3 N5—Fe1—N3—C3 N6—Fe1—N3—C3 N2—Fe1—N3—C3 N4—Fe1—N3—C3 N1—Fe1—N4—C4 N3—Fe1—N4—C4 N5—Fe1—N4—C4 N6—Fe1—N4—C4 N2—Fe1—N4—C4

38.0 (3) 84.89 (14) −106.40 (14) 19.4 (5) −107.63 (14) 172.58 (14) 81.36 (14) −9.87 (14) 163.81 (14) −20.32 (14) 71.36 (14) −8.3 (4) −116.24 (14)

N5—Fe1—N6—C6 N2—Fe1—N6—C6 N4—Fe1—N6—C6 Fe1—N1—C1—C2 Fe1—N2—C2—C1 N1—C1—C2—N2 Fe1—N3—C3—C4 Fe1—N4—C4—C3 N3—C3—C4—N4 Fe1—N5—C5—C6 Fe1—N6—C6—C5 N5—C5—C6—N6

−12.32 (13) 177.29 (14) 69.2 (4) 44.9 (2) 41.5 (2) −59.4 (2) 38.3 (2) 46.80 (19) −58.4 (2) 44.8 (2) 39.9 (2) −58.7 (3)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

N1—H1NB···O4 N1—H1NA···O4i N2—H2NB···O1ii N2—H2NA···O1iii N3—H3NB···O2 N3—H3NA···O2ii N4—H4NB···O3iv N4—H4NA···O1iii N5—H5NB···O2 N5—H5NA···O4i N6—H6NB···O3 N6—H6NA···O2ii

0.87 (1) 0.88 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.87 (1)

2.08 (1) 2.31 (2) 2.21 (1) 2.13 (1) 2.09 (1) 2.26 (1) 2.19 (1) 2.20 (1) 2.47 (2) 2.12 (1) 2.08 (1) 2.64 (2)

2.942 (2) 3.050 (3) 3.033 (2) 2.986 (3) 2.945 (3) 3.072 (3) 2.995 (2) 3.050 (3) 3.249 (3) 2.933 (2) 2.938 (3) 3.457 (3)

169 (2) 142 (2) 157 (2) 169 (2) 168 (2) 157 (2) 154 (2) 163 (2) 148 (2) 156 (2) 172 (2) 156 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) x+1, y, z.

(umd906_a) Tris(ethylenediamine-κ2N,N′)cobalt(II) diacetate Crystal data [Co(C2H8N2)3](C2H3O2)2 Mr = 357.33 Triclinic, P1 a = 8.3029 (8) Å b = 9.1295 (10) Å c = 12.7175 (13) Å α = 71.021 (4)° β = 85.776 (4)° γ = 75.146 (4)° V = 881.09 (16) Å3

Z=2 F(000) = 382 Dx = 1.347 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 9939 reflections θ = 3.0–25.4° µ = 1.00 mm−1 T = 200 K Plate, pink 0.18 × 0.14 × 0.08 mm

Data collection Bruker CMOS diffractometer Radiation source: fine-focus sealed tube Graphite monochromator

Acta Cryst. (2017). C73, 442-446

φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) Tmin = 0.841, Tmax = 0.925

sup-11

supporting information 18117 measured reflections 3228 independent reflections 2900 reflections with I > 2σ(I) Rint = 0.029

θmax = 25.4°, θmin = 3.0° h = −10→10 k = −11→11 l = −15→15

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.023 wR(F2) = 0.056 S = 1.08 3228 reflections 229 parameters 12 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0197P)2 + 0.429P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.008 Δρmax = 0.25 e Å−3 Δρmin = −0.21 e Å−3 Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0150 (15)

Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Co1 O1 O2 N1 H1NB H1NA N2 H2NB H2NA N3 H3NB H3NA N4 H4NB H4NA N5 H5NB H5NA N6

x

y

z

Uiso*/Ueq

0.56421 (3) 0.73486 (17) 0.7130 (2) 0.52793 (18) 0.4410 (17) 0.6129 (17) 0.45016 (18) 0.3718 (18) 0.5221 (19) 0.62086 (17) 0.638 (2) 0.5374 (17) 0.81262 (17) 0.874 (2) 0.800 (2) 0.6378 (2) 0.690 (2) 0.702 (2) 0.32640 (18)

0.64621 (2) 0.04297 (15) 0.27882 (17) 0.68921 (17) 0.659 (2) 0.6345 (19) 0.90141 (17) 0.923 (2) 0.957 (2) 0.62139 (16) 0.5223 (12) 0.6736 (19) 0.68843 (17) 0.656 (2) 0.7913 (12) 0.38943 (17) 0.340 (2) 0.369 (2) 0.59151 (19)

0.713098 (17) 0.55755 (11) 0.57473 (15) 0.87030 (11) 0.9046 (14) 0.9138 (13) 0.65411 (12) 0.6051 (13) 0.6225 (14) 0.55011 (11) 0.5551 (15) 0.5054 (13) 0.69260 (12) 0.7517 (11) 0.6651 (15) 0.79340 (12) 0.7486 (14) 0.8493 (12) 0.70741 (12)

0.02053 (9) 0.0405 (3) 0.0600 (5) 0.0275 (3) 0.033* 0.033* 0.0268 (3) 0.032* 0.032* 0.0226 (3) 0.027* 0.027* 0.0268 (3) 0.032* 0.032* 0.0304 (3) 0.037* 0.037* 0.0314 (3)

Acta Cryst. (2017). C73, 442-446

sup-12

supporting information H6NB H6NA C1 H1B H1A C2 H2A H2B C3 H3B H3A C4 H4B H4A C5 H5B H5A C6 H6B H6A C7 H7A H7B H7C C8 O3 O4 C10 H10A H10B H10C C9

0.254 (2) 0.285 (2) 0.5010 (2) 0.6081 0.4548 0.3799 (2) 0.2714 0.3615 0.7745 (2) 0.7485 0.8254 0.8951 (2) 0.9259 0.9979 0.4837 (3) 0.4400 0.5073 0.3556 (2) 0.3964 0.2502 0.9476 (2) 0.9746 1.0367 0.9369 0.7854 (2) 0.05832 (17) 0.23078 (15) −0.0528 (3) −0.1248 −0.0083 −0.1177 0.0899 (2)

0.622 (2) 0.639 (2) 0.8621 (2) 0.8933 0.8906 0.9491 (2) 0.9214 1.0661 0.6728 (2) 0.7906 0.6252 0.6190 (2) 0.5009 0.6558 0.3360 (2) 0.3632 0.2186 0.4173 (2) 0.3848 0.3849 0.0721 (2) 0.1574 0.0325 −0.0156 0.13658 (19) 0.67811 (19) 0.61838 (17) 0.7413 (3) 0.8384 0.7670 0.6618 0.6742 (2)

0.7542 (14) 0.6404 (10) 0.84870 (15) 0.8307 0.9155 0.75155 (15) 0.7709 0.7342 0.50995 (14) 0.4769 0.4519 0.60690 (15) 0.6377 0.5818 0.82819 (15) 0.8958 0.8459 0.73516 (15) 0.6689 0.7588 0.65648 (19) 0.6773 0.6103 0.7238 0.59199 (13) 0.85660 (11) 0.99746 (10) 1.0172 (2) 0.9677 1.0765 1.0500 0.95136 (14)

0.038* 0.038* 0.0347 (4) 0.042* 0.042* 0.0353 (4) 0.042* 0.042* 0.0276 (4) 0.033* 0.033* 0.0305 (4) 0.037* 0.037* 0.0381 (4) 0.046* 0.046* 0.0363 (4) 0.044* 0.044* 0.0458 (5) 0.069* 0.069* 0.069* 0.0246 (3) 0.0479 (4) 0.0402 (3) 0.0632 (7) 0.095* 0.095* 0.095* 0.0315 (4)

Atomic displacement parameters (Å2)

Co1 O1 O2 N1 N2 N3 N4 N5 N6 C1 C2 C3

U11

U22

U33

U12

U13

U23

0.02004 (13) 0.0486 (8) 0.0594 (10) 0.0287 (8) 0.0277 (8) 0.0213 (7) 0.0238 (7) 0.0402 (9) 0.0270 (8) 0.0446 (11) 0.0375 (10) 0.0251 (9)

0.02428 (13) 0.0350 (7) 0.0357 (8) 0.0317 (8) 0.0274 (7) 0.0259 (7) 0.0304 (7) 0.0278 (8) 0.0469 (9) 0.0347 (10) 0.0315 (9) 0.0340 (9)

0.01723 (12) 0.0414 (8) 0.0842 (12) 0.0205 (7) 0.0233 (7) 0.0208 (7) 0.0268 (8) 0.0232 (8) 0.0226 (8) 0.0277 (9) 0.0334 (10) 0.0248 (9)

−0.00393 (8) −0.0166 (6) 0.0139 (7) −0.0035 (6) −0.0025 (6) −0.0038 (6) −0.0055 (6) −0.0057 (6) −0.0125 (7) −0.0050 (8) 0.0040 (8) −0.0076 (7)

−0.00400 (8) −0.0161 (6) −0.0370 (9) −0.0049 (6) −0.0085 (6) −0.0042 (5) −0.0081 (6) −0.0096 (6) −0.0016 (6) −0.0059 (8) −0.0057 (8) 0.0022 (7)

−0.00682 (8) −0.0084 (6) −0.0297 (8) −0.0082 (6) −0.0066 (6) −0.0085 (6) −0.0090 (6) −0.0079 (6) −0.0113 (7) −0.0160 (8) −0.0141 (8) −0.0110 (7)

Acta Cryst. (2017). C73, 442-446

sup-13

supporting information C4 C5 C6 C7 C8 O3 O4 C10 C9

0.0202 (8) 0.0592 (13) 0.0443 (11) 0.0370 (11) 0.0228 (8) 0.0361 (8) 0.0287 (7) 0.0403 (13) 0.0274 (9)

0.0371 (9) 0.0370 (10) 0.0498 (11) 0.0374 (11) 0.0268 (9) 0.0806 (11) 0.0599 (9) 0.0936 (19) 0.0389 (10)

0.0345 (10) 0.0230 (9) 0.0265 (9) 0.0596 (14) 0.0234 (8) 0.0283 (7) 0.0282 (7) 0.0538 (14) 0.0254 (9)

−0.0041 (7) −0.0255 (9) −0.0273 (9) −0.0077 (8) −0.0072 (7) −0.0124 (7) −0.0073 (6) −0.0018 (12) −0.0093 (7)

−0.0020 (7) −0.0009 (8) 0.0029 (8) −0.0218 (10) −0.0012 (6) −0.0087 (6) −0.0084 (5) 0.0042 (11) −0.0032 (7)

−0.0134 (8) −0.0055 (8) −0.0164 (8) −0.0072 (10) −0.0059 (7) −0.0184 (7) −0.0099 (6) −0.0329 (14) −0.0050 (7)

Geometric parameters (Å, º) Co1—N1 Co1—N2 Co1—N3 Co1—N4 Co1—N5 Co1—N6 O1—C8 O2—C8 N1—H1NB N1—H1NA N1—C1 N2—H2NB N2—H2NA N2—C2 N3—H3NB N3—H3NA N3—C3 N4—H4NB N4—H4NA N4—C4 N5—H5NB N5—H5NA N5—C5 N6—H6NB N6—H6NA N6—C6

2.1455 (14) 2.1735 (14) 2.1625 (13) 2.1757 (14) 2.1708 (15) 2.1687 (15) 1.2460 (19) 1.237 (2) 0.874 (9) 0.866 (9) 1.471 (2) 0.874 (9) 0.871 (9) 1.476 (2) 0.861 (9) 0.862 (9) 1.471 (2) 0.864 (9) 0.870 (9) 1.475 (2) 0.863 (9) 0.865 (9) 1.472 (2) 0.875 (9) 0.870 (9) 1.471 (2)

C1—H1B C1—H1A C1—C2 C2—H2A C2—H2B C3—H3B C3—H3A C3—C4 C4—H4B C4—H4A C5—H5B C5—H5A C5—C6 C6—H6B C6—H6A C7—H7A C7—H7B C7—H7C C7—C8 O3—C9 O4—C9 C10—H10A C10—H10B C10—H10C C10—C9

0.9900 0.9900 1.518 (2) 0.9900 0.9900 0.9900 0.9900 1.517 (2) 0.9900 0.9900 0.9900 0.9900 1.514 (3) 0.9900 0.9900 0.9800 0.9800 0.9800 1.508 (2) 1.239 (2) 1.254 (2) 0.9800 0.9800 0.9800 1.515 (3)

N1—Co1—N2 N1—Co1—N3 N1—Co1—N4 N1—Co1—N5 N1—Co1—N6 N2—Co1—N4 N3—Co1—N2 N3—Co1—N4 N3—Co1—N5

81.10 (5) 173.17 (5) 93.52 (6) 91.80 (6) 96.53 (6) 91.32 (6) 95.85 (5) 80.39 (5) 92.06 (5)

N1—C1—C2 H1B—C1—H1A C2—C1—H1B C2—C1—H1A N2—C2—C1 N2—C2—H2A N2—C2—H2B C1—C2—H2A C1—C2—H2B

108.29 (14) 108.4 110.0 110.0 108.83 (14) 109.9 109.9 109.9 109.9

Acta Cryst. (2017). C73, 442-446

sup-14

supporting information N3—Co1—N6 N5—Co1—N2 N5—Co1—N4 N6—Co1—N2 N6—Co1—N4 N6—Co1—N5 Co1—N1—H1NB Co1—N1—H1NA H1NB—N1—H1NA C1—N1—Co1 C1—N1—H1NB C1—N1—H1NA Co1—N2—H2NB Co1—N2—H2NA H2NB—N2—H2NA C2—N2—Co1 C2—N2—H2NB C2—N2—H2NA Co1—N3—H3NB Co1—N3—H3NA H3NB—N3—H3NA C3—N3—Co1 C3—N3—H3NB C3—N3—H3NA Co1—N4—H4NB Co1—N4—H4NA H4NB—N4—H4NA C4—N4—Co1 C4—N4—H4NB C4—N4—H4NA Co1—N5—H5NB Co1—N5—H5NA H5NB—N5—H5NA C5—N5—Co1 C5—N5—H5NB C5—N5—H5NA Co1—N6—H6NB Co1—N6—H6NA H6NB—N6—H6NA C6—N6—Co1 C6—N6—H6NB C6—N6—H6NA N1—C1—H1B N1—C1—H1A

89.64 (5) 169.01 (6) 97.53 (6) 91.42 (6) 169.88 (5) 81.00 (6) 111.6 (13) 110.3 (13) 106.5 (18) 107.67 (10) 108.8 (12) 112.1 (12) 110.6 (12) 112.0 (13) 107.4 (18) 107.44 (10) 110.4 (13) 109.0 (12) 109.1 (12) 110.4 (12) 107.3 (17) 109.16 (9) 108.0 (12) 112.8 (12) 117.2 (13) 106.7 (13) 107.2 (17) 106.73 (10) 111.5 (13) 107.0 (13) 111.9 (13) 108.7 (13) 109.1 (19) 106.95 (11) 108.2 (13) 112.0 (13) 113.5 (13) 108.5 (13) 108.8 (19) 108.10 (11) 108.1 (13) 109.9 (13) 110.0 110.0

H2A—C2—H2B N3—C3—H3B N3—C3—H3A N3—C3—C4 H3B—C3—H3A C4—C3—H3B C4—C3—H3A N4—C4—C3 N4—C4—H4B N4—C4—H4A C3—C4—H4B C3—C4—H4A H4B—C4—H4A N5—C5—H5B N5—C5—H5A N5—C5—C6 H5B—C5—H5A C6—C5—H5B C6—C5—H5A N6—C6—C5 N6—C6—H6B N6—C6—H6A C5—C6—H6B C5—C6—H6A H6B—C6—H6A H7A—C7—H7B H7A—C7—H7C H7B—C7—H7C C8—C7—H7A C8—C7—H7B C8—C7—H7C O1—C8—C7 O2—C8—O1 O2—C8—C7 H10A—C10—H10B H10A—C10—H10C H10B—C10—H10C C9—C10—H10A C9—C10—H10B C9—C10—H10C O3—C9—O4 O3—C9—C10 O4—C9—C10

108.3 109.9 109.9 108.98 (13) 108.3 109.9 109.9 108.07 (13) 110.1 110.1 110.1 110.1 108.4 109.8 109.8 109.29 (14) 108.3 109.8 109.8 109.08 (14) 109.9 109.9 109.9 109.9 108.3 109.5 109.5 109.5 109.5 109.5 109.5 117.42 (15) 124.27 (16) 118.30 (15) 109.5 109.5 109.5 109.5 109.5 109.5 125.14 (17) 117.61 (17) 117.25 (17)

Co1—N1—C1—C2 Co1—N2—C2—C1 Co1—N3—C3—C4

44.81 (16) 40.46 (17) 37.93 (15)

N3—Co1—N5—C5 N3—Co1—N6—C6 N3—C3—C4—N4

−106.27 (11) 79.47 (11) −57.83 (17)

Acta Cryst. (2017). C73, 442-446

sup-15

supporting information Co1—N4—C4—C3 Co1—N5—C5—C6 Co1—N6—C6—C5 N1—Co1—N2—C2 N1—Co1—N3—C3 N1—Co1—N4—C4 N1—Co1—N5—C5 N1—Co1—N6—C6 N1—C1—C2—N2 N2—Co1—N1—C1 N2—Co1—N3—C3 N2—Co1—N4—C4 N2—Co1—N5—C5 N2—Co1—N6—C6 N3—Co1—N1—C1 N3—Co1—N2—C2 N3—Co1—N4—C4

46.87 (15) 43.75 (16) 39.93 (16) −12.67 (11) 17.5 (5) 162.61 (11) 79.36 (11) −103.48 (11) −58.3 (2) −17.70 (11) 80.67 (11) −116.23 (11) 29.8 (3) 175.31 (11) 46.3 (5) 173.50 (11) −20.51 (10)

N4—Co1—N1—C1 N4—Co1—N2—C2 N4—Co1—N3—C3 N4—Co1—N5—C5 N4—Co1—N6—C6 N5—Co1—N1—C1 N5—Co1—N2—C2 N5—Co1—N3—C3 N5—Co1—N4—C4 N5—Co1—N6—C6 N5—C5—C6—N6 N6—Co1—N1—C1 N6—Co1—N2—C2 N6—Co1—N3—C3 N6—Co1—N4—C4 N6—Co1—N5—C5

73.08 (12) −106.02 (11) −9.67 (10) 173.15 (11) 69.7 (4) 170.74 (11) 37.6 (3) −106.96 (11) 70.32 (11) −12.68 (11) −57.53 (19) −108.12 (12) 83.72 (11) 172.06 (11) −10.6 (4) −16.96 (11)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

N1—H1NB···O4 N1—H1NA···O4i N2—H2NB···O1ii N2—H2NA···O1iii N3—H3NB···O2 N3—H3NA···O2ii N4—H4NB···O3iv N4—H4NA···O1iii N5—H5NB···O2 N5—H5NA···O4i N6—H6NB···O3 N6—H6NA···O2ii

0.87 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.86 (1) 0.86 (1) 0.86 (1) 0.87 (1) 0.86 (1) 0.87 (1) 0.88 (1) 0.87 (1)

2.08 (1) 2.30 (1) 2.21 (1) 2.12 (1) 2.08 (1) 2.26 (1) 2.19 (1) 2.21 (1) 2.44 (1) 2.11 (1) 2.07 (1) 2.59 (1)

2.945 (2) 3.0443 (19) 3.0305 (18) 2.979 (2) 2.9387 (19) 3.074 (2) 2.9868 (18) 3.053 (2) 3.223 (2) 2.9215 (19) 2.938 (2) 3.405 (2)

170 (2) 145 (2) 157 (2) 168 (2) 172 (2) 157 (2) 153 (2) 164 (2) 152 (2) 156 (2) 171 (2) 156 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) x+1, y, z.

(umd908) Tris(ethylenediamine-κ2N,N′)nickel(II) diacetate Crystal data [Ni(C2H8N2)3](C2H3O2)2 Mr = 357.11 Triclinic, P1 a = 8.2974 (11) Å b = 9.0619 (11) Å c = 12.5998 (17) Å α = 71.960 (4)° β = 85.204 (5)° γ = 74.321 (4)° V = 867.29 (19) Å3

Acta Cryst. (2017). C73, 442-446

Z=2 F(000) = 384 Dx = 1.367 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 9139 reflections θ = 3.1–25.4° µ = 1.14 mm−1 T = 200 K Block, green 0.21 × 0.17 × 0.12 mm

sup-16

supporting information Data collection Bruker CMOS diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) Tmin = 0.796, Tmax = 0.875

25372 measured reflections 3175 independent reflections 3010 reflections with I > 2σ(I) Rint = 0.028 θmax = 25.4°, θmin = 3.1° h = −10→10 k = −10→10 l = −15→15

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.019 wR(F2) = 0.049 S = 1.07 3175 reflections 229 parameters 12 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0185P)2 + 0.4044P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.015 Δρmax = 0.27 e Å−3 Δρmin = −0.23 e Å−3 Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.027 (2)

Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Ni1 O1 O2 N1 H1NB H1NA N2 H2NB H2NA N3 H3NB H3NA N4 H4NB H4NA

x

y

z

Uiso*/Ueq

0.56174 (2) 0.72555 (16) 0.72642 (17) 0.52299 (15) 0.4349 (15) 0.6106 (15) 0.44608 (15) 0.3713 (17) 0.5188 (17) 0.61690 (14) 0.6337 (19) 0.5344 (15) 0.80561 (15) 0.8677 (18) 0.794 (2)

0.647713 (19) 0.04539 (14) 0.28635 (14) 0.68764 (15) 0.6596 (19) 0.6347 (18) 0.89785 (14) 0.9171 (19) 0.9520 (18) 0.62791 (14) 0.5296 (12) 0.6849 (17) 0.68763 (15) 0.6519 (19) 0.7903 (11)

0.713433 (13) 0.56195 (10) 0.56539 (12) 0.87080 (10) 0.9054 (13) 0.9116 (12) 0.65675 (10) 0.6067 (11) 0.6269 (13) 0.55076 (9) 0.5532 (13) 0.5061 (11) 0.69738 (10) 0.7564 (10) 0.6737 (14)

0.01785 (8) 0.0416 (3) 0.0507 (3) 0.0248 (3) 0.030* 0.030* 0.0248 (3) 0.030* 0.030* 0.0207 (2) 0.025* 0.025* 0.0253 (3) 0.030* 0.030*

Acta Cryst. (2017). C73, 442-446

sup-17

supporting information N5 H5NB H5NA N6 H6NB H6NA C1 H1B H1A C2 H2A H2B C3 H3B H3A C4 H4B H4A C5 H5B H5A C6 H6B H6A C7 H7A H7B H7C C8 O3 O4 C10 H10A H10B H10C C9

0.64437 (16) 0.7007 (19) 0.7071 (19) 0.32979 (16) 0.2551 (18) 0.288 (2) 0.4927 (2) 0.5993 0.4441 0.3721 (2) 0.2637 0.3520 0.77221 (17) 0.7471 0.8240 0.89155 (17) 0.9234 0.9945 0.4936 (2) 0.4493 0.5222 0.3629 (2) 0.4036 0.2586 0.9475 (2) 0.9777 1.0369 0.9325 0.78614 (17) 0.05512 (15) 0.22577 (13) −0.0593 (2) −0.1259 −0.0157 −0.1298 0.08530 (18)

0.39612 (14) 0.3480 (19) 0.378 (2) 0.59221 (16) 0.624 (2) 0.6388 (19) 0.86129 (18) 0.8932 0.8895 0.94759 (18) 0.9198 1.0653 0.67664 (18) 0.7950 0.6285 0.61997 (19) 0.5012 0.6569 0.33721 (19) 0.3625 0.2192 0.4170 (2) 0.3848 0.3832 0.0684 (2) 0.1525 0.0238 −0.0171 0.13917 (16) 0.68032 (17) 0.61536 (15) 0.7434 (3) 0.8460 0.7606 0.6682 0.67426 (19)

0.78853 (10) 0.7423 (12) 0.8447 (11) 0.70824 (10) 0.7544 (12) 0.6413 (9) 0.85209 (13) 0.8347 0.9199 0.75489 (13) 0.7739 0.7383 0.51149 (12) 0.4800 0.4522 0.60919 (13) 0.6374 0.5855 0.82477 (13) 0.8943 0.8401 0.73365 (12) 0.6659 0.7586 0.65631 (17) 0.6778 0.6103 0.7235 0.59041 (11) 0.85836 (9) 1.00070 (9) 1.02143 (18) 0.9740 1.0853 1.0483 0.95450 (12)

0.0272 (3) 0.033* 0.033* 0.0278 (3) 0.033* 0.033* 0.0326 (3) 0.039* 0.039* 0.0334 (3) 0.040* 0.040* 0.0262 (3) 0.031* 0.031* 0.0290 (3) 0.035* 0.035* 0.0349 (4) 0.042* 0.042* 0.0328 (3) 0.039* 0.039* 0.0456 (4) 0.068* 0.068* 0.068* 0.0226 (3) 0.0458 (3) 0.0379 (3) 0.0610 (6) 0.092* 0.092* 0.092* 0.0294 (3)

Atomic displacement parameters (Å2)

Ni1 O1 O2 N1 N2 N3 N4 N5

U11

U22

U33

U12

U13

U23

0.01869 (11) 0.0522 (7) 0.0534 (8) 0.0255 (6) 0.0254 (6) 0.0204 (6) 0.0229 (6) 0.0365 (7)

0.02042 (11) 0.0365 (6) 0.0296 (6) 0.0287 (6) 0.0243 (6) 0.0234 (6) 0.0281 (6) 0.0248 (6)

0.01467 (10) 0.0409 (7) 0.0662 (9) 0.0191 (6) 0.0228 (6) 0.0184 (6) 0.0262 (6) 0.0201 (6)

−0.00450 (7) −0.0230 (5) 0.0089 (5) −0.0035 (5) −0.0038 (5) −0.0046 (5) −0.0069 (5) −0.0058 (5)

−0.00408 (6) −0.0179 (6) −0.0279 (7) −0.0054 (5) −0.0080 (5) −0.0039 (4) −0.0087 (5) −0.0081 (5)

−0.00497 (7) −0.0040 (5) −0.0202 (6) −0.0074 (5) −0.0048 (5) −0.0063 (5) −0.0075 (5) −0.0062 (5)

Acta Cryst. (2017). C73, 442-446

sup-18

supporting information N6 C1 C2 C3 C4 C5 C6 C7 C8 O3 O4 C10 C9

0.0254 (6) 0.0413 (9) 0.0373 (9) 0.0252 (7) 0.0181 (7) 0.0554 (10) 0.0412 (9) 0.0362 (9) 0.0218 (7) 0.0338 (6) 0.0278 (6) 0.0390 (11) 0.0263 (7)

0.0413 (7) 0.0322 (8) 0.0275 (8) 0.0313 (8) 0.0358 (8) 0.0317 (8) 0.0444 (9) 0.0374 (9) 0.0256 (7) 0.0786 (9) 0.0548 (7) 0.0916 (17) 0.0376 (8)

0.0199 (6) 0.0274 (8) 0.0325 (8) 0.0226 (7) 0.0331 (8) 0.0222 (7) 0.0236 (7) 0.0599 (12) 0.0203 (7) 0.0252 (6) 0.0274 (6) 0.0505 (12) 0.0226 (7)

−0.0133 (5) −0.0051 (7) 0.0029 (6) −0.0085 (6) −0.0057 (6) −0.0229 (7) −0.0263 (7) −0.0089 (7) −0.0081 (6) −0.0134 (6) −0.0076 (5) −0.0032 (10) −0.0100 (6)

−0.0013 (5) −0.0061 (7) −0.0066 (7) 0.0026 (6) −0.0012 (6) −0.0020 (7) 0.0025 (6) −0.0232 (8) −0.0004 (5) −0.0072 (5) −0.0086 (5) 0.0058 (9) −0.0022 (6)

−0.0090 (5) −0.0154 (6) −0.0129 (6) −0.0081 (6) −0.0112 (6) −0.0040 (6) −0.0129 (7) −0.0044 (8) −0.0051 (5) −0.0150 (6) −0.0077 (5) −0.0319 (12) −0.0047 (6)

Geometric parameters (Å, º) Ni1—N1 Ni1—N3 Ni1—N5 Ni1—N2 Ni1—N6 Ni1—N4 O1—C8 O2—C8 N1—C1 N1—H1NB N1—H1NA N2—C2 N2—H2NB N2—H2NA N3—C3 N3—H3NB N3—H3NA N4—C4 N4—H4NB N4—H4NA N5—C5 N5—H5NB N5—H5NA N6—C6 N6—H6NB N6—H6NA

2.1073 (12) 2.1140 (12) 2.1192 (12) 2.1225 (12) 2.1274 (12) 2.1326 (12) 1.2464 (17) 1.2378 (18) 1.4702 (19) 0.876 (9) 0.862 (9) 1.4757 (19) 0.867 (9) 0.869 (9) 1.4718 (18) 0.855 (9) 0.863 (9) 1.4739 (19) 0.865 (9) 0.865 (9) 1.474 (2) 0.866 (9) 0.861 (9) 1.471 (2) 0.869 (9) 0.870 (9)

C1—C2 C1—H1B C1—H1A C2—H2A C2—H2B C3—C4 C3—H3B C3—H3A C4—H4B C4—H4A C5—C6 C5—H5B C5—H5A C6—H6B C6—H6A C7—C8 C7—H7A C7—H7B C7—H7C O3—C9 O4—C9 C10—C9 C10—H10A C10—H10B C10—H10C

1.517 (2) 0.9900 0.9900 0.9900 0.9900 1.516 (2) 0.9900 0.9900 0.9900 0.9900 1.513 (2) 0.9900 0.9900 0.9900 0.9900 1.512 (2) 0.9800 0.9800 0.9800 1.2389 (19) 1.2518 (18) 1.515 (2) 0.9800 0.9800 0.9800

N1—Ni1—N3 N1—Ni1—N5 N3—Ni1—N5 N1—Ni1—N2 N3—Ni1—N2

173.32 (5) 91.41 (5) 92.79 (5) 82.37 (5) 94.05 (5)

C2—C1—H1B N1—C1—H1A C2—C1—H1A H1B—C1—H1A N2—C2—C1

110.1 110.1 110.1 108.5 108.53 (12)

Acta Cryst. (2017). C73, 442-446

sup-19

supporting information N5—Ni1—N2 N1—Ni1—N6 N3—Ni1—N6 N5—Ni1—N6 N2—Ni1—N6 N1—Ni1—N4 N3—Ni1—N4 N5—Ni1—N4 N2—Ni1—N4 N6—Ni1—N4 C1—N1—Ni1 C1—N1—H1NB Ni1—N1—H1NB C1—N1—H1NA Ni1—N1—H1NA H1NB—N1—H1NA C2—N2—Ni1 C2—N2—H2NB Ni1—N2—H2NB C2—N2—H2NA Ni1—N2—H2NA H2NB—N2—H2NA C3—N3—Ni1 C3—N3—H3NB Ni1—N3—H3NB C3—N3—H3NA Ni1—N3—H3NA H3NB—N3—H3NA C4—N4—Ni1 C4—N4—H4NB Ni1—N4—H4NB C4—N4—H4NA Ni1—N4—H4NA H4NB—N4—H4NA C5—N5—Ni1 C5—N5—H5NB Ni1—N5—H5NB C5—N5—H5NA Ni1—N5—H5NA H5NB—N5—H5NA C6—N6—Ni1 C6—N6—H6NB Ni1—N6—H6NB C6—N6—H6NA Ni1—N6—H6NA H6NB—N6—H6NA N1—C1—C2 N1—C1—H1B

Acta Cryst. (2017). C73, 442-446

170.69 (5) 96.03 (5) 89.68 (5) 82.34 (5) 91.39 (5) 92.73 (5) 81.72 (5) 95.22 (5) 92.01 (5) 170.96 (5) 107.39 (9) 107.0 (11) 112.9 (11) 111.1 (11) 109.1 (11) 109.4 (16) 107.47 (9) 111.9 (11) 109.8 (11) 108.5 (11) 111.2 (11) 108.1 (16) 109.22 (8) 107.8 (11) 108.9 (11) 111.5 (11) 110.6 (11) 108.7 (15) 106.53 (8) 110.3 (11) 118.1 (11) 107.5 (11) 107.9 (11) 106.1 (16) 106.97 (10) 109.4 (12) 111.8 (12) 110.8 (12) 108.9 (11) 108.9 (16) 108.00 (9) 109.2 (12) 114.1 (12) 109.5 (11) 108.7 (12) 107.3 (16) 107.84 (12) 110.1

N2—C2—H2A C1—C2—H2A N2—C2—H2B C1—C2—H2B H2A—C2—H2B N3—C3—C4 N3—C3—H3B C4—C3—H3B N3—C3—H3A C4—C3—H3A H3B—C3—H3A N4—C4—C3 N4—C4—H4B C3—C4—H4B N4—C4—H4A C3—C4—H4A H4B—C4—H4A N5—C5—C6 N5—C5—H5B C6—C5—H5B N5—C5—H5A C6—C5—H5A H5B—C5—H5A N6—C6—C5 N6—C6—H6B C5—C6—H6B N6—C6—H6A C5—C6—H6A H6B—C6—H6A C8—C7—H7A C8—C7—H7B H7A—C7—H7B C8—C7—H7C H7A—C7—H7C H7B—C7—H7C O2—C8—O1 O2—C8—C7 O1—C8—C7 C9—C10—H10A C9—C10—H10B H10A—C10—H10B C9—C10—H10C H10A—C10—H10C H10B—C10—H10C O3—C9—O4 O3—C9—C10 O4—C9—C10

110.0 110.0 110.0 110.0 108.4 108.78 (11) 109.9 109.9 109.9 109.9 108.3 107.87 (11) 110.1 110.1 110.1 110.1 108.4 109.10 (12) 109.9 109.9 109.9 109.9 108.3 108.70 (12) 109.9 109.9 109.9 109.9 108.3 109.5 109.5 109.5 109.5 109.5 109.5 124.58 (14) 117.93 (13) 117.44 (13) 109.5 109.5 109.5 109.5 109.5 109.5 125.16 (15) 117.39 (15) 117.45 (15)

sup-20

supporting information N3—Ni1—N1—C1 N5—Ni1—N1—C1 N2—Ni1—N1—C1 N6—Ni1—N1—C1 N4—Ni1—N1—C1 N1—Ni1—N2—C2 N3—Ni1—N2—C2 N5—Ni1—N2—C2 N6—Ni1—N2—C2 N4—Ni1—N2—C2 N1—Ni1—N3—C3 N5—Ni1—N3—C3 N2—Ni1—N3—C3 N6—Ni1—N3—C3 N4—Ni1—N3—C3 N1—Ni1—N4—C4 N3—Ni1—N4—C4 N5—Ni1—N4—C4 N2—Ni1—N4—C4 N6—Ni1—N4—C4

40.2 (4) 169.19 (10) −17.76 (10) −108.36 (10) 73.90 (10) −12.57 (10) 173.11 (10) 35.9 (3) 83.32 (10) −105.06 (10) 25.1 (4) −103.79 (9) 82.52 (9) 173.89 (9) −8.92 (9) 162.87 (9) −20.87 (9) 71.20 (9) −114.67 (9) −2.7 (4)

N1—Ni1—N5—C5 N3—Ni1—N5—C5 N2—Ni1—N5—C5 N6—Ni1—N5—C5 N4—Ni1—N5—C5 N1—Ni1—N6—C6 N3—Ni1—N6—C6 N5—Ni1—N6—C6 N2—Ni1—N6—C6 N4—Ni1—N6—C6 Ni1—N1—C1—C2 Ni1—N2—C2—C1 N1—C1—C2—N2 Ni1—N3—C3—C4 Ni1—N4—C4—C3 N3—C3—C4—N4 Ni1—N5—C5—C6 Ni1—N6—C6—C5 N5—C5—C6—N6

79.04 (9) −106.16 (9) 31.2 (3) −16.85 (9) 171.91 (9) −103.11 (9) 80.37 (9) −12.49 (9) 174.41 (9) 62.4 (3) 44.48 (14) 40.20 (14) −57.66 (17) 36.79 (13) 46.53 (13) −56.57 (15) 43.22 (14) 39.26 (14) −56.38 (17)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

N1—H1NA···O4i N1—H1NB···O4 N2—H2NA···O1ii N2—H2NB···O1iii N3—H3NA···O2iii N3—H3NB···O2 N4—H4NA···O1ii N4—H4NB···O3iv N5—H5NA···O4i N5—H5NB···O2 N6—H6NA···O2iii N6—H6NB···O3

0.86 (1) 0.88 (1) 0.87 (1) 0.87 (1) 0.86 (1) 0.86 (1) 0.87 (1) 0.87 (1) 0.86 (1) 0.87 (1) 0.87 (1) 0.87 (1)

2.29 (1) 2.08 (1) 2.11 (1) 2.23 (1) 2.33 (1) 2.09 (1) 2.25 (1) 2.21 (1) 2.09 (1) 2.44 (1) 2.48 (1) 2.08 (1)

3.0370 (17) 2.9536 (17) 2.9690 (18) 3.0444 (17) 3.1076 (17) 2.9316 (17) 3.0762 (17) 2.9916 (16) 2.9105 (17) 3.2254 (19) 3.3102 (19) 2.9395 (18)

145 (1) 172 (2) 170 (2) 157 (2) 150 (1) 168 (2) 160 (2) 150 (2) 158 (2) 151 (2) 159 (2) 171 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z.

(umd943_a) Tris(ethylenediamine-κ2N,N′)copper(II) diacetate Crystal data [Cu(C2H8N2)3](C2H3O2)2 Mr = 361.94 Triclinic, P1 a = 8.2953 (8) Å b = 8.9144 (8) Å c = 12.7148 (12) Å α = 75.244 (4)°

Acta Cryst. (2017). C73, 442-446

β = 85.082 (4)° γ = 71.226 (4)° V = 860.84 (14) Å3 Z=2 F(000) = 386 Dx = 1.396 Mg m−3 Mo Kα radiation, λ = 0.71073 Å

sup-21

supporting information Cell parameters from 9890 reflections θ = 3.1–25.7° µ = 1.29 mm−1

T = 200 K Block, blue 0.20 × 0.15 × 0.10 mm

Data collection 30526 measured reflections 3287 independent reflections 2965 reflections with I > 2σ(I) Rint = 0.042 θmax = 25.8°, θmin = 3.1° h = −10→10 k = −10→10 l = −15→15

Bruker CMOS diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) Tmin = 0.782, Tmax = 0.882 Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.025 wR(F2) = 0.065 S = 1.03 3287 reflections 228 parameters 12 restraints Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0374P)2 + 0.3532P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.51 e Å−3 Δρmin = −0.28 e Å−3

Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Cu1 O1 O2 N1 H1NB H1NA N2 H2NB H2NA N3 H3NB H3NA

x

y

z

Uiso*/Ueq

0.56204 (2) 0.6820 (2) 0.74119 (19) 0.51464 (19) 0.4303 (19) 0.6045 (18) 0.4010 (2) 0.321 (2) 0.467 (2) 0.61954 (19) 0.643 (3) 0.5324 (19)

0.64182 (2) 0.0576 (2) 0.28624 (16) 0.68440 (18) 0.653 (2) 0.631 (2) 0.9224 (2) 0.947 (3) 0.979 (2) 0.61788 (19) 0.5170 (13) 0.675 (2)

0.718635 (15) 0.58732 (16) 0.52924 (12) 0.87074 (12) 0.9026 (15) 0.9099 (14) 0.67347 (14) 0.6269 (15) 0.6437 (17) 0.56330 (12) 0.5615 (17) 0.5235 (14)

0.02012 (8) 0.0601 (5) 0.0410 (3) 0.0236 (3) 0.028* 0.028* 0.0330 (4) 0.040* 0.040* 0.0240 (3) 0.029* 0.029*

Acta Cryst. (2017). C73, 442-446

sup-22

supporting information N4 H4NB H4NA N5 H5NB H5NA N6 H6NB H6NA C1 H1B H1A C2 H2A H2B C3 H3B H3A C4 H4B H4A C5 H5B H5A C6 H6B H6A C7 H7A H7B H7C C8 O3 O4 C10 H10A H10B H10C C9

0.7888 (2) 0.850 (2) 0.763 (3) 0.6611 (2) 0.727 (3) 0.714 (3) 0.3432 (2) 0.264 (2) 0.296 (3) 0.4703 (3) 0.5728 0.4271 0.3349 (3) 0.2319 0.3028 0.7694 (2) 0.7337 0.8280 0.8881 (2) 0.9332 0.9852 0.5004 (3) 0.4483 0.5224 0.3794 (3) 0.4310 0.2721 0.9451 (3) 0.9948 1.0219 0.9287 0.7758 (2) 0.04893 (19) 0.22460 (17) −0.0672 (3) −0.1743 −0.0688 −0.0541 0.0803 (2)

0.6957 (2) 0.667 (3) 0.8004 (12) 0.3534 (2) 0.293 (2) 0.339 (3) 0.57903 (19) 0.616 (2) 0.625 (2) 0.8600 (2) 0.8956 0.8817 0.9538 (2) 0.9192 1.0722 0.6710 (3) 0.7907 0.6176 0.6244 (3) 0.5042 0.6675 0.3162 (2) 0.3527 0.1968 0.4017 (2) 0.3646 0.3740 0.0645 (3) 0.1495 −0.0116 0.0051 0.1420 (2) 0.6799 (2) 0.61095 (18) 0.7447 (4) 0.7511 0.8543 0.6748 0.6732 (2)

0.70599 (13) 0.7638 (12) 0.6837 (17) 0.80270 (14) 0.7626 (16) 0.8623 (12) 0.71268 (12) 0.7571 (14) 0.6498 (11) 0.86476 (16) 0.8461 0.9362 0.77858 (18) 0.7978 0.7745 0.52449 (15) 0.4945 0.4662 0.61917 (16) 0.6448 0.5972 0.82757 (16) 0.8934 0.8424 0.73268 (15) 0.6669 0.7491 0.6394 (2) 0.6418 0.5998 0.7137 0.58235 (14) 0.85583 (12) 0.99369 (11) 1.0205 (2) 0.9897 1.0225 1.0945 0.95066 (15)

0.0290 (3) 0.035* 0.035* 0.0360 (4) 0.043* 0.043* 0.0266 (3) 0.032* 0.032* 0.0336 (4) 0.040* 0.040* 0.0358 (5) 0.043* 0.043* 0.0326 (4) 0.039* 0.039* 0.0339 (4) 0.041* 0.041* 0.0352 (4) 0.042* 0.042* 0.0323 (4) 0.039* 0.039* 0.0439 (5) 0.066* 0.066* 0.066* 0.0237 (4) 0.0483 (4) 0.0365 (3) 0.0597 (7) 0.089* 0.089* 0.089* 0.0296 (4)

Atomic displacement parameters (Å2)

Cu1 O1 O2 N1 N2

U11

U22

U33

U12

U13

U23

0.01854 (12) 0.0436 (9) 0.0442 (9) 0.0240 (8) 0.0278 (9)

0.02630 (12) 0.0505 (10) 0.0309 (7) 0.0253 (7) 0.0324 (9)

0.01684 (12) 0.0869 (14) 0.0425 (8) 0.0212 (8) 0.0351 (9)

−0.00952 (8) −0.0293 (8) −0.0084 (6) −0.0076 (6) −0.0129 (7)

−0.00280 (7) −0.0231 (9) −0.0126 (7) −0.0048 (6) −0.0124 (7)

−0.00334 (8) 0.0084 (9) 0.0001 (6) −0.0036 (6) 0.0070 (7)

Acta Cryst. (2017). C73, 442-446

sup-23

supporting information N3 N4 N5 N6 C1 C2 C3 C4 C5 C6 C7 C8 O3 O4 C10 C9

0.0200 (7) 0.0255 (8) 0.0378 (10) 0.0269 (8) 0.0390 (11) 0.0302 (10) 0.0287 (10) 0.0189 (9) 0.0522 (13) 0.0405 (11) 0.0281 (11) 0.0206 (9) 0.0350 (8) 0.0259 (7) 0.0354 (13) 0.0246 (9)

0.0323 (8) 0.0348 (8) 0.0412 (10) 0.0349 (8) 0.0288 (10) 0.0241 (9) 0.0441 (11) 0.0464 (11) 0.0294 (10) 0.0378 (10) 0.0444 (12) 0.0288 (9) 0.0820 (12) 0.0515 (8) 0.087 (2) 0.0386 (10)

0.0192 (7) 0.0278 (8) 0.0297 (9) 0.0197 (7) 0.0351 (11) 0.0485 (12) 0.0245 (9) 0.0353 (11) 0.0279 (10) 0.0272 (10) 0.0550 (14) 0.0219 (9) 0.0282 (8) 0.0289 (7) 0.0552 (16) 0.0260 (10)

−0.0085 (6) −0.0121 (7) −0.0072 (8) −0.0136 (7) −0.0092 (8) −0.0033 (8) −0.0161 (8) −0.0124 (8) −0.0190 (9) −0.0232 (9) −0.0076 (9) −0.0070 (7) −0.0173 (8) −0.0102 (6) −0.0080 (12) −0.0118 (8)

−0.0031 (6) −0.0080 (6) −0.0064 (7) −0.0007 (6) −0.0064 (8) −0.0064 (9) 0.0034 (8) −0.0004 (8) −0.0047 (9) −0.0016 (8) −0.0158 (10) −0.0007 (7) −0.0063 (6) −0.0066 (6) 0.0065 (11) −0.0010 (7)

−0.0037 (6) −0.0033 (7) −0.0145 (7) −0.0046 (6) −0.0111 (8) −0.0053 (8) −0.0024 (8) −0.0048 (9) −0.0039 (8) −0.0082 (8) −0.0040 (10) −0.0074 (7) −0.0130 (7) −0.0041 (6) −0.0303 (14) −0.0060 (8)

Geometric parameters (Å, º) Cu1—N3 Cu1—N1 Cu1—N4 Cu1—N6 Cu1—N2 Cu1—N5 O1—C8 O2—C8 N1—C1 N1—H1NB N1—H1NA N2—C2 N2—H2NB N2—H2NA N3—C3 N3—H3NB N3—H3NA N4—C4 N4—H4NB N4—H4NA N5—C5 N5—H5NB N5—H5NA N6—C6 N6—H6NB N6—H6NA

2.0400 (15) 2.0461 (15) 2.0706 (16) 2.0765 (15) 2.3705 (16) 2.4123 (18) 1.232 (2) 1.243 (2) 1.471 (2) 0.867 (9) 0.863 (9) 1.460 (3) 0.866 (10) 0.862 (10) 1.472 (2) 0.863 (9) 0.857 (9) 1.472 (3) 0.865 (9) 0.862 (9) 1.464 (3) 0.865 (10) 0.869 (10) 1.469 (2) 0.867 (9) 0.863 (9)

C1—C2 C1—H1B C1—H1A C2—H2A C2—H2B C3—C4 C3—H3B C3—H3A C4—H4B C4—H4A C5—C6 C5—H5B C5—H5A C6—H6B C6—H6A C7—C8 C7—H7A C7—H7B C7—H7C O3—C9 O4—C9 C10—C9 C10—H10A C10—H10B C10—H10C

1.518 (3) 0.9900 0.9900 0.9900 0.9900 1.509 (3) 0.9900 0.9900 0.9900 0.9900 1.514 (3) 0.9900 0.9900 0.9900 0.9900 1.507 (3) 0.9800 0.9800 0.9800 1.238 (2) 1.253 (2) 1.514 (3) 0.9800 0.9800 0.9800

N3—Cu1—N1 N3—Cu1—N4

174.30 (6) 83.22 (6)

C2—C1—H1B N1—C1—H1A

109.9 109.9

Acta Cryst. (2017). C73, 442-446

sup-24

supporting information N1—Cu1—N4 N3—Cu1—N6 N1—Cu1—N6 N4—Cu1—N6 N3—Cu1—N2 N1—Cu1—N2 N4—Cu1—N2 N6—Cu1—N2 N3—Cu1—N5 N1—Cu1—N5 N4—Cu1—N5 N6—Cu1—N5 N2—Cu1—N5 C1—N1—Cu1 C1—N1—H1NB Cu1—N1—H1NB C1—N1—H1NA Cu1—N1—H1NA H1NB—N1—H1NA C2—N2—Cu1 C2—N2—H2NB Cu1—N2—H2NB C2—N2—H2NA Cu1—N2—H2NA H2NB—N2—H2NA C3—N3—Cu1 C3—N3—H3NB Cu1—N3—H3NB C3—N3—H3NA Cu1—N3—H3NA H3NB—N3—H3NA C4—N4—Cu1 C4—N4—H4NB Cu1—N4—H4NB C4—N4—H4NA Cu1—N4—H4NA H4NB—N4—H4NA C5—N5—Cu1 C5—N5—H5NB Cu1—N5—H5NB C5—N5—H5NA Cu1—N5—H5NA H5NB—N5—H5NA C6—N6—Cu1 C6—N6—H6NB Cu1—N6—H6NB C6—N6—H6NA Cu1—N6—H6NA

Acta Cryst. (2017). C73, 442-446

92.17 (6) 89.57 (6) 95.10 (6) 172.68 (6) 96.95 (6) 79.80 (6) 91.83 (6) 90.25 (6) 95.62 (6) 88.48 (6) 100.32 (6) 79.11 (6) 163.45 (6) 110.49 (11) 106.9 (13) 112.4 (14) 110.4 (13) 108.4 (14) 108.2 (19) 103.17 (11) 112.3 (15) 114.1 (15) 112.5 (16) 109.0 (16) 106 (2) 109.69 (11) 108.5 (14) 109.9 (14) 111.4 (14) 108.2 (14) 109.2 (19) 106.50 (11) 110.4 (15) 118.4 (15) 107.6 (15) 106.3 (15) 107 (2) 101.64 (12) 111.5 (16) 115.3 (16) 110.4 (16) 108.4 (15) 109 (2) 112.03 (12) 109.2 (14) 113.4 (14) 109.0 (14) 109.7 (14)

C2—C1—H1A H1B—C1—H1A N2—C2—C1 N2—C2—H2A C1—C2—H2A N2—C2—H2B C1—C2—H2B H2A—C2—H2B N3—C3—C4 N3—C3—H3B C4—C3—H3B N3—C3—H3A C4—C3—H3A H3B—C3—H3A N4—C4—C3 N4—C4—H4B C3—C4—H4B N4—C4—H4A C3—C4—H4A H4B—C4—H4A N5—C5—C6 N5—C5—H5B C6—C5—H5B N5—C5—H5A C6—C5—H5A H5B—C5—H5A N6—C6—C5 N6—C6—H6B C5—C6—H6B N6—C6—H6A C5—C6—H6A H6B—C6—H6A C8—C7—H7A C8—C7—H7B H7A—C7—H7B C8—C7—H7C H7A—C7—H7C H7B—C7—H7C O1—C8—O2 O1—C8—C7 O2—C8—C7 C9—C10—H10A C9—C10—H10B H10A—C10—H10B C9—C10—H10C H10A—C10—H10C H10B—C10—H10C O3—C9—O4

109.9 108.3 109.31 (16) 109.8 109.8 109.8 109.8 108.3 108.41 (15) 110.0 110.0 110.0 110.0 108.4 107.06 (15) 110.3 110.3 110.3 110.3 108.6 110.01 (16) 109.7 109.7 109.7 109.7 108.2 109.59 (15) 109.8 109.8 109.8 109.8 108.2 109.5 109.5 109.5 109.5 109.5 109.5 123.50 (17) 118.44 (17) 117.99 (16) 109.5 109.5 109.5 109.5 109.5 109.5 125.11 (18)

sup-25

supporting information H6NB—N6—H6NA N1—C1—C2 N1—C1—H1B

103 (2) 109.09 (15) 109.9

O3—C9—C10 O4—C9—C10

117.52 (19) 117.37 (18)

N3—Cu1—N1—C1 N4—Cu1—N1—C1 N6—Cu1—N1—C1 N2—Cu1—N1—C1 N5—Cu1—N1—C1 N3—Cu1—N2—C2 N1—Cu1—N2—C2 N4—Cu1—N2—C2 N6—Cu1—N2—C2 N5—Cu1—N2—C2 N1—Cu1—N3—C3 N4—Cu1—N3—C3 N6—Cu1—N3—C3 N2—Cu1—N3—C3 N5—Cu1—N3—C3 N3—Cu1—N4—C4 N1—Cu1—N4—C4 N6—Cu1—N4—C4 N2—Cu1—N4—C4 N5—Cu1—N4—C4

35.2 (6) 71.09 (13) −109.71 (12) −20.38 (12) 171.37 (13) 174.23 (11) −10.51 (11) −102.38 (12) 84.63 (12) 35.1 (3) 28.8 (7) −7.34 (12) 173.89 (12) 83.69 (12) −107.10 (12) −22.06 (12) 161.30 (12) −12.4 (5) −118.84 (12) 72.45 (12)

N3—Cu1—N5—C5 N1—Cu1—N5—C5 N4—Cu1—N5—C5 N6—Cu1—N5—C5 N2—Cu1—N5—C5 N3—Cu1—N6—C6 N1—Cu1—N6—C6 N4—Cu1—N6—C6 N2—Cu1—N6—C6 N5—Cu1—N6—C6 Cu1—N1—C1—C2 Cu1—N2—C2—C1 N1—C1—C2—N2 Cu1—N3—C3—C4 Cu1—N4—C4—C3 N3—C3—C4—N4 Cu1—N5—C5—C6 Cu1—N6—C6—C5 N5—C5—C6—N6

−103.95 (12) 80.02 (12) 171.95 (11) −15.47 (11) 35.3 (3) 80.73 (12) −102.54 (12) 71.1 (5) 177.68 (12) −15.07 (12) 49.05 (19) 38.40 (16) −60.3 (2) 35.02 (18) 46.65 (17) −54.8 (2) 42.63 (17) 44.14 (19) −60.8 (2)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

N1—H1NB···O4 N1—H1NA···O4i N2—H2NB···O1ii N2—H2NA···O1iii N3—H3NB···O2 N3—H3NA···O2ii N4—H4NB···O3iv N4—H4NA···O1iii N5—H5NB···O2 N5—H5NA···O4i N6—H6NB···O3 N6—H6NA···O2ii

0.87 (1) 0.86 (1) 0.87 (1) 0.86 (1) 0.86 (1) 0.86 (1) 0.87 (1) 0.86 (1) 0.87 (1) 0.87 (1) 0.87 (1) 0.86 (1)

2.06 (1) 2.27 (1) 2.74 (2) 2.12 (1) 2.09 (1) 2.32 (1) 2.15 (1) 2.22 (1) 2.98 (2) 2.13 (1) 2.10 (1) 2.22 (1)

2.917 (2) 3.040 (2) 3.393 (3) 2.964 (2) 2.933 (2) 3.085 (2) 2.945 (2) 3.062 (2) 3.647 (2) 2.956 (2) 2.956 (2) 3.056 (2)

170 (2) 149 (2) 134 (2) 165 (2) 167 (2) 150 (2) 153 (2) 165 (2) 136 (2) 159 (2) 169 (2) 162 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) x+1, y, z.

(umd886) Tris(ethylenediamine-κ2N,N′)zinc(II) diacetate Crystal data [Zn(C2H8N2)3](C2H3O2)2 Mr = 363.77 Triclinic, P1

Acta Cryst. (2017). C73, 442-446

a = 8.3223 (5) Å b = 9.1059 (5) Å c = 12.7492 (7) Å

sup-26

supporting information α = 70.855 (2)° β = 85.800 (2)° γ = 75.434 (2)° V = 883.34 (9) Å3 Z=2 F(000) = 388 Dx = 1.368 Mg m−3

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 9943 reflections θ = 3.1–26.0° µ = 1.41 mm−1 T = 200 K Block, colourless 0.50 × 0.40 × 0.40 mm

Data collection 14208 measured reflections 3450 independent reflections 3242 reflections with I > 2σ(I) Rint = 0.019 θmax = 26.1°, θmin = 3.1° h = −10→10 k = −11→11 l = −15→15

Bruker CMOS diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) Tmin = 0.538, Tmax = 0.602 Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.020 wR(F2) = 0.051 S = 1.08 3450 reflections 229 parameters 12 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0238P)2 + 0.3152P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.026 Δρmax = 0.30 e Å−3 Δρmin = −0.24 e Å−3 Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.028 (2)

Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Zn1 O1 O2 N1 H1NB H1NA N2 H2NB

x

y

z

Uiso*/Ueq

0.564211 (18) 0.73399 (15) 0.71151 (18) 0.52981 (16) 0.4439 (16) 0.6163 (16) 0.44734 (15) 0.3715 (17)

0.644619 (18) 0.04251 (14) 0.27798 (15) 0.68995 (15) 0.659 (2) 0.6385 (18) 0.90194 (14) 0.922 (2)

0.713369 (12) 0.55873 (10) 0.57743 (14) 0.87028 (10) 0.9049 (13) 0.9120 (12) 0.65359 (10) 0.6044 (12)

0.01994 (8) 0.0401 (3) 0.0605 (4) 0.0259 (3) 0.031* 0.031* 0.0258 (3) 0.031*

Acta Cryst. (2017). C73, 442-446

sup-27

supporting information H2NA N3 H3NB H3NA N4 H4NB H4NA N5 H5NB H5NA N6 H6NB H6NA C1 H1B H1A C2 H2A H2B C3 H3B H3A C4 H4B H4A C5 H5B H5A C6 H6B H6A C7 H7A H7B H7C C8 O3 O4 C10 H10A H10B H10C C9

0.5207 (18) 0.62038 (14) 0.636 (2) 0.5383 (16) 0.81600 (15) 0.8797 (19) 0.807 (2) 0.63463 (17) 0.689 (2) 0.6965 (19) 0.32494 (16) 0.2521 (18) 0.285 (2) 0.5017 (2) 0.6077 0.4566 0.3789 (2) 0.2717 0.3590 0.77475 (17) 0.7507 0.8244 0.89558 (17) 0.9247 0.9987 0.4799 (2) 0.4347 0.5028 0.3544 (2) 0.3971 0.2491 0.9469 (2) 0.9773 1.0337 0.9352 0.78433 (17) 0.06083 (15) 0.23264 (13) −0.0498 (2) −0.1529 −0.0275 −0.0610 0.09244 (18)

0.9544 (19) 0.62314 (14) 0.5237 (12) 0.6788 (17) 0.68484 (15) 0.651 (2) 0.7873 (11) 0.38640 (15) 0.339 (2) 0.366 (2) 0.58718 (17) 0.623 (2) 0.634 (2) 0.86365 (18) 0.8963 0.8926 0.94863 (19) 0.9187 1.0661 0.67284 (18) 0.7909 0.6258 0.61677 (19) 0.4983 0.6529 0.3337 (2) 0.3634 0.2158 0.4127 (2) 0.3784 0.3800 0.0720 (2) 0.1587 0.0282 −0.0127 0.13645 (16) 0.67616 (17) 0.61786 (15) 0.7418 (3) 0.7758 0.8341 0.6597 0.67346 (19)

0.6234 (13) 0.54859 (9) 0.5542 (14) 0.5037 (12) 0.69240 (10) 0.7505 (11) 0.6653 (14) 0.79660 (11) 0.7518 (13) 0.8537 (11) 0.70605 (11) 0.7499 (13) 0.6392 (9) 0.84717 (13) 0.8278 0.9137 0.75082 (13) 0.7714 0.7330 0.50930 (12) 0.4767 0.4511 0.60607 (13) 0.6362 0.5810 0.83065 (13) 0.8969 0.8502 0.73609 (13) 0.6711 0.7591 0.65678 (17) 0.6742 0.6115 0.7259 0.59340 (11) 0.85582 (10) 0.99611 (9) 1.01481 (18) 0.9716 1.0293 1.0855 0.95009 (12)

0.031* 0.0220 (2) 0.026* 0.026* 0.0260 (3) 0.031* 0.031* 0.0301 (3) 0.036* 0.036* 0.0306 (3) 0.037* 0.037* 0.0338 (3) 0.041* 0.041* 0.0341 (3) 0.041* 0.041* 0.0267 (3) 0.032* 0.032* 0.0295 (3) 0.035* 0.035* 0.0369 (4) 0.044* 0.044* 0.0352 (4) 0.042* 0.042* 0.0451 (4) 0.068* 0.068* 0.068* 0.0235 (3) 0.0469 (3) 0.0386 (3) 0.0599 (6) 0.090* 0.090* 0.090* 0.0297 (3)

Atomic displacement parameters (Å2)

Zn1

U11

U22

U33

U12

U13

U23

0.02054 (10)

0.02266 (10)

0.01683 (10)

−0.00357 (6)

−0.00355 (6)

−0.00704 (6)

Acta Cryst. (2017). C73, 442-446

sup-28

supporting information O1 O2 N1 N2 N3 N4 N5 N6 C1 C2 C3 C4 C5 C6 C7 C8 O3 O4 C10 C9

0.0490 (7) 0.0593 (9) 0.0280 (6) 0.0267 (6) 0.0206 (6) 0.0230 (6) 0.0404 (7) 0.0267 (6) 0.0459 (9) 0.0397 (9) 0.0249 (7) 0.0184 (7) 0.0593 (11) 0.0433 (9) 0.0340 (9) 0.0217 (7) 0.0355 (6) 0.0277 (6) 0.0402 (11) 0.0269 (7)

0.0347 (6) 0.0359 (7) 0.0290 (6) 0.0257 (6) 0.0263 (6) 0.0300 (6) 0.0270 (6) 0.0447 (8) 0.0322 (8) 0.0275 (8) 0.0330 (8) 0.0365 (8) 0.0338 (8) 0.0477 (9) 0.0367 (9) 0.0256 (7) 0.0786 (9) 0.0560 (7) 0.0850 (16) 0.0364 (8)

0.0405 (7) 0.0863 (11) 0.0193 (6) 0.0227 (6) 0.0202 (6) 0.0264 (6) 0.0225 (6) 0.0230 (6) 0.0262 (8) 0.0316 (8) 0.0230 (7) 0.0333 (8) 0.0223 (7) 0.0259 (7) 0.0607 (12) 0.0228 (7) 0.0280 (6) 0.0282 (6) 0.0530 (12) 0.0232 (7)

−0.0163 (5) 0.0160 (6) −0.0026 (5) −0.0025 (5) −0.0037 (5) −0.0059 (5) −0.0052 (5) −0.0129 (6) −0.0046 (7) 0.0037 (6) −0.0069 (6) −0.0033 (6) −0.0242 (8) −0.0267 (8) −0.0091 (7) −0.0070 (5) −0.0117 (6) −0.0060 (5) −0.0019 (10) −0.0085 (6)

−0.0155 (5) −0.0384 (8) −0.0054 (5) −0.0073 (5) −0.0036 (4) −0.0079 (5) −0.0090 (5) −0.0020 (5) −0.0068 (7) −0.0062 (7) 0.0022 (5) −0.0016 (6) −0.0018 (7) 0.0033 (7) −0.0215 (8) −0.0010 (5) −0.0080 (5) −0.0085 (4) 0.0051 (9) −0.0027 (6)

−0.0092 (5) −0.0318 (7) −0.0080 (5) −0.0063 (5) −0.0095 (5) −0.0093 (5) −0.0077 (5) −0.0106 (6) −0.0154 (6) −0.0124 (6) −0.0108 (6) −0.0129 (7) −0.0052 (6) −0.0157 (7) −0.0054 (8) −0.0060 (6) −0.0186 (6) −0.0096 (5) −0.0309 (12) −0.0048 (6)

Geometric parameters (Å, º) Zn1—N1 Zn1—N3 Zn1—N5 Zn1—N2 Zn1—N6 Zn1—N4 O1—C8 O2—C8 N1—C1 N1—H1NB N1—H1NA N2—C2 N2—H2NB N2—H2NA N3—C3 N3—H3NB N3—H3NA N4—C4 N4—H4NB N4—H4NA N5—C5 N5—H5NB N5—H5NA N6—C6 N6—H6NB

Acta Cryst. (2017). C73, 442-446

2.1570 (12) 2.1795 (11) 2.1816 (13) 2.1927 (12) 2.1979 (13) 2.1992 (12) 1.2482 (17) 1.2340 (18) 1.4702 (19) 0.873 (9) 0.862 (9) 1.4705 (19) 0.865 (9) 0.861 (9) 1.4683 (18) 0.861 (9) 0.862 (9) 1.4725 (19) 0.867 (9) 0.867 (9) 1.473 (2) 0.864 (9) 0.864 (9) 1.466 (2) 0.868 (9)

C1—C2 C1—H1B C1—H1A C2—H2A C2—H2B C3—C4 C3—H3B C3—H3A C4—H4B C4—H4A C5—C6 C5—H5B C5—H5A C6—H6B C6—H6A C7—C8 C7—H7A C7—H7B C7—H7C O3—C9 O4—C9 C10—C9 C10—H10A C10—H10B C10—H10C

1.521 (2) 0.9900 0.9900 0.9900 0.9900 1.518 (2) 0.9900 0.9900 0.9900 0.9900 1.516 (2) 0.9900 0.9900 0.9900 0.9900 1.509 (2) 0.9800 0.9800 0.9800 1.2402 (19) 1.2531 (18) 1.514 (2) 0.9800 0.9800 0.9800

sup-29

supporting information N6—H6NA

0.867 (9)

N1—Zn1—N3 N1—Zn1—N5 N3—Zn1—N5 N1—Zn1—N2 N3—Zn1—N2 N5—Zn1—N2 N1—Zn1—N6 N3—Zn1—N6 N5—Zn1—N6 N2—Zn1—N6 N1—Zn1—N4 N3—Zn1—N4 N5—Zn1—N4 N2—Zn1—N4 N6—Zn1—N4 C1—N1—Zn1 C1—N1—H1NB Zn1—N1—H1NB C1—N1—H1NA Zn1—N1—H1NA H1NB—N1—H1NA C2—N2—Zn1 C2—N2—H2NB Zn1—N2—H2NB C2—N2—H2NA Zn1—N2—H2NA H2NB—N2—H2NA C3—N3—Zn1 C3—N3—H3NB Zn1—N3—H3NB C3—N3—H3NA Zn1—N3—H3NA H3NB—N3—H3NA C4—N4—Zn1 C4—N4—H4NB Zn1—N4—H4NB C4—N4—H4NA Zn1—N4—H4NA H4NB—N4—H4NA C5—N5—Zn1 C5—N5—H5NB Zn1—N5—H5NB C5—N5—H5NA Zn1—N5—H5NA H5NB—N5—H5NA C6—N6—Zn1

171.96 (5) 91.47 (5) 93.65 (5) 80.77 (5) 95.17 (5) 167.64 (5) 97.84 (5) 89.12 (5) 80.45 (5) 91.02 (5) 93.33 (5) 79.87 (4) 97.39 (5) 92.68 (5) 168.66 (5) 107.66 (9) 109.0 (11) 111.0 (12) 111.1 (11) 109.8 (11) 108.2 (16) 107.24 (9) 112.0 (11) 110.4 (11) 109.1 (12) 109.8 (12) 108.4 (17) 109.34 (8) 108.2 (11) 107.9 (11) 111.9 (11) 110.2 (11) 109.2 (15) 106.68 (8) 110.9 (12) 118.4 (12) 106.3 (12) 107.7 (12) 106.2 (16) 107.04 (10) 110.3 (12) 110.1 (12) 110.7 (12) 109.6 (12) 109.1 (17) 107.98 (10)

Acta Cryst. (2017). C73, 442-446

C2—C1—H1B N1—C1—H1A C2—C1—H1A H1B—C1—H1A N2—C2—C1 N2—C2—H2A C1—C2—H2A N2—C2—H2B C1—C2—H2B H2A—C2—H2B N3—C3—C4 N3—C3—H3B C4—C3—H3B N3—C3—H3A C4—C3—H3A H3B—C3—H3A N4—C4—C3 N4—C4—H4B C3—C4—H4B N4—C4—H4A C3—C4—H4A H4B—C4—H4A N5—C5—C6 N5—C5—H5B C6—C5—H5B N5—C5—H5A C6—C5—H5A H5B—C5—H5A N6—C6—C5 N6—C6—H6B C5—C6—H6B N6—C6—H6A C5—C6—H6A H6B—C6—H6A C8—C7—H7A C8—C7—H7B H7A—C7—H7B C8—C7—H7C H7A—C7—H7C H7B—C7—H7C O2—C8—O1 O2—C8—C7 O1—C8—C7 C9—C10—H10A C9—C10—H10B H10A—C10—H10B

110.0 110.0 110.0 108.4 109.05 (12) 109.9 109.9 109.9 109.9 108.3 109.35 (11) 109.8 109.8 109.8 109.8 108.3 108.38 (11) 110.0 110.0 110.0 110.0 108.4 109.39 (12) 109.8 109.8 109.8 109.8 108.2 109.23 (12) 109.8 109.8 109.8 109.8 108.3 109.5 109.5 109.5 109.5 109.5 109.5 124.29 (14) 118.48 (13) 117.22 (13) 109.5 109.5 109.5

sup-30

supporting information C6—N6—H6NB Zn1—N6—H6NB C6—N6—H6NA Zn1—N6—H6NA H6NB—N6—H6NA N1—C1—C2 N1—C1—H1B

110.3 (12) 112.2 (12) 110.6 (12) 109.0 (12) 106.7 (17) 108.35 (12) 110.0

C9—C10—H10C H10A—C10—H10C H10B—C10—H10C O3—C9—O4 O3—C9—C10 O4—C9—C10

109.5 109.5 109.5 125.10 (15) 117.38 (15) 117.51 (15)

N3—Zn1—N1—C1 N5—Zn1—N1—C1 N2—Zn1—N1—C1 N6—Zn1—N1—C1 N4—Zn1—N1—C1 N1—Zn1—N2—C2 N3—Zn1—N2—C2 N5—Zn1—N2—C2 N6—Zn1—N2—C2 N4—Zn1—N2—C2 N1—Zn1—N3—C3 N5—Zn1—N3—C3 N2—Zn1—N3—C3 N6—Zn1—N3—C3 N4—Zn1—N3—C3 N1—Zn1—N4—C4 N3—Zn1—N4—C4 N5—Zn1—N4—C4 N2—Zn1—N4—C4 N6—Zn1—N4—C4

42.4 (4) 171.99 (10) −17.69 (10) −107.45 (10) 74.50 (10) −12.85 (10) 174.15 (10) 38.8 (3) 84.93 (10) −105.79 (10) 23.2 (4) −106.29 (9) 82.39 (9) 173.34 (9) −9.43 (9) 163.77 (9) −20.56 (9) 71.85 (10) −115.33 (9) −6.4 (3)

N1—Zn1—N5—C5 N3—Zn1—N5—C5 N2—Zn1—N5—C5 N6—Zn1—N5—C5 N4—Zn1—N5—C5 N1—Zn1—N6—C6 N3—Zn1—N6—C6 N5—Zn1—N6—C6 N2—Zn1—N6—C6 N4—Zn1—N6—C6 Zn1—N1—C1—C2 Zn1—N2—C2—C1 N1—C1—C2—N2 Zn1—N3—C3—C4 Zn1—N4—C4—C3 N3—C3—C4—N4 Zn1—N5—C5—C6 Zn1—N6—C6—C5 N5—C5—C6—N6

80.33 (9) −105.87 (9) 29.6 (3) −17.38 (9) 173.88 (9) −102.59 (9) 81.44 (9) −12.41 (9) 176.59 (9) 67.5 (3) 44.88 (14) 40.74 (15) −58.83 (17) 37.57 (13) 46.77 (13) −57.74 (15) 44.32 (14) 39.81 (14) −58.02 (17)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

N1—H1NB···O4 N1—H1NA···O4i N2—H2NB···O1ii N2—H2NA···O1iii N3—H3NB···O2 N3—H3NA···O2ii N4—H4NB···O3iv N4—H4NA···O1iii N5—H5NB···O2 N5—H5NA···O4i N6—H6NB···O3 N6—H6NA···O2ii

0.87 (1) 0.86 (1) 0.87 (1) 0.86 (1) 0.86 (1) 0.86 (1) 0.87 (1) 0.87 (1) 0.86 (1) 0.86 (1) 0.87 (1) 0.87 (1)

2.08 (1) 2.31 (1) 2.21 (1) 2.13 (1) 2.09 (1) 2.28 (1) 2.19 (1) 2.23 (1) 2.44 (1) 2.11 (1) 2.08 (1) 2.61 (1)

2.9437 (17) 3.0398 (17) 3.0293 (16) 2.9816 (18) 2.9449 (17) 3.0775 (17) 2.9885 (16) 3.0642 (17) 3.228 (2) 2.9232 (16) 2.9390 (18) 3.424 (2)

170 (2) 142 (2) 158 (2) 170 (2) 171 (2) 155 (2) 153 (2) 163 (2) 151 (2) 158 (2) 171 (2) 157 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) x+1, y, z.

Acta Cryst. (2017). C73, 442-446

View publication stats

sup-31