Power Electronics Module with Integral Microchannel ...

107 downloads 0 Views 688KB Size Report
Power Electronics Module with. Integral Microchannel Heatsink. Ljubisa Stevanovic1, Adam Pautsch1, Richard Beaupre1,. Arun Gowda1, Juan Sabate1, ...
Power Electronics Module with Integral Microchannel Heatsink Ljubisa Stevanovic1, Adam Pautsch1, Richard Beaupre1, Arun Gowda1, Juan Sabate1, Stephen Solovitz2 1General

Electric Global Research Center, Niskayuna, NY 2 Washington State University Vancouver, Vancouver, WA PCIM Europe Conference, Nuremberg, Germany, May 4, 2010

Overview • Power Module with Integral Liquid Cooled Heatsink • Candidate Heatsink Designs – Minichannel and microchannel from GE – Laminated 3D flow microchannel from Curamik • Performance comparison of candidate heatsinks – Pressure drop vs. flow rate – Junction-to-fluid thermal performance • Summary

L. Stevanovic et al., PCIM Europe, May 4, 2010

2

Standard Module: Thermal Challenges g ilin er Bo ransf t at He

uid Liq oling Co

ir dA rce ction o F ir nve al A on Co tur i Na vect n Co

With air-cooled heatsink

With microchannel heatsink

L. Stevanovic et al., PCIM Europe, May 4, 2010

3

Integral Minichannel Heatsink a) Silicon Solder Top Copper Ceramic Bottom Copper Embedded minichannels Baseplate

Key advantages:

b)

• Channels in baseplate  eliminates TIM (thermal grease) Silicon  good heat transfer, easy to fabricate • 1mm-scale channels Solder Top Copper 4 L. Stevanovic et al., PCIM Europe, May 4, 2010 Ceramic

Baseplate

Integral Minichannel Heatsink a)

Silicon Solder Top Copper Ceramic Bottom Copper Embedded minichannels Baseplate

b)

Additional advantages with Silicon Solder interleaved manifolds: Top Copper

manifolds

Ceramic Copper Laminated 3D Flow Baseplate

• Low pressure drop (doesn’t increase with module size) c) • Low temperature gradient

L. Stevanovic et al., PCIM Europe, May 4, 2010

5

Integral Microchannel Heatsink Silicon Solder Top Copper Ceramic Embedded microchannels Baseplate

Key advantages:

a)

• Channels in substrate  minimum junction-to-fluid stackup Silicon • Sub-mm scale Solder channels  excellent heat transfer Topmanifolds Copper  low pressure drop & temp. gradient • Interleaved Ceramic 6 L. Stevanovic et al., PCIM Europe, May 4, 2010 Bottom Copper

Integral Microchannel Heatsink Silicon Solder Top Copper Ceramic Embedded microchannels Baseplate

Microchannels

a) Silicon Solder Top Copper Ceramic Bottom Copper Embedded minichannels Baseplate

Key challenges:

• Fluid filtering and maintenance to prevent clogging of channels b)

• Cost effective fabrication of Silicon Solderchannel geometries optimal Top Copper Ceramic Copper Laminated 3D Flow Baseplate

• Substrate flatness & mechanical strength over temperature range c)

Outlet Inlet Plenum Plenum L. Stevanovic et al., PCIM Europe, May 4, 2010

7

Comparison of Integral Heatsinks Heatsink performance is a function of module geometry. Performance comparison from published data is difficult. • Objective: directly compare 3 heatsink designs: – GE Microchannel (0.1mm x 0.3mm channel cross-section) – GE Minichannel (1mm x 1mm channel cross-section) – Curamik 3D flow microchannel (0.3mm flow passages) • Invariant: 0.635mm-thick AlN substrate with four 150A IGBTs

600A IGBT Test Module L. Stevanovic et al., PCIM Europe, May 4, 2010

8

Power Module Thermal Testbed 1. 2. 3. 4. 5. 6. 7. 8. 9.

Chiller/Pump/Filter Pressure Transducer Flow Transducer Carrier/Demodulator Data Logger IR Camera Heatsink DUT PC Controller Power Supply

DUT module with integral heatsink

L. Stevanovic et al., PCIM Europe, May 4, 2010

9

600A IGBT Module Test Results Tested with water, inlet temp. maintained at Ti = 20 °C Experimental flow rates from 0.5 to 3 lpm IGBTs as power source, total area: N  A = 4  1.2cm  1.2cm IGBTs cover cooled area, resulting in minimal heat spreading Module tested up to P = 2 kW R"  T j ,max  Ti N A P



500



1

400

GE integral minichannels Laminated 3D microchannels

300

200

0.6

0.4

100

0.2

0

0 0

1

2

GE integral microchannels GE integral minichannels Laminated 3D microchannels

0.8

R" (°C cm²/W)

Pressure Drop (kPa)

GE integral microchannels

3

4

5

0

1

Flow Rate (lpm)

L. Stevanovic et al., PCIM Europe, May 4, 2010

2

3

4

5

Flow Rate (lpm) 10

Curamik Performance vs. Flow Direction Flow direction Q has significant impact on IGBT junction temp’s Fluid temp. rise across the heatsink causes thermal gradient Curamik performance reported based on flow direction Qa Thermal gradient not observed with GE heatsinks 94 °C

Qa

100 °C

82 °C

85 °C

Qb

Test conditions: Q = 1 lpm, water Ti = 20 °C, P = 1500 W Tj, max recorded over a region least affected by wirebond losses L. Stevanovic et al., PCIM Europe, May 4, 2010

11

600A IGBT Module Test Results R  T j ,max  Ti  P

R"  T j ,max  Ti N A P 0.5

0.10 GE integral microchannels GE integral minichannels

0.08

GE integral minichannels

Laminated 3D microchannels

Laminated 3D microchannels

R (°C/W)

R" (°C cm²/W)

0.4

GE integral microchannels

0.3

0.2

0.06

0.04

0.1

0.02

0.0

0.00 0

20

40

60

80

100

0

20

Pressure Drop (kPa)

L. Stevanovic et al., PCIM Europe, May 4, 2010

40

60

80

100

Pressure Drop (kPa)

12

Summary Developed integral heatsink for demanding power conversion app’s Advantages: • performance equal or better than best-in-class • scalable to larger area modules and heatsinks

Challenges: • laser ablation of u-channels is costly, need alternative approach for volume production • u-channels require fluid filtering & maintenance

0.10 GE integral microchannels 0.08

GE integral minichannels

Next Steps: • develop low cost substrate and baseplate • manufacturing partner for productization

R (°C/W)

Laminated 3D microchannels 0.06

0.04

0.02

0.00 0

20

40

60

80

100

Pressure Drop (kPa)

L. Stevanovic et al., PCIM Europe, May 4, 2010

13

Questions?

L. Stevanovic et al., PCIM Europe, May 4, 2010

14