Probing the structure formation of block copolymer

0 downloads 0 Views 1MB Size Report
S. Marques, H. Sai, U. Vainio, W. A. Phillip, K.-V. Peinemann, S. P. Nunes, U. Wiesner, ACS Macro Letters, 2012, 1, 614-617. 4. D. S. Marques, R. M. Dorin, ...
Probing the structure formation of block copolymer membranes using SAXS and time-resolved GISAXS B. Sutisna,a V. Musteata,b G. Polymeropoulos,c K.-V. Peinemann,d D.-M. Smilgies,e N. Hadjichristidis c and S. P. Nunesb* King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia, a. Physical Science and Engineering Division (PSE), b. Biological and Environmental Science and Engineering Division (BESE), c. KAUST Catalysis Center (KCC), Physical Science and Engineering Division (PSE), d. Advanced Membranes and Porous Materials Center (AMPMC), Physical Science and Engineering Division (PSE), e. Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, USA



PS-b-PHS-b-PS membrane formation

SAXS of the annealed terpolymer film d)

b)

c)

a) 3

10 8

10

50

100

150

200

250

300

350

400

400

2

10

350

300

250

6

10

950

900

850

800

750

700

650

600

550

500

450

Self-assembly of diblock copolymer

100 nm

Intensity / a.u.

• Membranes with well-ordered pore structures are greatly advantageous for water purification or protein separation due to their high flux and sharp selectivity • The membrane structures were formed via block copolymer self-assembly and non-solvent induced phase separation (SNIPS)

RESULTS AND DISCUSSION

Intensity / a.u.

INTRODUCTION

4

10

0.1

1

1

0.1

-1

q / nm

q / nm

The fabricated membranes

0.01

180

200

220

240

260

280

300

320

40

340

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

50

360

100

150

200

250

300

350

50

400

200

250

300

350

50

400

300 s

600

100

150

200

250

300

350

400

450

dry

Dry

740

700

750

760

800 850

850

900

900 950

950

960

950

MaxInt=11662

950

940

920

900

900

900

880

850

860

850

840

800

800

800

750

780 800 820

100

48

80

Rejection / %

c)

b) 46 44

Solvent Evaporation

PS-b-P4VP membranes and its

Immersion in Water

d - spacing / nm

Solution Casting

BSA 66.5 kg mol-1

PEG 10 kg mol-1

650

650 700 750

600

120 s

650

700

150

300 s

700

60 s

650

680

0s

100

120 s

60 s

750

0s

550

160

600

140

0.1

550

120

550

100

720

SNIPS

80

700

a)

60

660

640

Time-resolved GISAXS of the film casting 40

-1

performance1

42

60

Cyt c 12.4 kg mol-1

40 Lysozyme 14.3 kg mol-1

40 38

20

1:1 Imidazole 5:1 Pyridine

36

0

34

10

20

Molecular Weight / kg mol-1

32 0

100

200

300

400

500

60

600

time / s

• PS-b-PB-b-PS membrane formation

SAXS of the annealed terpolymer film

SAXS of terpolymer in solution 1012

6

1

1/2

1011

31

8

10

7

RESEARCH OBJECTIVE

Intensity / a.u.

Intensity / a.u.

1010 7

10

22

1/2 1/2

40 1/2 50

6

10

9

12

1

25 wt%

109 3

108

2

107

18 wt%

106 13 wt%

5

10

• Investigate the structure formation of block copolymer membranes from ABA terpolymers and obtain the optimum condition for the membrane preparation

105 9 wt%

104

4

10

0.1

0.1

1

q / nm

-1

Time-resolved GISAXS of film casting

METHOD

0s 10 s 22 s 30 s 60 s 120 s 200 s

105

Intensity / a.u.

• Time-resolved grazing incident X-ray scattering (GISAXS) 104

103

1

0s

10 s

30 s

60 s

120 s

200 s

q / nm-1

AFM of the membrane

3 2

102

101 0.2

0.4

0.6

0.8

1.0

q / nm-1

CONCLUSIONS • SAXS and time-resolved GISAXS reveal the influence of polymer concentration and evaporation time during the membrane formation • Time-resolved GISAXS combined with SAXS is powerful to characterize the membrane formation mechanism and to obtain the optimum condition

REFERENCES 1. 2. 3. 4. 5. 6.

S. P. Nunes, R. Sougrat, B. Hooghan, D. H. Anjum, A. R. Behzad, L. Zhao, N. Pradeep, I. Pinnau, U. Vainio and K.-V. Peinemann, Macromolecules, 2010, 43, 8079-8085. S. P. Nunes, Macromolecules, 2016, 49, 2905-2916. R. M. Dorin, D. b. S. Marques, H. Sai, U. Vainio, W. A. Phillip, K.-V. Peinemann, S. P. Nunes, U. Wiesner, ACS Macro Letters, 2012, 1, 614-617. D. S. Marques, R. M. Dorin, U. Wiesner, D.-M. Smilgies, A. R. Behzad, U. Vainio, K.-V. Peinemann, S. P. Nunes, Polymer, 2014, 55, 1327-1332. B. Sutisna, G. Polymeropoulos, E. Mygiakis, V. Musteata, K.-V. Peinemann, D.-M. Smilgies, N. Hadjichristidis, S. P. Nunes, Polymer Chemistry, 2016, 7, 6189-6201. B. Sutisna, G. Polymeropoulos, V. Musteata, R. SougratD.-M. Smilgies, , K.-V. Peinemann, N. Hadjichristidis, S. P. Nunes, Small, 2017

ACKNOWLEDGEMENT Funding of this work was provided by King Abdullah University of Science and Technology (KAUST) Grant 1671 - CRG2. The authors thank The Cornell High Energy Synchrotron Source (CHESS), USA and LNLS in Brazil for access to the GISAXS and SAXS synchrotron facilities.