Protein Quality - Abbott Nutrition

45 downloads 257 Views 573KB Size Report
... (except soy). McDonald L, et al. The Protein Book A Complete Guide for the Coach and Athlete. 1st ed. Salt Lake City, UT: Lyle McDonald Publishing; 2007. 4  ...
Protein  and  Amino  Acids  in  Sports  Nutri3on   Advanced  Level  

1  

Module  II   Evalua.ng  Protein  Quality   Determining  Protein  Recommenda.ons  for  Athletes  

Evalua3ng  Protein  Quality  

3  

Protein  Quality   §  Complete  protein   –  Contains  all  the  essen.al  AAs  in  amounts  that  meet  what  is  required  by   humans  to  prevent  deficiency     •  Animal  proteins  (except  gela.n)   •  Dairy  proteins   •  Soy  protein  

§  Incomplete  protein   –  Too  low  in  one  or  more  of  the  essen.al  AAs  to  support  human  growth  and   maintenance     •  Cannot  serve  as  a  sole  source  of  protein  in  the  diet  without  deficiency  developing   •  Limi.ng  AA  (LAA)  is  the  essen.al  AA  present  in  the  lowest  quan.ty  in  the  food   •  Most  plant  proteins  are  incomplete  proteins  (except  soy)  

McDonald L, et al. The Protein Book A Complete Guide for the Coach and Athlete. 1st ed. Salt Lake City, UT: Lyle McDonald Publishing; 2007. 4  

Protein  Quality:  Complementary  Proteins   §  Complementary  proteins   –  Combina.ons  of  incomplete  proteins  that,  when  added  together,  result   in  a  complete  protein  (eg,  beans  and  rice)   •  Legumes:    Èmethionine,    Ç  lysine   •  Grains:      Çmethionine,  È  lysine  

–  Combining  a  complete  protein  with  an  incomplete  protein  is  also   considered  complementary   •  Excep.ons  are  milk  and  legumes    

–  Although  milk  has  a  greater  amount  of  sulfur-­‐containing  AAs  (ie,  methionine  and   cysteine)  per  gram  compared  with  legumes,  not  enough  sulfur-­‐containing  AAs  are   present  for  an  ideal  AA  profile  when  the  2  foods  are  consumed  together  

McDonald L, et al. The Protein Book A Complete Guide for the Coach and Athlete. 1st ed. Salt Lake City, UT: Lyle McDonald Publishing; 2007.

5  

Protein  Quality:  Complementary  Proteins  (Cont’d)   §  Complementary  proteins   –  Combining  complementary  proteins  at  each  meal  for  vegetarians     is  not  necessary   •  What  maTers  is  the  total  intake  of  complementary  proteins  over  the   course  of  a  day   •  May  be  more  crucial  for  individuals  wishing  to  op.mize  meal-­‐s.mulated   protein  synthesis  in  muscle   –  Requires  full  complement  of  essen.al  AAs  as  well  as  rela.vely  high   leucine  content  to  maximally  s.mulate  mTOR  pathway  

McDonald L, et al. The Protein Book A Complete Guide for the Coach and Athlete. 1st ed. Salt Lake City, UT: Lyle McDonald Publishing; 2007.

6  

Progress  Check—Evalua3ng  Protein  Quality  

1.  Which  of  the  following  are  complete  proteins  that  contain  adequate  amounts   of  all  the  essen.al  amino  acids  for  suppor.ng  human  growth  and   development?     A.  B.  C.  D.  E. 

Dairy  protein   Egg  protein   Soybean  protein   All  of  the  above   A  and  B  only  

2.  Consuming  rice  and  beans  together  is  an  example  of:     A.  B.  C.  D. 

Complementary  proteins   Corresponding  proteins   Complex  proteins   None  of  the  above  

7  

Progress  Check—Evalua3ng  Protein  Quality   1.  Which  of  the  following  are  complete  proteins  that  contain   adequate  amounts  of  all  the  essen.al  amino  acids  for   suppor.ng  human  growth  and  development?   û

A.  Dairy  protein

 

Incorrect,  please  review  slides  on  Protein  Quality  to  be7er  understand  the  nature  of  different  proteins.  

 

û

B.  Egg  protein

û

C.  Soybean  protein



D.  All  of  the  above  

 Incorrect,  please  review  slides  on  Protein  Quality  to  be7er  understand  the  nature  of  different  proteins.  

 

 Incorrect,  please  review  slides  on  Protein  Quality  to  be7er  understand  the  nature  of  different  proteins.  

Correct,  animal  and  soy  proteins  are  complete  proteins.  

û

E.  A  and  B  only  

 Incorrect,  please  review  slides  on  Protein  Quality  to  be7er  understand  the  nature  of  different  proteins.

8  

 

Progress  Check—Evalua3ng  Protein  Quality   2.  Consuming  rice  and  beans  together  is  an  example  of:   

A.  Complementary  proteins

 

Correct,  rice  and  beans  together  provides  enough  combina?ons  of  proteins  to  be  considered  complete.  

û û û

B.  Corresponding  proteins

 

 Incorrect,  please  review  slides  on  Protein  Quality:  Complementary  Proteins  to  be7er  understand  the  nature  of   different  proteins.  

C.  Complex  proteins

 

 Incorrect,  please  review  slides  on  Protein  Quality:  Complementary  Proteins  to  be7er  understand  the  nature  of   different  proteins.  

D.  None  of  the  above   Incorrect,  please  review  slides  on  Protein  Quality:  Complementary  Proteins  to  be7er  understand  the  nature  of   different  proteins.  

9  

Evalua3on  of  Protein  Quality   §  Two  important  aspects  of  evalua.ng  protein  quality   –  Amino  acid  profile  (compared  to  “ideal”  paTern)   –  Diges.bility  of  the  protein   •  Plant  proteins  are  oaen  contained  within  cell  walls  that  are  resistant  to  human  diges.on,   limi.ng  diges.bility   •  Some  legumes  have  an.nutri.onal  factors  such  as  trypsin  that  also  limit  diges.bility   Source

True  Diges3bility,  %

Egg

97

Milk  /  cheese

95

Meat  /  fish

94

Soy  flour

86

Whole  wheat

85

Corn,  whole

87

Oatmeal

86

Beans

78

American  mixed  diet

96

Abbreviations: FAO, Food and Agriculture Organization; WHO, World Health Organization. Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Fiber, Protein, and Amino Acids. Washington, DC: National Academies Press, 2005, p. 683-689. Report of the Joint FAO/WHO Expert Consultation. Protein quality evaluation. FAO Food and Nutrition Paper No 51. 1991. 10  

Protein  Diges3bility  Corrected  Amino  Acid  Score   §  Protein  diges.bility  corrected  amino  acid  score  (PDCAAS)  is  the   current  “gold”  standard  by  FAO/WHO  for  assessing  protein   mg  of  limi3ng  AA  in     quality   PDCAAS  (%)  

1  g  test  protein  

mg  of  same  AA  in     1  g  of  reference  or   “ideal”  protein  

True  fecal  diges3bility  (DF;  %)  

  –  DF  =  (NI  –  NFΔ)  /  NI  where   •  NI  =  nitrogen  intake  (g  protein/6.25)   •  NFΔ  =  fecal  nitrogen  on  a  diet  containing  the  protein  minus    fecal  nitrogen   on  a  protein-­‐free  diet  (corrects  for  endogenous  nitrogen)  

§  Complete  proteins  can  oaen  have  PDCAAS  values  of  ≥  1.00   –  Standard  prac.ce  is  to  truncate  values  exceeding  1.00  to  simply  1.00   Abbreviations: FAO, Food and agriculture Organization; WHO, world Health Organization. Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Fiber, protein, and Amino Acids. Washington, DC: National Academies Press, 2005, p. 683-689. Schaafsma G. J Nutr. 2000;130(7):1865S-1867S.

11  

Example  of  PDCAAS  Calcula3on   §  Iden.fy  the  limi.ng  AA  (LAA)  in  a  protein  source      

mg  /  g  Protein

   

Amino  Acid

Whole  Wheat     Flour  

FNB/IOM   Standard  

Ra3o

His.dine

22

18

1.22

Isoleucine

40

25

1.6

Leucine

63

55

1.15

Lysine

26

51

0.51    (LAA)

Met  +  Cys

35

25

1.4

Phe  +  Tyr

81

47

1.72

Threonine

27

27

1.00

Tryptophan

11

7

1.57

Valine

43

32

1.34

FNB, Food and Nutrition Board; IOM, Institute of Medicine.

Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Fiber, protein, and Amino Acids. Washington, DC: National Academies Press, 2005, p. 686-689.

12  

Example  of  PDCAAS  Calcula3on  (Cont’d)   §  PDCAAS  of  whole  wheat  =  ra.o  for  lysine  (LAA)  x  diges.bility   –  0.51  ×  0.85  =  0.433   –  Therefore,  whole  wheat  is  an  incomplete  protein  and  not  suitable  as  a   sole  protein  source  in  the  diet  

  §  For  the  percent  daily  value  (%  DV)  of  protein  on  food  labels,  the   total  protein  content  is  first  corrected  using  PDCAAS  before  a  %  DV   value  is  listed   –  %  DV  =  amount  of  nutrient  in  1  serving  (corrected)  ⁄  DV  for  nutrient  (50  g  for   protein  in  adults)  

US Food and Drug Administration. Food Labeling Guide Section 7. October 2009. Available at: http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/FoodLabelingNutrition/FoodLabelingGuide/ ucm064894.htm. Accessed July 20, 2011.

13  

PDCAAS  of  Protein  Sources  

Protein  Source

PDCAAS

Egg

1.0

Milk

1.0

Beef

0.92

Soy  protein

1.0

Wheat

0.42

Whey  protein

1.0

Casein

1.0

Peanuts

0.52

Black  beans

0.75

Hoffman JR and Falvo MJ. J Sports Sci Med. 2004;3:118–130. Schaafsma G. J Nutr. 2000;130(7):1865S-1867S. 14  

Limita3ons  of  PDCAAS  for  Athletes   §  Values  above  1.0  are  truncated   –  FAO/WHO  defini.on  is  concerned  only  with  mee.ng  maintenance   requirements   –  Does  not  account  for  protein  intake  or  outcomes  beyond  maintenance   requirements  

§  Does  not  account  for  rela.ve  AA  differences  among  proteins  with   PDCAAS  of  1.0   –  For  example,  soy  isolate  and  whey  isolate  both  have  PDCAAS  of  1.0,  yet  soy   has  50%  the  threonine  (an  essen.al  AA)  of  whey  

§  Ileal  diges.bility  may  vary  among  protein  sources   –  AAs  not  absorbed  by  the  distal  intes.ne  can  subsequently  be  consumed  by   bacteria  in  the  colon;  therefore,  fecal  diges.bility  may  not  accurately  reflect   AA  uptake  from  a  protein  source  

FAO, Food and agriculture Organization; WHO, world Health Organization. Millward DJ, et al. Am J Clin Nutr. 2008;87:1576S-1581S. 15  

Protein  Efficiency  Ra3o  for  Protein  Quality   § Protein  efficiency  ra.o  (PER)   – Assesses  weight  gain  of  growing  animals  on  a  par.cular   protein  source  (eg,  rats,  chicks)     •  Diet  containing  about  10%  protein  is  fed  for  ~10  days  

– PER  =  weight  gain  (g)/protein  consumed  (g)   – Not  suitable  as  an  index  for  human  consump.on   •  Human  metabolism  oaen  varies  substan.ally  from  animals  

Ferreira Costa Leite CD, et al. Nutr Hosp. 2011;26(2):415-420. 16  

Nitrogen  Balance  for  Protein  Quality   §  Nitrogen  intake  (from  protein)  minus  nitrogen  excre.on  equals   nitrogen  balance   –  Nitrogen  balance:    Nitrogen  intake  =  nitrogen  losses   –  Nega.ve  nitrogen  status:    Nitrogen  intake  <  nitrogen  losses   –  Posi.ve  nitrogen  status:    Nitrogen  intake  >  nitrogen  losses  

§  Nitrogen  balance  is  a  whole  body  concept   –  Does  not  give  specific  informa.on  on  flux  of  protein/AA  pool  within   individual  .ssues/organs  

§  FAO/WHO  has  set  protein  requirements  based  on  nitrogen   balance  experiments  

Rand WM, et al. Am J Clin Nutr. 2003;77:109-127.

17  

 Nitrogen  Balance  in  Clinical  Studies   §  Typically,  healthy  individuals  were  on  2  diets   –  Diet  with  protein  of  interest  versus  protein-­‐free  diet   –  Test  diets  were  above,  below,  and  near  predicted  protein   requirement   –  Nitrogen  losses  in  feces  and  urine  measured   •  Other  losses  (eg,  skin)  oaen  es.mated  

Irwin MI and Hegsted DM. J Nutr. 1971;101(4):539-566.

18  

Calcula3ng  Nitrogen  Balance   §  General  nitrogen-­‐status  formula    

Nitrogen  status  =  NI  –  [(U  -­‐  UE)  +  (F  –  FE)  +  S]    

−  Where  

•  NI  is  nitrogen  intake   •  U  and  F  are  urinary  and  fecal  nitrogen  losses,  respec.vely   •  UE  and  FE  are  endogenous  urinary  and  fecal  nitrogen  losses  during  a   nitrogen-­‐free  diet   •  S  is  nitrogen  loss  from  sloughed  skin  cells,  sweat,  bodily  secre.ons  

Gropper SS, et al. Chapter 6 Protein in Advanced Nutrition and Human Metabolism. 5th ed. Belmont, CA: Wadsworth, CENGAGE Learning.; 2009. p 237-238. 19  

Calcula3ng  Nitrogen  Balance  (Cont’d)   §  Clinical  nitrogen-­‐status  formula    

Nitrogen  status  =  (g  protein  intake/6.25)  –  (UUN  +  4)    

−  Where  

•  Nitrogen  intake  is  es.mated;  divide  protein  intake  by  6.25   •  UUN  is  24-­‐hour  urinary  urea  nitrogen  loss    

−  Added  to  4,  which  es.mates  other  nitrogenous  urea  compounds  and     non-­‐urea  nitrogen  losses)  

§  Example     –  Individual  with  protein  intake  of  85  g,  UUN  of  9.9  mg/mL,  and  24-­‐hour   urine  volume  of  1,000  mL   •  Nitrogen  intake:  85  g/6.25  =  13.6  g   •  UUN:  9.9  mg/mL  ×  1,000  mL  =  9,900  mg  OR  9.9  g   •  Nitrogen  balance:  13.6  –  (9.9  +  4)  =  −  0.3   −  Nega.ve  nitrogen  balance  indicates  state  of  protein  loss  

Lee, RD and Nieman, DC. Nutritional Assessment. 4th ed. New York, NY: McGraw Hill; 2006. p 323. 20  

Considera3ons  for  Nitrogen  Balance   §  Measurements  are  difficult  and  oaen  imprecise   §  Urine  and  fecal  collec.ons  must  fully  account  for  24-­‐hr  period   –  Difficult  in  prac.ce  

  §  Poor  es.mates  of  true  nitrogen  loss  oaen  result  in  an  overes.ma.on  of   nitrogen  reten.on     §  Non-­‐protein  energy  intake  can  influence  results   –  Carbohydrate  and  fat  are  protein-­‐sparing   –  If  energy  is  inadequate,  AAs  will  be  used  for  oxida.on  (fuel)  instead  of  for   synthesis  of  new  proteins,  thus  nitrogen  reten.on  is  reduced       21  

Biological  Value  for  Protein  Quality   §  Biological  value  (BV)  measures  how  much  nitrogen  is  retained  in  the  body   §  Similar  to  nitrogen  balance  concept   –  2  diets  (one  with  protein,  the  other  protein-­‐free)  that  are  fed  to  either  humans  or   animals  for  7  to  10  days   –  Urinary  and  fecal  collec.ons  are  assessed  

§  Calcula.on   NI – (U – UE) – (F – FE)   Nitrogen retained BV = X 100 = X 100   Nitrogen absorbed N – (F – F ) –  Where  

I

E

•  NI  is  nitrogen  intake   •  U  and  F  are  urinary  and  fecal  nitrogen  losses,  respec.vely   •  UE  and  FE  are  endogenous  urinary  and  fecal  nitrogen  losses  during  a  nitrogen-­‐free  diet  

–  Maximum  biological  value  =  100  (indicates  all  nitrogen  absorbed  is  retained)  

§  Similar  limita.ons  for  nitrogen  balance  apply  to  biological  value   –  Meaningful  for  whole  diets,  but  not  individual  components  of  mixed  diets  since   limi.ng  AAs  can  differ  between  sources   Gropper SS, et al. Chapter 6 Protein in Advanced Nutrition and Human Metabolism. 5th ed. Belmont, CA: Wadsworth, CENGAGE Learning.; 2009. p 239. 22  

Biological  Value  of  Selected  Foods   Protein  Source

Biological  Value

Egg,  whole

93.7

Milk

84.5

Fish  

76.0  

Beef

74.3

Soybeans

72.8

Rice,  polished

64.0

Wheat,  whole

64.0

Corn

60.0

Beans,  dry

58.0

Food and Agriculture Organization of the United Nations. Amino Acid Content of Foods and Biological Data on Proteins. Nutritional Study 24. Rome, Italy; 1981. Available at: http://www.fao.org/DOCREP/005/AC854T/AC854T74.htm#chII.I.7. Accessed; July 20, 2011. 23  

Net  Protein  U3liza3on  for  Protein  Quality   §  Net  protein  u.liza.on  is  similar  to  nitrogen  balance  and  biological   value  concepts   –  2  diets  (one  with  protein,  the  other  protein-­‐free)  that  are  fed  to  either   humans  or  animals  for  7  to  10  days   •  Total  carcass  nitrogen  (TCN)  is  oaen  measured  in  animal  studies   §  NPU  =  (TCN  on  test  protein  –  TCN  on  protein-­‐free  diet)  /  N  intake   –  Urinary  and  fecal  collec.ons  are  assessed  

§  Calcula.on     NPU =

NI – (U – UE) – (F – FE) NI

X 100

=

Nitrogen retained Nitrogen intake

X 100

–  Where   •  NI  is  nitrogen  intake   •  U  and  F  are  urinary  and  fecal  nitrogen  losses,  respec.vely   •  UE  and  FE  are  endogenous  urinary  and  fecal  nitrogen  losses  during  a   nitrogen-­‐free  diet   Gropper SS, et al. Chapter 6 Protein in Advanced Nutrition and Human Metabolism. 5th ed. Belmont, CA: Wadsworth, CENGAGE Learning.; 2009. p 239. 24  

Leucine  Content  as  an  Addi3onal  Indicator  of   Protein  Quality   §  A  recent  animal  study  has  shown  that  the  leucine  content  of  a  meal   determines  its  capacity  to  maximally  s.mulate  muscle  protein   synthesis1   –  Whey  protein  (higher  leucine)  ac.vates  protein  synthesis  more  than  wheat   protein  (lower  leucine)    

§  Human  studies  have  shown  that  leucine-­‐rich  protein  sources  such  as   whey  are  beTer  at  s.mula.ng  muscle  growth  than  sources  with  less   leucine,  such  as  soy2,3   –  For  example,  compared  with  soy  protein,  whey  promoted  more  muscle   protein  synthesis     •  By  18%  at  rest  (P  =  .067)   •  By  31%  following  resistance  exercise  (P  <  .05)    

1.  Norton LE, et al. J Nutr. 2009;139(6):1103-1109. 2.  Hartman JW, et al. Am J Clin Nutr. 2007;86(2):373-381. 3.  Tang JE, et al. J Appl Physiol. 2009;107(3):987-992. 25  

Leucine  Content  of  Selected  Protein  Sources  

Source

Leucine,  g/100  g

Total    Essen3al  AAs,  g/ 100  g

Soy  protein  isolate

8.2

36.0

Egg  protein

8.4

42.3

Casein

8.9

40.7

Milk  protein  isolate

10.3

42.7

Whey  protein  isolate

12.2

49.2

Whey  protein  hydrolysate

14.2

49.8

Hulmi JJ, et al. Nutr Metab (Lond). 2010;7:51.

26  

Considera3ons  for  Protein  Sources,  Quality,  and   Turnover   §  Casein,  whey,  and  egg  are  all  high-­‐quality  proteins  capable  of   suppor.ng  muscle  growth   §  Whey  protein  supplementa.on  appears  to  be  par.cularly  good  at   s.mula.ng  muscle  protein  synthesis     –  Leucine  content  highest  (in  addi.on  to  speed  of  diges.on)  

§  Casein  may  reduce  muscle  protein  breakdown  (slow  diges.ng,  high   quality  source  ideal  before  bed.me)   §  Soy  is  also  high  quality  according  to  the  standard  defini.on,  but  may   be  less  ideal  due  to  lower  leucine  content   §  Combina.on  of  protein  sources  are  ideal  to  get  wide  range  of   effects  

Hulmi JJ, et al. Nutr Metab (Lond). 2010;7:51. 27  

Protein  Quality  Summary   §  PDCAAS  is  the  “Gold  Standard”  for  protein  quality   –  Accounts  for  diges.bility  as  well  as  amount  of  essen.al  AAs   •  Animal,  dairy,  and  soy  are  of  highest  quality  by  this  defini.on  

 

§  Nitrogen  balance   –  Used  to  determine  protein  requirements  to  prevent  deficiency  in  humans  (RDA)   –  Does  not  account  for  different  AA  composi.ons  among  protein  sources   –  Poten.ally  flawed  due  to  measurement  errors    

§  PER,  BV,  and  NPU  are  not  as  robust  in  determining  true  protein  quality   –  More  oaen  used  in  agriculture    

§  Leucine  content  of  a  protein  source  may  determine  the  protein  source’s  ability   to  s.mulate  protein  synthesis  in  muscle  

Abbreviations: PDCAAS, protein digestibility corrected amino acid score; PER, protein efficiency ratio; BV, biological value; NPU, net protein utilization; RDA, recommended dietary allowance.

28  

Progress  Check—Evalua3ng  Protein  Quality   1.  The  protein  diges.bility  corrected  amino  acid  score  takes  into  account  amino   acid  content  and  diges.bility  and  is  the  “gold”  standard  for  protein  quality.     A.  B. 

True   False  

2.  Important  aspects  of  protein  quality  may  include:     A.  B.  C.  D. 

Amino  acid  content,  especially  leucine   Diges.bility   Nitrogen  balance   All  of  the  above  

3.  Other  methods  of  determining  protein  quality  include:     A.  B.  C. 

Protein  efficiency  ra.o  only   Biological  value,  net  protein  u.liza.on,  and  leucine  content   Nitrogen  balance,  protein  efficiency  ra.o,  net  protein  u.liza.on,  and  biological   value   D.  A  and  B

 

29  

Progress  Check—Evalua3ng  Protein  Quality   1.  The  protein  diges.bility  corrected  amino  acid  score  takes   into  account  amino  acid  content  and  diges.bility  and  is  the   “gold”  standard  for  protein  quality.   

  False  

A.  True

Correct,  the  PDCAA  is  currently  the  standard  method  for  protein  quality,  although  it  does  have  limita?ons.  

û

B. 

 Incorrect,  please  review  slide  Protein  Diges?bility  Corrected  Amino  Acid  Score  to  be7er  understand  the  PDCAA   method  for  protein  quality.  

30  

Progress  Check—Evalua3ng  Protein  Quality   2.  Important  aspects  of  protein  quality  may  include:  

 

û

A.  Amino  acid  content,  especially  leucine  

û

B.  Diges.bility  

Incorrect,  please  review  slide  Evalua?on  of  Protein  Quality  to  be7er  understand  protein  quality.  

 

Incorrect,  please  review  slide  Evalua?on  of  Protein  Quality  to  be7er  understand  protein  quality.  

û

 

C.  Nitrogen  balance  

 Incorrect,  please  review  slide  Nitrogen  Balance  for  Protein  Quality  to  be7er  understand  protein  quality.  



D.  All  of  the  above   Correct,  protein  quality  may  include  all  characteris?cs.  

31  

Progress  Check—Evalua3ng  Protein  Quality   3.  Other  methods  of  determining  protein  quality  include:   û

A.  Protein  efficiency  ra.o  only  

 

 Incorrect,  please  review  slide  Protein  Quality  Summary  to  be7er  understand  all  of  the  methods  for  determining   protein  quality.  

û

 

B.  Biological  value,  net  protein  u.liza.on,  and  leucine  content  

Incorrect,  please  review  slide  Protein  Quality  Summary  to  be7er  understand  all  of  the  methods  for  determining   protein  quality.  



C.  Nitrogen  balance,  protein  efficiency  ra.o,  net  protein  u.liza.on,  and   biological  value  

 

Correct,  both  glycogen  replenishment  and  protein  synthesis  in  muscles  benefit  from  immediately  inges?ng  protein   post-­‐exercise.  

û

D.  A  and  B   Incorrect,  please  review  slide  Protein  Quality  Summary  to  be7er  understand  all  of  the  methods  for  determining   protein  quality.  

32  

Determining  Protein  Recommenda3ons   for  Athletes  

33  

Recommended  Daily  Requirement  for  Protein   §   Current  RDA  for  protein  is  0.8  g/kg  body  weight  per  day   –  ~65  g/day  for  a  180  lb  (82  kg)  individual   –  ~47  g/day  for  a  130  lb  (59  kg)  individual  

§  The  RDA  was  calculated  using  nitrogen  balance  studies   –  Defines  amount  of  protein  required  to  maintain  nitrogen  balance  in  a   healthy  adult   •  Consume  just  enough  protein  to  not  be  deficient  

§  Most  Americans  appear  to  consume  adequate  protein  by  this   defini.on   –  Median  protein  intake  for  all  adult  age  and  gender  groups  ranged  from   55  to  101  g/day   –  Adequate  intake  does  not  necessarily  =  op.mal  for  health  or   performance   USDA National Agricultural Library Food and Nutrition Information Center. Available at: http://fnic.nal.usda.gov/nal_display/index.php?info_center=4&tax_level=3&tax_subject=256&topic_id=1342&level3_id=5140 U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Surveys Research Group (Beltsville, MD). Continuing Survey of Food Intakes by Individuals 1994-96, 1998 and Diet and Health Knowledge Survey 1994-96.

34  

Protein  Requirements    

§  The  current  RDA  for  protein  may  be  too  low   –  Nitrogen  balance  studies  oaen  overes.mate  nitrogen  reten.on   •  Therefore,  the  nitrogen  (protein)  requirement  may  be  underes.mated  

–  Reanalysis  of  exis.ng  nitrogen  balance  studies  suggests  that  the   popula.on  requirement  is  ~1.0  g/kg  body  weight  per  day   •  Calcula.ons  using  a  new  method  (Indicator  Amino  Acid  Oxida.on)  suggest   that  the  popula.on  requirement  is  ~1.2  g/kg  body  weight  per  day  

–  These  results  are  not  official  recommenda.ons,  but  they  suggest  that   the  current  guideline  may  not  be  perfect  and  merits  con.nuous   reevalua.on    

Abbreviation: RDA, recommended dietary allowance. Elango R, et al. Curr Opin Clin Nutr Metab Care. 2010;13(1):52-57. 35  

Preven3ng  Protein  Deficiency  Versus  Op3mal   Outcome   §  The  RDA  for  protein  is  set  to  prevent  protein  deficiency   (maintenance)  in  healthy  adults     §  The  RDA  for  protein  does  not  consider  poten.al  benefits  that   might  be  obtained  from  consump.on  beyond  that  needed  simply   to  maintain  nitrogen  balance   –  What  is  the  op.mal  protein  intake  for   •  Skeletal  muscle  func.on?   •  Bone  health?   •  Athle.c  performance?  

Abbreviation: RDA, recommended dietary allowance. 36  

Protein  Intake  Recommenda3ons  for  Athletes   §  American  College  of  Sports  Medicine  (ACSM)/American   Diete.c  Associa.on  (ADA)     –  Endurance  athletes,  1.2  to  1.4  g/kg  per  day   •  Based  on  nitrogen  balance  studies   –  Increased  protein  oxida.on  during  endurance  exercise  

–  Strength  athletes,  1.2  to  1.7  g/kg  per  day   •  Essen.al  AAs  are  needed  to  support  muscle  growth,  par.cularly  during  early   phase  of  training  when  most  significant  gains  in  muscle  occur  and  protein   u.liza.on  is  less  efficient  

–  Despite  increased  recommenda.ons,  ACSM  does  not  state  that  protein   supplementa.on  has  a  posi.ve  impact  on  athle.c  performance  

ACSM and ADA. Med Sci Sports Exerc. 2009;41(3):709-731.

37  

Nitrogen  Balance  and  Athletes  (1  of  3)   §  The  RDA  for  protein  (0.8  g/kg)  is  probably  insufficient  for  maintaining   nitrogen  balance  in  either  strength  or  endurance  athletes   –  0.97  to  1.37  g/kg  per  day  for  endurance  athletes   –  0.82  to  1.43  g/kg  per  day  for  strength  athletes  (experienced,  novice)  

§  Endurance  athletes  may  require  more  protein  than  strength  athletes  to   maintain  nitrogen  balance  

Nitrogen balance, g/kg/day

–  Higher  energy  requirements  dictate  greater  protein  needs   –  Contrac.ng  skeletal  muscles  oxidize  BCAAs  for  energy  produc.on   –  Adequate  caloric  intake  to  match  physical  demands  is  key  in  order  to  spare  AAs   for  muscle  protein  synthesis  

Activity type Abbreviations: RDA, recommended dietary allowance; BCAA, branched-chain amino acids. Tarnopolsky MA, et al. J Appl Physiol. 1988;64(1):187-193.

38  

Nitrogen  Balance  and  Athletes  (2  of  3)   §  Experienced  weight  liaers  require  less  protein  intake  per  kg  of  lean  body   mass  than  that  of  novices   §  Less  poten.al  expansion  of  muscle  mass  to  be  added  in  experienced  weight   liaers   –  In  the  first  month  of  training,  1.4  g  protein/kg  versus  2.4  g  protein/kg    for  novices   •  Calculated  1.43  g/kg  per  day  for  nitrogen  balance  

–  Nitrogen  balance  no  longer  had  significant  rela.onship  with  protein  intake  above   2.0  g  protein/kg   –  Increased  AA  oxida.on  generally  seen  above  2.0  g/kg   •  Generally  indicates  no  further  metabolic  benefit,  at  which  point  addi.onal  protein  is  used   purely  as  a  substrate  for  energy  produc.on/storage    

–  No  apparent  effect  of  >2.0  g  protein/kg  on  strength  

Tarnopolsky MA, et al. J Appl Physiol. 1988;64(1):187-193. Lemon PW, et al. J Appl Physiol. 1992;73(2):767-775.

39  

Nitrogen  Balance  and  Athletes  (3  of  3)   §  Addi.onal  protein  intake  can  account  for  individual  variability   (1-­‐2  standard  devia.ons)  and  for  promo.ng  posi.ve  nitrogen   status  rather  than  nitrogen  balance   –  1.5  to  1.8  g/kg  for  strength  athletes   •  This  range  should  be  adequate  for  endurance  athletes  as  well  

–  ~2.0  g/kg  appears  to  be  upper  limit  before  protein  intake  has  no  addi.onal   benefit   –  Energy  intake  is  an  important  influence  (male  vs  female)   •  Requirement  may  go  beyond  2.0  g/kg  if  energy  intake  is  inadequate  

Tipton KD and Wolfe RR. J Sports Sci. 2004;22(1):65-79. 40  

Vegetarian  Diets   §  Most  vegetarian  athletes  meet  the  RDA  for  protein  intake  (0.8  g/kg  per  day)   –  Like  non-­‐vegetarian  athletes,  the  protein  requirement  for  suppor.ng  muscle   growth  and  func.on  is  probably  higher  than  the  RDA  

§  Protein  quality  of  non-­‐animal/dairy  sources  is  reduced   –  Vegetable/legume  proteins  may  be  limited  in  the  essen.al  AAs  lysine,  threonine,   tryptophan,  or  methionine     –  Vegetable/legume  proteins  are  more  poorly  digested  

  §  ACSM/ADA  recommends  1.3  to  1.8  g/kg  of  protein  per  day  for  vegetarian   athletes   –  Vegetarian  protein  needs  are  likely  higher  than  omnivore  protein  needs  at  all   ac.vity  levels  

Abbreviations: RDA, recommended dietary allowance; ACSM, American College of Sports Medicine; ADA, American Dietetic Association. Tipton KD and Witard OC. Clin Sports Med. 2007;26(1):17-36. ACSM and ADA. Med Sci Sports Exerc. 2009;41(3):709-731. 41  

How  Much  Protein  Are  Athletes  Ea3ng?   §  Many  athletes  may  already  meet  or  exceed  protein   recommenda.ons   §  Strength  athletes  in  par.cular  may  believe  that  much  larger   protein  intakes  are  necessary  for  increasing  muscle  mass   –  Intakes  at  4  to  6  g/kg  range  are  not  uncommon   –  It  is  possible  that  this  much  protein  intake  could  adversely  affect  the  nutrient   quality  of  the  overall  diet  

Protein intake of 0.8 to 2 g/kg per day is safe in healthy individuals Protein intake above 2 g/kg per day is not recommended due to lack of benefit and potential for adverse health effects

Tipton KD. Proc Nutr Soc. 2011;70(2):205-214. 42  

Poten3al  Downside  to  “High  Protein”  Diets  (1  of  2)   §  Hydra.on  status   –  Ea.ng  protein  beyond  requirements  can  result  in   •  Increased  protein  use  for  energy   •  Increased  fat  storage  

–  The  body  must  excrete  the  nitrogen  from  protein  in  urine  (as  urea)   –  Increased  urinary  output  increases  the  likelihood  of  dehydra.on  

§  Diets  very  high  in  protein  may  lack  appropriate  amounts  of  carbohydrate,  fiber,   and  some  vitamins/minerals   –  Could  impair  exercise  performance   –  Could  increase  long-­‐term  risk  of  diseases  such  as  colon  cancer   •  Possibly  due  to  lack  of  fiber  or  increased  intake  of  red  meat  

§  Excessively  faTy  protein  sources  could  increase  risk  of  cardiovascular  disease   –  Make  sure  protein  sources  chosen  are  mostly  lean   •  For  example,  salmon  is  more  desirable  than  a  rib-­‐eye  steak  

Tipton KD. Proc Nutr Soc. 2011;70(2):205-214. 43  

Poten3al  Downside  to  “High  Protein”  Diets  (2  of  2)   §  Kidney  disease   –  No  good  evidence  of  damage  in  individuals  with  healthy  kidneys   –  Protein-­‐rich  diets  are  high  in  phosphorus,  which  can  be  detrimental  to   individuals  with  kidney  disease     •  Primarily  a  concern  with  elderly  or  sick  individuals,  as  opposed  to  healthy  athletes  

§  Bone  health   –  Higher  protein  diets  may  increase  calcium  loss  in  urine   •  However,  gut  absorp.on  of  calcium  is  likely  improved,  so  there  may  be  no  net   difference  

–  Elevated  protein  diets  appear  to  have  either  no  or  a  slightly  beneficial  effect   on  skeletal  health  

Tipton KD. Proc Nutr Soc. 2011;70(2):205-214.

44  

Summary  of  Protein  Recommenda3ons   §  Daily  Recommended  Intake  is  0.8  g/kg  per  day  (2002)   –  No  recommenda.on  for  increase  in  athletes    

§  American  College  of  Sports  Medicine  

–  Endurance:  1.2  to  1.4  g/kg  per  day     –  Strength  athletes:  1.2  to  1.7  g/kg  per  day  

§  Vegetarians  may  have  higher  dietary  supplementa.on  protein  needs  than   omnivores   §  Protein  intakes  up  to  2.0  g/kg  per  day  are  generally  safe  in  healthy  adults   and  may  be  beneficial   –  Many  athletes  may  already  unconsciously  eat  this  amount  of  protein  

§  Few  convincing  data  show  that  >  2  g/kg  per  day  is  helpful   –  May  actually  increase  risk  of  adverse  events  

§  A  par.cular  protein  intake  goal  is  difficult  to  establish  

–  Influenced  by  energy  intake  and  factors  such  as  adapta.on  and  desire  to  increase   lean  body  mass  versus  maintenance   45  

Progress  Check—Determining  Protein   Recommenda3ons  for  Athletes   1.  The  current  American  College  of  Sports  Medicine  (ACSM)   recommenda.on  for  an  athlete’s  minimum  protein  intake  is  1.2  g/kg   body  weight  per  day.     A.  B. 

True   False  

2.  What  is  a  poten.al  downside  to  a  “high-­‐protein”  diet?     A.  B.  C.  D. 

Dehydra.on   Cons.pa.on   High  blood  cholesterol  if  faTy  protein  sources  are  chosen   All  of  the  above  

46  

Progress  Check—Determining  Protein   Recommenda3ons  for  Athletes   1.  The  current  American  College  of  Sports  Medicine  (ACSM)   recommenda.on  for  an  athlete’s  minimum  protein  intake  is   1.2  g/kg  body  weight  per  day.   

  False  

A.  True

 Correct,  the  minimum  protein  intake  is  1.2  g/kg  body  weight  per  day.  

û

B. 

 Incorrect,  please  review  slide  Protein  Intake  Recommenda?ons  for  Athletes    to  be7er  understand  protein   intake  recommenda?ons.  

47  

Progress  Check—Determining  Protein   Recommenda3ons  for  Athletes   2.  What  is  a  poten.al  downside  to  a  “high-­‐protein”  diet?  

 

û

A.  Dehydra.on

û

B.  Cons.pa.on

Incorrect,  please  review  slides  on  Poten?al  Downside  to  “High-­‐Protein”  Diets  to  be7er  understand  the   possible  side  effects  of  a  high-­‐protein  diet.  

 

 Incorrect,  please  review  slides  on  Poten?al  Downside  to  “High-­‐Protein”  Diets  to  be7er  understand  the   possible  side  effects  of  a  high-­‐protein  diet.  

û

C.  High  blood  cholesterol  if  faTy  protein  sources  are  chosen

 

 Incorrect,  please  review  slides  on  Poten?al  Downside  to  “High-­‐Protein”  Diets  to  be7er  understand  the   possible  side  effects  of  a  high-­‐protein  diet.  



D.  All  of  the  above   Correct,  all  of  the  above  effects  may  occur  during  a  high-­‐protein  diet.  

48  

Amino  Acid  Intake  Recommenda3ons   §  Omnivorous  diets  are  likely  to  meet  AA  requirements  as  long  as  protein   requirements  are  met   §  Vegetarians  should  be  cognizant  of  complementary  protein  sources   throughout  the  day  to  prevent  deficiency  of  par.cular  AAs     a

Amino  Acid

RDA  (mg/kg/day)

His.dine

18

Isoleucine

23

Leucine

49

Lysine

48

Methionine  +  cysteine

23

Phenylalanine  +  tyrosine

48

Threonine

28

Tryptophan

8

Valine

32

Abbreviations: RDA, recommended dietary allowance. a Based on maintenance protein requirement and determined by multiplying total protein maintenance needs in adults by amino acid content of whole body protein.

Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Fiber, Protein, and Amino Acids. Washington, DC; National Academies Press, 2005, p. 687.

49  

Poten3al  Risks  of  AA  Supplementa3on  (1  of  2)   §  Taking  large  doses  of  a  single  AA  can  affect  the  absorp.on  of   other  AAs   –  Certain  AAs  may  u.lize  the  same  system  for  transport/absorp.on   •  High  levels  of  one  AA  can  inhibit  the  absorp.on  of  other  AAs   dependent  on  the  same  system   –  In  chicks,  excessive  doses  of  lysine  caused  increased  plasma  lysine   levels  while  plasma  arginine  levels  decreased  (and  vice  versa)   –  Branched-­‐chain  AAs  leucine,  isoleucine,  and  valine  are  oaen  ingested   in  a  naturally  occurring  2:1:1  ra.o  to  ensure  that  none  of  the  3  are   depleted  by  the  others  

§  Large  single  doses  of  AAs  may  be  poorly  absorbed  and  lead   to  diarrhea  

Bröer S. Physiol Rev. 2008;88(1):249-286. Jones JD, et al. J Nutr. 1967;93(1):103-116. 50  

Poten3al  Risks  of  AA  Supplementa3on  (2  of  2)   §  Free  AAs  in  food  products  oaen  create  biTer  flavors   –  AA  pills  don’t  have  this  issue,  but  dose  of  AA  in  pills  is  oaen  small    

§  In  1989,  there  were  many  cases  of  a  painful  and  some.mes  fatal   disease  (eosinophilia  myalgia  syndrome)  linked  to  tryptophan   supplements   –  Likely  due  to  contamina.on     •  Always  good  to  know  source  and  quality  of  nutri.onal  supplements  

Adibi SA. J Clin Invest. 1971;50(11):2266-2275. Ney KH. Bitterness of Peptides: Amino Acid Composition and Chain Length in Food Taste Chemistry. Washington, DC; American Chemical Society; 1979. p 149-173. Philen RM, et al. Am J Epidemiol. 1993;138(3):154-159. 51  

Sports  Nutri3on  Claims  for  AAs  and  Deriva3ves   (1  of  4)  

 The  scien.fic  basis  for  the  support  of  these  claims   can  be  found  in  the  ergogenic  aids  modules  on  the   EAS  Academy  website   §  Arginine  and  citrulline  (precursor  of  arginine)   –  Increased  nitric  oxide  for  improved  blood  flow  to  muscle     –  Improved  clearance  of  ammonia  via  urea  cycle   –  Improved  exercise  performance     –  Citrulline  decreases  muscle  soreness    

§  Arginine,  ornithine,  lysine   –  S.mula.on  of  growth  hormone  release  

Cynober L. J Nutr. 2007;137:1646S-1649S. Chromiak JA and Antonio J. Nutrition. 2002;18(7-8):657-661. 52  

Sports  Nutri3on  Claims  for  AAs  and  Deriva3ves   (2  of  4)   §  Beta-­‐alanine   –  Forms  the  dipep.de  carnosine  when  bonded  to  his.dine   •  Buffers  muscle  pH  to  improve  endurance  

–  Not  actually  incorporated  into  structural  body  proteins  like  alanine    

§  Crea.ne   –  Increased  anaerobic  performance     –  Increased  strength  and  muscle  mass    

§  Glutamine  and  its  precursor  alpha-­‐ketoglutarate  (AKG)   –  Boost  immune  func.on   –  Fuel  for  intes.nal  cells   –  Transport  of  nitrogen  groups  in  plasma   –  Possible  anabolic  effects   Artioli GG, et al. Med Sci Sports Exerc. 2010;42(6):1162-1173. Juhn M. Sports Med. 2003;33(12):921-939. Newsholme P, et al. Braz J Med Biol Res. 2003;36(2):153-163. 53  

Sports  Nutri3on  Claims  for  AAs  and  Deriva3ves   (3  of  4)   § Leucine/Branched-­‐Chain  AAs  (BCAAs)   –  Leucine  s.mulates  muscle  protein  synthesis   –  BCAAs  can  serve  as  an  energy  source  during  ac.vity     –  Preven.on  of  fa.gue   –  Reducing  muscle  soreness   –  BCAAs  are  popular  as  a  supplement  among  athletes   –  BCAA  doses  of  ~2  to  60  g/day  have  been  used  in  research   studies   –  Doses  of  ≥  30  g/day  are  imprac.cally  high  compared  to   amounts  found  in  typical  commercial  supplements   •  1  tablet  typically  contains  100  mg  leucine,  100  mg  valine,  and     50  mg  isoleucine   Gleeson M. J Nutr. 2005;135:1591S-1595S. Negro M, et al. J Sports Med Phys Fitness. 2008;48(3):347-351. Gijsman HJ, et al. Psychopharmacology (Berl). 2002;160(2):192-197. Koba T, et al. J Sports Med Phys Fitness. 2007;47(3):316-322. Coombes JS and McNaughton LR. J Sports Med Phys Fitness. 2000;40(3):240-246. Gualano AB, et al. J Sports Med Phys Fitness. 2011;51(1):82-88.

54  

Sports  Nutri3on  Claims  for  AAs  and  Deriva3ves   (4  of  4)   § Leucine  breakdown  products     –  Beta-­‐hydroxy-­‐beta-­‐methylbutyrate  (HMB)  and     alpha-­‐ketoisocaproate  (alpha-­‐KIC)   •  Decreased  muscle  protein  breakdown     •  Increased  muscle  mass  and  strength    

§ Taurine   –  An.oxidant  effects   –  Improved  heart  func.ons   –  Insulin  ac.ons  

Zanchi NE, et al. Amino Acids. 2011;40(4):1015-1025. Franconi F, et al. Curr Opin Clin Nutr Metab Care. 2006;9(1):32-36. Schaffer SW, et al. J Biomed Sci. 2010;17(suppl 1):S2. 55  

Example:  Quan3ty  of  Amino  Acids  in  Food   §  1  cup  of  low  fat  coTage  cheese  (2%)  has  31  g  protein   –  This  translates  to  31,000  mg  of  amino  acids   –  The  branched-­‐chain  amino  acid  content  of  the  coTage  cheese  (leucine  +   isoleucine  +  valine)  is  6,942  mg  (6.9  g)  

§  Whole  protein  sources  are  best  (may  be  less  expensive)  

Pennington JAT, et al. Bowes and Church’s Food Values of Portions Commonly Used. 17th ed. Philadelphia PA: Lippincott, Williams, & Wilkins; 1998. p 30 and 318. 56  

Is  Protein  Used  for  Energy  in  Athletes?   §  In  general,  the  body  prefers  to  spare  its  endogenous  protein  stores   (skeletal  muscle,  etc)  from  oxida.on  for  energy  produc.on   –  Only  in  condi.ons  of  starva.on,  extreme  energy  requirements  (eg,   ultramarathons),  or  was.ng  condi.ons  such  as  cancer  will  the  body   break  down  muscle  for  energy  

  §  Consider  fight  or  flight  response   –  Difficult  to  avoid  danger  (eg,  run  from  a  bear)  or  obtain  food  (eg,  catch   a  fish)  if  muscle  protein  is  sacrificed  as  fuel  for  energy  

§  However,  exogenous  (dietary)  protein  is  commonly  used  as  fuel   under  certain  condi.ons  (eg,  during  endurance  exercise,  which  can   deplete  carbohydrate  stores  in  muscle)  

Berg JM, et al. Biochemistry. 5th ed. New York, NY: WH Freeman & Co.; 2002. Wagenmakers AJ. Exerc Sport Sci Rev. 1998;26:287-314. 57  

Is  Protein  Used  for  Energy  in  Athletes?  (Cont’d)   §  6  AAs  are  metabolized  in  res.ng  muscle  (leucine,  isoleucine,   valine,  asparagine,  glutamate,  and  aspartate)   –  Leucine  and  isoleucine  can  be  converted  to  acetyl  CoA,  which  can   yield  energy  for  muscle  through  the  TCA  cycle   –  Carbon  skeletons  from  the  other  AAs  can  enter  the  TCA  cycle  and   have  various  outcomes   •  Energy  produc.on  by  running  through  TCA  cycle   •  From  pyruvate,  muscle  can  generate  alanine,  which  is  released  into  the   circula.on  and  can  be  taken  up  by  liver   –  Liver  can  u.lize  alanine  to  make  glucose  (via  gluconeogenesis),  which  can  be   released  back  into  the  circula.on  or  stored  as  liver  glycogen  

•  Alterna.vely,  muscle  can  generate  glutamine,  which  is  released  into  the   circula.on  and  can  be  taken  up  by  the  small  intes.ne  and  other  rapidly   dividing  .ssues  for  energy    

Abbreviation: TCA, tricarboxylic acid cycle. Berg JM, et al. Biochemistry. 5th ed. New York, NY: WH Freeman & Co.; 2002. Wagenmakers AJ. Exerc Sport Sci Rev. 1998;26:287-314. 58  

Timing  of  Inges3on  and  Macronutrient  Content   of  Meals   §  There  is  increasing  agreement  that  immediate  post-­‐exercise  inges.on   of  protein  and/or  carbohydrate  has  beneficial  effects  on   –  Muscle  glycogen  replenishment  (par.cularly  carbohydrate,  protein  may   provide  addi.onal  benefit)   –  Muscle  protein  synthesis  (par.cularly  protein,  carbohydrate  may  have   permissive  effect  due  to  insulin  release)    

§  A  combina.on  of  both  protein  and  carbohydrate  seems  to  work  beTer   than  either  carbohydrate  or  protein  alone   –  Propor.ons  of  carbohydrate/protein  vary  based  on  individual  needs   •  Endurance  athletes  priori.ze  carbohydrate  intake  for  glycogen   replenishment   •  Bodybuilders  priori.ze  protein  intake  for  muscle  growth  

Zawadzki KM, et al. J Appl Physiol. 1992;72(5):1854-1859. Ivy JL, et al. J Appl Physiol. 2002;93(4):1337-1344. 59  

Protein  and  Glycogen  Replenishment   §  Rapid  post-­‐exercise  consump.on  of  carbohydrate  and  protein  in  a   3:1  or  2:1  ra.o  appears  to  replenish  muscle  glycogen  to  a  greater   extent  than  carbohydrate  alone   –  Unclear  if  this  effect  enables  beTer  performance  in  a  subsequent   bout  of  exercise  within  ~6  hours    

§  Protein  supplementa.on  may  exert  a  stronger  replenishment   effect  when  lower  post-­‐exercise  carbohydrate  is  provided     (1.2  g/kg/hr)    

Preoccupation with protein intake may be at expense of adequate carbohydrate consumption, resulting in poor glycogen recovery and potential for subsequent performance decrements Ivy JL, et al. J Appl Physiol. 2002;93(4):1337-1344. Berardi et al. Med Sci Sports Exerc. 2006;38(6):1106-1113. Ferguson-Stegall L, et al. J Strength Cond Res. 2011;25(5):1210-1224. Beelen M, et al. Int J Sport Nutr Exerc Metab. 2010;20(6):515-532.

60  

Progress  Check—Determining  Protein   Recommenda3ons  for  Athletes   1.  There  is  no  need  for  amino  acid  supplementa.on  as  long  as  complete  protein   requirements  are  met.     A.  B. 

True   False  

2.  What  is  a  poten.al  risk  associated  with  large,  single  doses  of  amino  acid   supplementa.on?     A.  B.  C.  D. 

Heart  disease   Diarrhea   Kidney  disease   Muscle  soreness  

3.  Immediate  post-­‐exercise  inges.on  of  protein  and/or  carbohydrate  has   beneficial  effects  on:     A.  B.  C.  D. 

Muscle  glycogen  replenishment   Muscle  protein  synthesis   Muscle  phosophocrea.ne  levels   A  and  B

 

61  

Progress  Check—Determining  Protein   Recommenda3ons  for  Athletes   1.  There  is  no  need  for  amino  acid  supplementa.on  as  long  as   complete  protein  requirements  are  met.   

 

A.  True

Correct,  intake  over  2.0  g/kg  per  day  has  not  been  shown  to  increase  benefits,  and  athletes  usually  take  in  this   amount.  

û

 

B.  False

 Incorrect,  please  review  slide  on  Amino  Acid  Intake  Recommenda?ons  to  be7er  understand  protein  intake  and   benefit.  

62  

Progress  Check—Determining  Protein   Recommenda3ons  for  Athletes   2.  What  is  a  poten.al  risk  associated  with  large,  single  doses   of  amino  acid  supplementa.on?  

 

û

A.  Heart  disease



B.  Diarrhea

Incorrect,  please  review  slides  on  Poten?al  Risks  of  AA  Supplementa?on  to  be7er  understand  poten?al  side   effects  of  large,  single  doses  of  amino  acids  as  a  supplement.  

 

Correct,  large,  single  doses  of  amino  acid  supplements  may  cause  diarrhea.  

û

 

C.  Kidney  disease

 Incorrect,  please  review  slides  on  Poten?al  Risks  of  AA  Supplementa?on  to  be7er  understand  poten?al  side   effects  of  large,  single  doses  of  amino  acids  as  a  supplement.  

û

D.  Muscle  soreness   Incorrect,  please  review  slides  on  Poten?al  Risks  of  AA  Supplementa?on  to  be7er  understand  poten?al  side   effects  of  large,  single  doses  of  amino  acids  as  a  supplement.  

63  

Progress  Check—Determining  Protein   Recommenda3ons  for  Athletes   3.  Immediate  post-­‐exercise  inges.on  of  protein  and/or   carbohydrate  has  beneficial  effects  on:   û

 

A.  Muscle  glycogen  replenishment

 Incorrect,  please  review  slide  on  Timing  of  Inges?on  and  Macronutrient  Content  of  Meals  to  be7er  understand   the  benefits  of  correct  ?ming  of  protein  intake  post-­‐exercise.  

û

 

B.  Muscle  protein  synthesis

 Incorrect,  please  review  slide  on  Timing  of  Inges?on  and  Macronutrient  Content  of  Meals  to  be7er  understand   the  benefits  of  correct  ?ming  of  protein  intake  post-­‐exercise.  

û

 

C.  Muscle  phosophocrea.ne  levels

 Incorrect,  please  review  slide  on  Timing  of  Inges?on  and  Macronutrient  Content  of  Meals  to  be7er  understand   the  benefits  of  correct  ?ming  of  protein  intake  post-­‐exercise.  



D.  A  and  B   Correct,  both  glycogen  replenishment  and  protein  synthesis  in  muscles  benefit  from  immediately  inges?ng  protein   post-­‐exercise.  

64  

Pucng  a  Meal  Plan  Together   §  Example:    70-­‐kg  athlete  requiring  4,000  kcal/day  exercising  120  min/day,   4  to  6  .mes/week   §  Macronutrient  Target  Recommenda.ons   –  Grams/kg  body  weight/day   •  Carbohydrate  7-­‐10    g/kg  (490-­‐700  g/day)   •  Protein    1.5-­‐2.0  g/kg    (105-­‐140  g/day)   •  Fat    Typically  use  percentage  of  energy     –  Percentage  of  energy   •  Carbohydrate    55-­‐65%  of  energy  (550-­‐650  g/day)   •  Protein    10-­‐15%  of  energy  (100-­‐150  g/day)   •  Fat    20-­‐30%  of  energy  (88-­‐133  g/day)  

§  Target  recommenda.ons  for  this  athlete   •  Carbohydrate •  Protein   •  Fat  

 600  g/day  (60%  of  energy)    130  g/day  (13%  of  energy)    120  g/day  (27%  of  energy)  

65  

A  Poten3al  Distribu3on  of  Macronutrients  Over   the  Course  of  6  Meals/Day  

Meal

Time

Carbohydrate,  g

Protein,  g

Fat,  g

Breakfast

7:00  AM

90

15

15

Mid-­‐morning  snack

10:00  AM

25

10

5

Noon

75

20

20

Pre-­‐exercise  meal

1:30  -­‐  2:00  PM

90

10

5

During  exercise

3:00  -­‐  5:00  PM

100

0

0

Post-­‐exercise  meal

5:00  PM

75

30

25

Dinner

6:30  PM

120

30

35

Evening  snack

9:00  PM

25

15

15

600

130

120

Lunch

TOTALS

66  

Protein  Content  of  Various  Foods   1  egg,  2  egg  whites,  or  ¼  cup  egg  subs.tute   1  cup  of  milk   ¼  cup  coTage  cheese   1  cup  of  yogurt   1  oz.  of  chicken,  fish,  pork,  or  beefa   1  oz.  of  cheese  (except  cream  cheese)   1  slice  of  bread  or  ½    bagel   1  cup  of  cereal   2  Tablespoons  peanut  buTer   1/2  to  2/3  cup  of  dried  beans  or  len.ls   1  cup  miso   4  oz.  raw,  firm  tofu   ½  cup  peas  or  corn   ½  cup  of  non-­‐starchy  vegetables   8  oz.  soy  milk   Protein  drinks  and  powders/serving  

Protein  Content,  g   6-­‐7   8-­‐10   7   8   7   7   3   3-­‐6   7   8   8   9   3   2   5-­‐6   10-­‐45  

a3-­‐ounce  por.on  (21  g  protein)  is  the  size  of  the  deck  of  cards.  

Pennington JAT, et al. Bowes and Church’s Food Values of Portions Commonly Used. 17th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 1998. 67  

Summary     §  Adequate  protein  intake  is  cri.cal  for  athle.c  performance  and   good  health     §  For  most  athletes,  protein  intakes  of  1.5  to  1.8  g/kg/day     (0.68-­‐0.81  g/lb/day)  will  meet  protein  requirements     §  High  quality  protein  sources  (eg,  dairy  products,  meats,  fish,   chicken,  soy,  eggs)  should  be  included  in  the  diet     §  Ea.ng  a  combina.on  of  carbohydrate  and  protein  soon  aaer   exercise  can  help  with  muscle  recovery  and  building  

68  

Summary  (Cont’d)     §  Research  is  emerging  on  poten.al  benefits  of  certain  amino  acids  or   amino  acid  metabolites  for  athletes   –  First  rule  is  to  get  appropriate  amount  of  high  quality  protein  from  diet      

§  There  are  several  disadvantages  of  excessive  protein  intake     (ie,  well  above  2  g/kg/day)   –  In  general,  no  addi.onal  benefit  for  strength  or  muscle  building   –  Increased  water  loss  from  the  body  due  to  disposal  of  excess  nitrogen   in  urine,  which  may  lead  to  dehydra.on   –  May  replace  carbohydrates  and  other  vital  nutrients  for  athle.c   performance  and  good  health  

69  

©  2013  AbboT  Laboratories   The  EAS  ACADEMY™  website  and  its  content  is  owned  by  AbboT   Nutri.on,  a  division  of  AbboT   Laboratories.  All  rights  reserved.   Any  redistribu.on  or  reproduc.on  of  any  part  or  all  of  the  contents  in   any  form  is  prohibited  other  than  the   following:   1.  you  may  print  or  download  to  a  local  hard  disk  extracts  for  your   personal  and  non-­‐commercial  use   only;   2.  you  may  copy  the  content  to  individual  third  par.es  for  their  personal   use,  but  only  if  you   acknowledge  the  website  as  the  source  of  the  material.   You  may  not,  except  with  our  express  wriTen  permission,  distribute  or   commercially  exploit  the  content.   70