Relative Infinite Determinacy for Map-Germs

0 downloads 0 Views 2MB Size Report
Volume 2013, Article ID 549845, 6 pages http://dx.doi.org/10.1155/2013/549845. Research Article. Relative Infinite Determinacy for Map-Germs. Changmei Shi1Β ...
Hindawi Publishing Corporation Journal of Function Spaces and Applications Volume 2013, Article ID 549845, 6 pages http://dx.doi.org/10.1155/2013/549845

Research Article Relative Infinite Determinacy for Map-Germs Changmei Shi1,2 and Donghe Pei1 1 2

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China School of Mathematics and Computer Science, Guizhou Normal College, Guiyang 550018, China

Correspondence should be addressed to Donghe Pei; [email protected] Received 5 May 2013; Revised 8 September 2013; Accepted 9 September 2013 Academic Editor: Stanislav Hencl Copyright Β© 2013 C. Shi and D. Pei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The infinite determinacy for smooth map-germs with respect to two equivalence relations will be investigated. We treat the space of smooth map-germs with a constraint, and the constraint is that a fixed submanifold in the source space is mapped into another fixed submanifold in the target space. We study the infinite determinacy for such map-germs with respect to a subgroup of right-left equivalence group and finite and infinite determinacy with respect to a subgroup of contact group and give necessary and sufficient conditions for the corresponding determinacy.

1. Introduction This work is concerned with the singularity theory of differentiable maps. Singularity theory of differentiable maps is a wide-ranging generalization of the theory of the maxima and minima of functions of one variable, and it is now an essential part of nonlinear analysis. This theory has numerous applications in mathematics and the natural sciences; see, for example, [1, 2]. In differentiable analysis, the local behavior of a differentiable map can be determined by the derivatives of the map at a point. Hence we have the theories of finitely and infinitely determined map-germs. We know that every finitely determined map-germ is equivalent to its Taylor polynomial of some degree, and infinite determinacy is a way to express the stability of smooth map-germs under flat perturbations. The analysis of the conditions for a map-germ to be finitely or infinitely determined involves the most important local aspects of singularity theory. Therefore, the study of finite and infinite determinacy of smooth map-germs is a very important subject in singularity theory. Now there are several articles treating the question of infinite determinacy with respect to the most frequently encountered and naturally occurring equivalence groups, for instance, the right-equivalence group R, left-equivalence group L, group C, contact group K, and right-leftequivalence group A. In [3, 4], Wilson characterized the

infinite determinacy of smooth map-germs with respect to one of the groups R, L, C, and K and the infinite determinacy for finitely K-determined map-germs with respect to A. Besides, for the case of A, Brodersen [5] showed that the results of [4] hold for map-germs without assuming K-finiteness. We can see [6] for detailed survey of all of these results. Recently, there appeared the notion of relative infinite determinacy for smooth function-germs with nonisolated singularities. Sun and Wilson [7] treated the smooth function-germs with real isolated line singularities, and this work was later generalized and modified in the case where germs have a nonisolated singular set containing a more general set; for instance, see [8, 9]. In addition, [10] studied the relative versality for map-germs and these mapgerms with the constraint that a fixed submanifold in the source space is mapped into another fixed submanifold in the target space. Inspired by the aforementioned papers, we will study the relative infinite determinacy for map-germs with respect to a subgroup of the group A and relative finite and infinite determinacy with respect to a subgroup of the group K by means of some algebraic ideas and tools, and our main results extend the part of the works in [3, 4]. Now, we consider the following map-germs. Let 𝑁 and 𝑃 be submanifolds without boundary of R𝑛 and R𝑝 , respectively, both containing the origin. Since this paper

2

Journal of Function Spaces and Applications

is concerned with a local study, without loss of generality, we may assume that 𝑁 = {0} Γ— Rπ‘›βˆ’π‘›0 βŠ‚ R𝑛 ,

𝑃 = {0} Γ— Rπ‘βˆ’π‘0 βŠ‚ R𝑝 (𝑛0 , 𝑝0 β©Ύ 1) .

(1)

Denote by 𝐢𝑛𝑝 the space of map-germs 𝑓 : (R𝑛 , 0) β†’ R , with 𝑓(𝑁) βŠ‚ 𝑃. Such map-germs are quite common in singularity theory and geometry. 𝑝

Example 1. Let 𝑓 : (R2 , 0) β†’ R3 be given by (right helicoid) 𝑓 (𝑒, V) = (𝑒 cos V, 𝑒 sin V, 𝑐V) .

(2)

It is clear that 𝑓(𝑁) βŠ‚ 𝑃 for 𝑁 = {0} Γ— R1 βŠ‚ R2 and 𝑃 = {0} Γ— R1 βŠ‚ R3 .

2

Let 𝑒1 , . . . , 𝑒𝑝 be the canonical basis of the vector space R , and they define a system of generators of 𝐢𝑁-module 𝑝

×𝑝

(𝐢𝑁)

(3)

π‘“βˆ— : 𝐢𝑃 󳨀→ 𝐢𝑁

4

Then 𝑓(𝑁) βŠ‚ 𝑃 for 𝑁 = 𝑃 = {0} Γ— R βŠ‚ R . In this paper we want to characterize the relative infinite determinacy for such map-germs. To formulate the main results we need to introduce some notations and definitions. Let 𝐸𝑛 denote the ring of smooth function-germs at the origin in R𝑛 , and let π‘šπ‘› denote its unique maximal ideal. For a germ 𝑓, let π‘—π‘˜ 𝑓(π‘₯) denote the Taylor expansion of 𝑓 of order π‘˜ at π‘₯. In the case π‘˜ = ∞, π‘—βˆž 𝑓(π‘₯) can be identified with the Taylor series of 𝑓 at π‘₯. Let R denote the group of germs at the origin of local diffeomorphisms of R𝑛 , and let 󡄨 R𝑁 = { πœ™ ∈ R : πœ™σ΅„¨σ΅„¨σ΅„¨π‘ ≑ id𝑁} ,

(4)

where id denotes the identity. Then R𝑁 is a subgroup of R. Let 𝐢𝑁 be the local ring {𝑓 ∈ 𝐸𝑛 : 𝑓|𝑁 ≑ constant}, and let π‘šπ‘ denote the maximal ideal of 𝐢𝑁. Similarly, we can define the corresponding notation for (R𝑝 , 𝑃). Let M𝑁 = {𝑀 | 𝑀 : (R𝑛 , 0) β†’ GL(𝑝, R) a 𝐢∞ map-germ and 𝑀|𝑁 = 𝐼𝑝 }, where GL(𝑝, R) denotes the general linear group, and 𝐼𝑝 denotes the (𝑝 Γ— 𝑝) identity matrix. Now, we define two groups A𝑁,𝑃 = R𝑁 Γ— R𝑃 , K𝑁 = M 𝑁 Γ— R𝑁 .

(5)

Obviously, A𝑁,𝑃 and K𝑁 are subgroups of the groups A and K, respectively. In particular, when 𝑁 = 𝑃 = {0}, then A𝑁,𝑃 = A. The two groups act on the space 𝐢𝑛𝑝 in the following way. If 𝑓 ∈ 𝐢𝑛𝑝 , let (πœ™, πœ“) ∈ A𝑁,𝑃 and (𝑀, β„Ž) ∈ K𝑁; then (πœ™, πœ“) β‹… 𝑓 and (𝑀, β„Ž) β‹… 𝑓 are defined by (πœ™, πœ“) β‹… 𝑓 = πœ“ ∘ 𝑓 ∘ πœ™βˆ’1 ,

= 𝐢𝑁 {𝑒1 , . . . , 𝑒𝑝 } .

(7)

For any 𝑓 ∈ 𝐢𝑛𝑝 , then the germ 𝑓 induces a ring homomorphism

Example 2. Let 𝑓 : (R4 , 0) β†’ R4 be given by 𝑓 (π‘₯1 , π‘₯2 , π‘₯3 , π‘₯4 ) = (π‘₯1 , π‘₯2 , π‘₯32 + π‘₯1 π‘₯4 , π‘₯42 + π‘₯2 π‘₯3 ) .

Remark 3. (1) Let 𝑓, 𝑔 ∈ 𝐢𝑛𝑝 . If 𝑓 and 𝑔 are A𝑁,𝑃 -equivalent or K𝑁-equivalent, then 𝑓|𝑁 ≑ 𝑔|𝑁. Set E(𝑓, 𝑁) = {𝑔 ∈ 𝐢𝑛𝑝 : 𝑓|𝑁 ≑ 𝑔|𝑁}. (2) In general, if 𝑓 and 𝑔 are A-equivalent, then 𝑓 and 𝑔 also are K-equivalent. However, this result does not hold for A𝑁,𝑃 and K𝑁. For example, let 𝑓(π‘₯1 , π‘₯2 ) = (π‘₯1 , π‘₯22 ) and 𝑔(π‘₯1 , π‘₯2 ) = (π‘₯1 , π‘₯1 + π‘₯22 ); where 𝑁 = 𝑃 = {0} Γ— R1 βŠ‚ R2 . Set πœ™ = id and πœ“(𝑦1 , 𝑦2 ) = (𝑦1 , 𝑦1 + 𝑦2 ), then (πœ™, πœ“) ∈ A𝑁,𝑃 and (πœ™, πœ“) β‹… 𝑓 = 𝑔. So 𝑓 is A𝑁,𝑃 -equivalent to 𝑔. But 𝑓 and 𝑔 are not K𝑁-equivalent.

(𝑀, β„Ž) β‹… 𝑓 = 𝑀 β‹… (𝑓 ∘ β„Ž) . (6)

(8)

defined by π‘“βˆ— (β„Ž) = β„Ž ∘ 𝑓, for any β„Ž ∈ 𝐢𝑃 . This allows us to consider every 𝐢𝑁-module as an 𝐢𝑃 module via π‘“βˆ— . Let π‘“βˆ— π‘šπ‘ƒ = βŸ¨π‘“1 , . . . , 𝑓𝑝0 ⟩ be the ideal generated by the components 𝑓1 , . . . , 𝑓𝑝0 , and let π‘“βˆ— (π‘šπ‘ƒ ) denote the image of π‘šπ‘ƒ under 𝑓, which is not (in general) an ideal of 𝐢𝑁. For a map-germ 𝑓 ∈ 𝐢𝑛𝑝 , define 𝑇A𝑁,𝑃 𝑓 = π‘šπ‘ ⟨ 𝑇K𝑁𝑓 = π‘šπ‘ ⟨

πœ•π‘“ πœ•π‘“ ,..., ⟩ + π‘“βˆ— (𝐢𝑃 ) {𝑒1 , . . . , 𝑒𝑝 } , πœ•π‘₯1 πœ•π‘₯𝑛

πœ•π‘“ πœ•π‘“ ×𝑝 ,..., ⟩ + π‘“βˆ— π‘šπ‘ β‹… (π‘šπ‘) . πœ•π‘₯1 πœ•π‘₯𝑛

(9)

The notation 𝑇A𝑁,𝑃 𝑓 and 𝑇K𝑁𝑓 are very nearly the tangent spaces to the orbit of germ 𝑓 under A𝑁,𝑃 -equivalence and K𝑁-equivalence, respectively. Definition 4. Let 𝑓 ∈ 𝐢𝑛𝑝 ; let 𝐺 be a group acting on 𝐢𝑛𝑝 . We say that the map-germ 𝑓 is π‘˜-𝐺-determined if for any germ 𝑔 ∈ E(𝑓, 𝑁) with π‘—π‘˜ 𝑓(0) = π‘—π‘˜ 𝑔(0), 𝑔 is 𝐺-equivalent to 𝑓. If 𝑓 is π‘˜-𝐺-determined for some π‘˜ < ∞, then it is finitely 𝐺-determined. If π‘˜ = ∞, we say that 𝑓 is ∞-𝐺-determined. The purpose of this paper is to characterize the ∞-A𝑁,𝑃 determinacy and ∞-K𝑁-determinacy for map-germs. The main results in this paper are stated in Theorems 5 and 10. The rest of this paper is organized as follows. In Section 2, we will give a suffcient condition for ∞-A𝑁,𝑃 -determined map-germs. In Section 3, we study the K𝑁-determinacy of map-germs. We will give necessary and sufficient conditions for a map-germ to be finitely K𝑁-determined or ∞-K𝑁determined. Throughout the paper, all map-germs will be assumed smooth.

Journal of Function Spaces and Applications

3

2. The ∞-A𝑁,𝑃-Determinacy of Map-Germs In this section, the main result is the following theorem. Theorem 5. Let 𝑓 ∈ 𝐢𝑛𝑝 be a map-germ. Suppose that 𝑓 satisfies the following conditions. (1) For some π‘Ÿ < ∞, π‘šπ‘›π‘Ÿ π‘šπ‘ βŠ‚ π‘šπ‘π½(𝑓) + π‘“βˆ— π‘šπ‘ƒ β‹… π‘šπ‘, where 𝐽(𝑓) denotes the ideal in 𝐸𝑛 generated by the determinants of (𝑝 Γ— 𝑝) minors of the Jacobian matrix 𝑑𝑓 of 𝑓. (2) (π‘šπ‘›βˆž π‘šπ‘)×𝑝 βŠ‚ 𝑇A𝑁,𝑃 𝑓.

(1) πœ™(π‘₯, 𝑑) = π‘₯ and πœ“(𝑦, 𝑑) = 𝑦, for any 𝑑 sufficiently close to 𝑑0 , π‘₯ ∈ 𝑁 and 𝑦 ∈ 𝑃.

Then 𝑓 is ∞-A𝑁,𝑃 -determined. In order to prove this theorem, we need the following results. 𝐢𝑛𝑝

and 𝑀 be a finitely generated Lemma 6 (see [10]). Let 𝑓 ∈ 𝐢𝑁-module. Then 𝑀 is finitely generated as a π‘“βˆ— (𝐢𝑃 )-module if and only if dimR (𝑀/π‘“βˆ— π‘šπ‘ƒ β‹… 𝑀) < ∞. Lemma 7. Let 𝑓, 𝑔 ∈ 𝐢𝑛𝑝 . Let 𝑀 be a finitely generated (𝑓, 𝑔)βˆ— (𝐢𝑃×𝑃 )-module. Then 𝑀 is finitely generated as a π‘”βˆ— (𝐢𝑃 )-module if and only if dimR

where 𝐢𝑁×{𝑑0 } (resp., 𝐢𝑃×{𝑑0 } ) denotes the ring of functiongerms at (0, 𝑑0 ) which are constant when restricted to 𝑁 Γ— {𝑑0 } (resp., 𝑃 Γ— {𝑑0 }). π‘˜ Set π‘šπ‘ 𝐢𝑁×{𝑑0 } = π‘šπ‘‡π‘˜ and π‘šπ‘ƒπ‘˜ 𝐢𝑃×{𝑑0 } = π‘šπ‘‡π‘˜ σΈ€  . Let 𝑇A𝑁,𝑃 𝐹 = 𝑑𝐹 + πœ”πΉ, where 𝑑𝐹 denotes π‘šπ‘‡ βŸ¨πœ•π‘“/πœ•π‘₯1 , . . . , πœ•π‘“/πœ•π‘₯𝑛 ⟩ and πœ”πΉ denotes πΉβˆ— (𝐢𝑃×{𝑑0 } ){𝑒1 , . . . , 𝑒𝑝 }. We are trying to show that 𝑓̃ is A𝑁,𝑃 -equivalent to 𝑓. It suffices to show that there exist germs πœ™ : (R𝑛 Γ— R, (0, 𝑑0 )) β†’ (R𝑛 , 0) and πœ“ : (R𝑝 Γ— R, (0, 𝑑0 )) β†’ (R𝑝 , 0) satisfying the following conditions.

𝑀 < ∞. π‘”βˆ— π‘šπ‘ƒ β‹… 𝑀

(10)

(2) πœ™π‘‘0 = idR𝑛 and πœ“π‘‘0 = idR𝑝 . (3) 𝑔𝑑0 = πœ“π‘‘ ∘ 𝑔𝑑 ∘ πœ™π‘‘βˆ’1 , for any 𝑑 sufficiently close to 𝑑0 . By the method initiated by Mather in [12], it suffices to show that ×𝑝

(π‘šπ‘›βˆž π‘šπ‘‡ )

βŠ‚ π‘šπ‘‡ ⟨

πœ•π‘” πœ•π‘” ,..., ⟩ + πΊβˆ— (π‘šπ‘‡σΈ€  ) {𝑒1 , . . . , 𝑒𝑝 } . πœ•π‘₯1 πœ•π‘₯𝑛 (16)

To see this, it remains to show that (i) (π‘šπ‘›βˆž π‘šπ‘‡ )×𝑝 βŠ‚ 𝑇A𝑁,𝑃 𝐹.

Proof. The proof is essentially the same as that of Corollary 1.17 in [11].

(ii) 𝑇A𝑁,𝑃 𝐹 = 𝑇A𝑁,𝑃 𝐺.

Lemma 8. Let 𝑓, 𝑔 ∈ 𝐢𝑛𝑝 and 𝑔 βˆ’ 𝑓 ∈ (π‘šπ‘›βˆž π‘šπ‘)×𝑝 . Then

If (i) and (ii) hold, then

βˆ—

(𝑓, 𝑔) (𝐢𝑃×𝑃 ) βŠ‚ π‘“βˆ— (𝐢𝑃 ) + π‘šπ‘›βˆž π‘šπ‘.

Proof. For any β„Ž ∈ 𝐢𝑃×𝑃 , then (𝑓, 𝑔)βˆ— (β„Ž) βˆ’ (𝑓, 𝑓)βˆ— (β„Ž) is in π‘šπ‘›βˆž π‘šπ‘. So, βˆ—

βˆ—

(𝑓, 𝑔) (𝐢𝑃×𝑃 ) βŠ‚ (𝑓, 𝑓) (𝐢𝑃×𝑃 ) + π‘šπ‘›βˆž π‘šπ‘.

(12)

Let πœ™ : (R𝑝 , 𝑃) β†’ (R𝑝 Γ— R𝑝 , 𝑃 Γ— 𝑃) be given by πœ™(𝑦) = (𝑦, 𝑦). Since (𝑓, 𝑓)βˆ— (β„Ž) = π‘“βˆ— (πœ™βˆ— (β„Ž)), it follows that βˆ—

βˆ—

(𝑓, 𝑓) (𝐢𝑃×𝑃 ) βŠ‚ 𝑓 (𝐢𝑃 ) .

×𝑝

(π‘šπ‘›βˆž π‘šπ‘‡ )

(11)

×𝑝

πΊβˆ— π‘šπ‘‡σΈ€  β‹… (π‘šπ‘›βˆž π‘šπ‘‡ )

πΉβˆ— : 𝐢𝑃×{𝑑0 } 󳨀→ 𝐢𝑁×{𝑑0 } ,

β„Ž 󳨃󳨀→ β„Ž ∘ 𝐹 = πΉβˆ— (β„Ž) ,

(18)

On the other hand, using condition (1) in Theorem 5, and ×𝑝

βŠ‚ π‘šπ‘ ⟨

πœ•π‘“ πœ•π‘“ ,..., ⟩, πœ•π‘₯1 πœ•π‘₯𝑛

(19)

we get ×𝑝

(π‘šπ‘›π‘Ÿ π‘šπ‘)

βŠ‚ π‘šπ‘ ⟨

(14)

(15)

πœ•π‘” πœ•π‘” ,..., ⟩ πœ•π‘₯1 πœ•π‘₯𝑛

+ 𝐺 (π‘šπ‘‡σΈ€  ) {𝑒1 , . . . , 𝑒𝑝 } .

𝐽 (𝑓) β‹… (π‘šπ‘)

by 𝑔(π‘₯, 𝑑) = 𝑓(π‘₯) + 𝑑𝑒(π‘₯) and 𝑔𝑑 (π‘₯) = 𝑔(π‘₯, 𝑑). Let 𝐹(π‘₯, 𝑑) = (𝑓(π‘₯), 𝑑) and 𝐺(π‘₯, 𝑑) = (𝑔(π‘₯, 𝑑), 𝑑) denote the map-germs at (0, 𝑑0 ); then 𝐹 (or 𝐺) induces a ring homomorphism:

βŠ‚ π‘šπ‘‡ ⟨ βˆ—

Thus, (11) holds.

𝑔 : (R𝑛 Γ— R, (0, 𝑑0 )) 󳨀→ R𝑝

(17)

Multiplying (17) by πΊβˆ— π‘šπ‘‡σΈ€  , we get

(13)

Μƒ = Proof of Theorem 5. Suppose that 𝑓̃ ∈ E(𝑓, 𝑁) and π‘—βˆž 𝑓(0) π‘—βˆž 𝑓(0). Let 𝑒 = 𝑓̃ βˆ’ 𝑓; then 𝑒 ∈ (π‘šπ‘›βˆž π‘šπ‘)×𝑝 . For any 𝑑0 ∈ [0, 1], define

βŠ‚ 𝑇A𝑁,𝑃 𝐺.

πœ•π‘“ πœ•π‘“ ×𝑝 ,..., ⟩ + π‘“βˆ— π‘šπ‘ƒ β‹… (π‘šπ‘) . πœ•π‘₯1 πœ•π‘₯𝑛 (20)

Obviously, we have ×𝑝

(π‘šπ‘›βˆž π‘šπ‘)

βŠ‚ π‘šπ‘ ⟨

πœ•π‘“ πœ•π‘“ ×𝑝 ,..., ⟩ + π‘“βˆ— π‘šπ‘ƒ β‹… (π‘šπ‘) . πœ•π‘₯1 πœ•π‘₯𝑛 (21)

4

Journal of Function Spaces and Applications Since 𝑔𝑑 βˆ’ 𝑓 ∈ (π‘šπ‘›βˆž π‘šπ‘)×𝑝 , for each 𝑑 ∈ R, this gives that π‘šπ‘ ⟨

πœ•π‘” πœ•π‘” ×𝑝 ,..., ⟩ + π‘”π‘‘βˆ— π‘šπ‘ƒ β‹… (π‘šπ‘) πœ•π‘₯1 πœ•π‘₯𝑛

βŠ‚ π‘šπ‘ ⟨ π‘šπ‘ ⟨

βŠ‚ π‘šπ‘ ⟨

𝐢𝑁×{𝑑0 } = π‘šπ‘‡ 𝐽 (𝑓) + πΉβˆ— (𝐢𝑃×{𝑑0 } ) 𝐢𝑁.

𝑇A𝑁,𝑃 𝐹 βŠƒ (π‘šπ‘ ⟨ (22)

πœ•π‘“ πœ•π‘“ ,..., ⟩ πœ•π‘₯1 πœ•π‘₯𝑛

+πΉβˆ— (𝐢𝑃×{𝑑0 } ) {𝑒1 , . . . , 𝑒𝑝 } ) β‹… πΉβˆ— (𝐢𝑃×{𝑑0 } )

πœ•π‘” πœ•π‘” ×𝑝 ,..., ⟩ + π‘”π‘‘βˆ— π‘šπ‘ƒ β‹… (π‘šπ‘) πœ•π‘₯1 πœ•π‘₯𝑛

βŠƒ 𝑇A𝑁,𝑃 𝑓 β‹… πΉβˆ— (𝐢𝑃×{𝑑0 } )

×𝑝

+ π‘šπ‘› (π‘šπ‘›βˆž π‘šπ‘) .

×𝑝

βŠƒ (π‘šπ‘›βˆž π‘šπ‘)

β‹… πΉβˆ— (𝐢𝑃×{𝑑0 } ) , (31)

Hence, by Nakayama’s lemma we have π‘šπ‘ ⟨

πœ•π‘“ πœ•π‘“ ×𝑝 ,..., ⟩ + π‘“βˆ— π‘šπ‘ƒ β‹… (π‘šπ‘) πœ•π‘₯1 πœ•π‘₯𝑛

πœ•π‘” πœ•π‘” ×𝑝 = π‘šπ‘ ⟨ ,..., ⟩ + π‘”π‘‘βˆ— π‘šπ‘ƒ β‹… (π‘šπ‘) . πœ•π‘₯1 πœ•π‘₯𝑛

and π‘šπ‘π½(𝑓) β‹… (𝐢𝑁×{𝑑0 } )×𝑝 βŠ‚ π‘šπ‘‡ βŸ¨πœ•π‘“/πœ•π‘₯1 , . . . , πœ•π‘“/πœ•π‘₯𝑛 ⟩, it follows that (23)

×𝑝

𝑇A𝑁,𝑃 𝐹 βŠƒ (π‘šπ‘›βˆž π‘šπ‘)

β‹… [π‘šπ‘‡ 𝐽 (𝑓) + πΉβˆ— (𝐢𝑃×{𝑑0 } ) 𝐢𝑁]

From (21), it follows that ×𝑝 (π‘šπ‘›βˆž π‘šπ‘)

πœ•π‘” πœ•π‘” ×𝑝 βŠ‚ π‘šπ‘ ⟨ ,..., ⟩ + π‘”π‘‘βˆ— π‘šπ‘ƒ β‹… (π‘šπ‘) , πœ•π‘₯1 πœ•π‘₯𝑛 (24)

for any given 𝑑 ∈ R. Multiplying (24) by π‘šπ‘›βˆž 𝐢𝑁×{𝑑0 } , we get ×𝑝

(π‘šπ‘›βˆž π‘šπ‘‡ )

βŠ‚ π‘šπ‘‡ ⟨

βˆ—

βŠ‚ π‘šπ‘π½ (𝑓) + 𝑓 π‘šπ‘ƒ β‹… 𝐢𝑁,

𝑀 ⋅𝑀

β‰…

𝐢𝑁 . π‘šπ‘π½ (𝑓) + π‘“βˆ— π‘šπ‘ƒ β‹… 𝐢𝑁

(33)

Applying (25) and (i), we have ×𝑝

(π‘šπ‘›βˆž π‘šπ‘‡ )

βŠ‚ π‘šπ‘‡ ⟨

πœ•π‘” πœ•π‘” ,..., ⟩ πœ•π‘₯1 πœ•π‘₯𝑛

πœ•π‘” πœ•π‘” βŠ‚ π‘šπ‘‡ ⟨ ,..., ⟩ πœ•π‘₯1 πœ•π‘₯𝑛

(26)

(27)

(28)

Thus, by Lemma 6, 𝑀 is finitely generated πΉβˆ— (𝐢𝑃×{𝑑0 } )module; that is, 𝑀 = πΉβˆ— (𝐢𝑃×{𝑑0 } ) {π‘Ž1 , . . . , π‘Žπ‘  } .

Proof of Assertion (ii). Since 𝑔 βˆ’ 𝑓 ∈ (π‘šπ‘›βˆž π‘šπ‘‡ )×𝑝 , by (i) we get

×𝑝

where π‘Žπ‘– ∈ 𝐢𝑁 and π‘Žπ‘– is the projection of π‘Žπ‘– in the quotient space, 𝑖 = 1, . . . , 𝑠. Now, set 𝑀 = 𝐢𝑁×{𝑑0 } /π‘šπ‘‡ 𝐽(𝑓); then 𝑀 is a finitely generated 𝐢𝑁×{𝑑0 } -module. Since πΉβˆ— π‘šπ‘ƒΓ—{𝑑0 } β‹… 𝐢𝑁×{𝑑0 } = π‘“βˆ— π‘šπ‘ƒ β‹… 𝐢𝑁×{𝑑0 } + (𝑑 βˆ’ 𝑑0 )𝐢𝑁×{𝑑0 } ; πΉβˆ— π‘šπ‘ƒΓ—{𝑑0 }

So (i) holds.

+ πΊβˆ— π‘šπ‘ƒΓ—{𝑑0 } β‹… (π‘šπ‘›βˆž π‘šπ‘‡ )

for some π‘Ÿ < ∞. This means that ideal π‘šπ‘π½(𝑓) + π‘“βˆ— π‘šπ‘ƒ β‹… 𝐢𝑁 has finite codimension in 𝐢𝑁. Let 𝐢𝑁 = R {π‘Ž1 , . . . , π‘Žπ‘  } , (π‘šπ‘π½ (𝑓) + π‘“βˆ— π‘šπ‘ƒ β‹… 𝐢𝑁)

×𝑝

×𝑝

πœ•π‘” πœ•π‘” ×𝑝 ,..., ⟩ + πΊβˆ— π‘šπ‘‡σΈ€  β‹… (π‘šπ‘›βˆž π‘šπ‘‡ ) . πœ•π‘₯1 πœ•π‘₯𝑛 (25)

(32)

= (π‘šπ‘›βˆž π‘šπ‘‡ ) .

𝑇A𝑁,𝑃 𝐺 βŠ† 𝑇A𝑁,𝑃 𝐹 = 𝑇A𝑁,𝑃 𝐺 + (π‘šπ‘›βˆž π‘šπ‘‡ ) .

Thus, (16) follows by substituting (18) in (25). Now we prove the assertion (i). By hypothesis, we have π‘šπ‘›π‘Ÿ π‘šπ‘

(30)

Since

πœ•π‘“ πœ•π‘“ ×𝑝 ,..., ⟩ + π‘“βˆ— π‘šπ‘ƒ β‹… (π‘šπ‘) , πœ•π‘₯1 πœ•π‘₯𝑛

πœ•π‘“ πœ•π‘“ ×𝑝 ,..., ⟩ + π‘“βˆ— π‘šπ‘ƒ β‹… (π‘šπ‘) πœ•π‘₯1 πœ•π‘₯𝑛

In particular,

(29)

(34)

+ πΊβˆ— π‘šπ‘ƒΓ—{𝑑0 } β‹… 𝑇A𝑁,𝑃 𝐹. By (33) and (34), we have 𝑇A𝑁,𝑃 𝐺 βŠ† 𝑇A𝑁,𝑃 𝐹 = 𝑇A𝑁,𝑃 𝐺 + πΊβˆ— π‘šπ‘ƒΓ—{𝑑0 } β‹… 𝑇A𝑁,𝑃 𝐹. (35) Set 𝐸 = 𝑇A𝑁,𝑃 𝐹/𝑑𝐺, and (35) implies 𝐸=

𝑇A𝑁,𝑃 𝐺 + πΊβˆ— π‘šπ‘ƒΓ—{𝑑0 } β‹… 𝐸. 𝑑𝐺

(36)

Now it remains to show that (a) 𝐸 is a finitely generated πΊβˆ— (𝐢𝑃×{𝑑0 } )-module. For if this holds, then by Nakayama’s lemma, 𝐸=

𝑇A𝑁,𝑃 𝐺 . 𝑑𝐺

(37)

Journal of Function Spaces and Applications

5

Hence, 𝑇A𝑁,𝑃 𝐹 = 𝑇A𝑁,𝑃 𝐺. To prove (a), by Lemma 7, it suffices to show that (b) 𝐸 is a finitely generated (𝐹, 𝐺)βˆ— (𝐢𝑃×{𝑑0 }×𝑃×{𝑑0 } )-module. (c) dimR (𝐸/πΊβˆ— π‘šπ‘ƒΓ—{𝑑0 } β‹… 𝐸) < ∞. Set 𝑅 = (𝐹, 𝐺)βˆ— (𝐢𝑃×{𝑑0 }×𝑃×{𝑑0 } ). By Lemma 8 and (i), we get 𝑅 β‹… 𝑇A𝑁,𝑃 𝐹 βŠ‚ [πΉβˆ— (𝐢𝑃×{𝑑0 } ) + π‘šπ‘›βˆž π‘šπ‘‡ ] β‹… 𝑇A𝑁,𝑃 𝐹 βŠ‚ 𝑇A𝑁,𝑃 𝐹. (38) Thus, 𝑇A𝑁,𝑃 𝐹 is a 𝑅-module. Hence, 𝐸 is a 𝑅-module. Obviously, πœ”πΉ is a finitely generated πΉβˆ— (𝐢𝑃×{𝑑0 } )-module; hence πœ”πΉ is also finitely generated as a 𝑅-module. Moreover, since 𝑑𝐹/𝑑𝐺 ∩ 𝑑𝐹 is a finitely generated 𝐢𝑁×{𝑑0 } module and annihilated by π‘šπ‘‡ 𝐽(𝑔𝑑 ). Thus, 𝑑𝐹/𝑑𝐺 ∩ 𝑑𝐹 is a finitely generated 𝐢𝑁×{𝑑0 } /π‘šπ‘‡ 𝐽(𝑔𝑑 )-module. By the argument as equality (29), it follows that 𝐢𝑁×{𝑑0 } /π‘šπ‘‡ 𝐽(𝑔𝑑 ) is a finitely generated πΊβˆ— (𝐢𝑃×{𝑑0 } )-module. Hence, 𝑑𝐹/𝑑𝐺 ∩ 𝑑𝐹 is a finitely generated 𝑅-module. The earlier argument shows that 𝐸 is finitely generated as a 𝑅-module. Besides, by (35), we have dimR

𝐸 πΊβˆ— π‘šπ‘ƒΓ—{𝑑0 } β‹… 𝐸

= dimR

= dimR ≀ dimR

𝑇A𝑁,𝑃 𝐺 + πΊβˆ— π‘šπ‘ƒΓ—{𝑑0 } β‹… 𝑇A𝑁,𝑃 𝐹 𝑑𝐺 + πΊβˆ— π‘šπ‘ƒΓ—{𝑑0 } (𝑇A𝑁,𝑃 𝐺 + 𝑇A𝑁,𝑃 𝐹)

Taking (π‘Ÿ + 1)-jets on both sides, we have {π‘—π‘Ÿ+1 𝑔 (0) ∈ π½π‘Ÿ+1 (𝑛, 𝑝) : π‘—π‘Ÿ 𝑔 (0) = π‘—π‘Ÿ 𝑓 (0)} βŠ‚ {π‘—π‘Ÿ+1 𝑔 (0) ∈ π½π‘Ÿ+1 (𝑛, 𝑝) : 𝑔 and 𝑓 are K𝑁-equivalent} . Taking tangent spaces at π‘—π‘Ÿ+1 𝑓(0) on both sides, we have ×𝑝

(π‘šπ‘›π‘Ÿ π‘šπ‘)

β‹… πœ”πΊ + (𝑑𝐺 +

πΊβˆ— π‘šπ‘ƒΓ—{𝑑0 }

β‹… 𝑇A𝑁,𝑃 𝐹)

πœ”πΊ < ∞. πΊβˆ— π‘šπ‘ƒΓ—{𝑑0 } β‹… πœ”πΊ

×𝑝

(π‘šπ‘›π‘Ÿ π‘šπ‘)

𝐹 : (R𝑛 Γ— R, (0, 𝑑0 )) 󳨀→ R𝑝

(43)

(44)

by 𝐹(π‘₯, 𝑑) = 𝑓(π‘₯) + 𝑑(𝑔(π‘₯) βˆ’ 𝑓(π‘₯)) and 𝐹𝑑 (π‘₯) = 𝐹(π‘₯, 𝑑). We are trying to show that 𝑔 is K𝑁-equivalent to 𝑓. Since 𝐹0 = 𝑓 and 𝐹1 = 𝑔, and [0, 1] is connected, it suffices to show that 𝐹𝑑 is K𝑁-equivalent to 𝐹𝑑0 , for all 𝑑 sufficiently close to 𝑑0 . Since 𝐹𝑑0 (π‘₯) βˆ’ 𝑓(π‘₯) = 𝑑0 (𝑔(π‘₯) βˆ’ 𝑓(π‘₯)) and 𝑔 βˆ’ 𝑓 ∈ (π‘šπ‘›π‘Ÿ+1 π‘šπ‘)×𝑝 , from condition (2), it follows that 𝑇K𝑁𝐹𝑑0 βŠ‚ 𝑇K𝑁𝑓,

(45)

and 𝑇K𝑁𝑓 βŠ‚ 𝑇K𝑁𝐹𝑑0 + π‘šπ‘› β‹… (𝑇K𝑁𝑓). Since 𝑇K𝑁𝑓 is a finitely generated 𝐸𝑛 -module, and π‘šπ‘› is the maximal ideal of 𝐸𝑛 , by Nakayama’s lemma, we get 𝑇K𝑁𝐹𝑑0 = 𝑇K𝑁𝑓.

βˆ— (π‘šπ‘›π‘Ÿ π‘šπ‘πΈπ‘›+1 )

In this section, by a similar way as [13], we will give necessary and sufficient conditions for finitely K𝑁-determined mapgerms and ∞-K𝑁-determined map-germs. Theorem 9. Suppose that 𝑓 ∈ 𝐢𝑛𝑝 . The following conditions are equivalent. (1) 𝑓 is finitely K𝑁-determined. (2) (π‘šπ‘›π‘Ÿ π‘šπ‘)×𝑝 βŠ‚ 𝑇K𝑁𝑓, for some π‘Ÿ ∈ N.

×𝑝

βˆ— βŠ‚ 𝑇K𝑁𝐹𝑑0 β‹… 𝐸𝑛+1 ,

(46)

Proof. Let 𝐽 (𝑛, 𝑝) denote the set of (π‘Ÿ + 1)-jets at 0 of elements in E(𝑓, 𝑁). If 𝑓 is π‘Ÿ-K𝑁-determined, then for any 𝑔 ∈ E(𝑓, 𝑁) with the same π‘Ÿ-jet as 𝑓, the K𝑁-orbit of 𝑓 contains 𝑔; that is, {𝑔 ∈ E (𝑓, 𝑁) : π‘—π‘Ÿ 𝑔 (0) = π‘—π‘Ÿ 𝑓 (0)} (40)

(47)

βˆ— where 𝐸𝑛+1 denotes the ring of smooth function-germs in variables (π‘₯, 𝑑) at the point (0, 𝑑0 ). βˆ— βˆ— denote the maximal ideal of 𝐸𝑛+1 . Let π‘šπ‘›+1 βˆ— Let 𝑇K𝑁𝐹 = π‘šπ‘πΈπ‘›+1 βŸ¨πœ•πΉ/πœ•π‘₯1 , . . . , πœ•πΉ/πœ•π‘₯𝑛 ⟩ + πΉβˆ— π‘šπ‘ β‹… βˆ— βˆ— (π‘šπ‘πΈπ‘›+1 )×𝑝 . Obviously, 𝑇K𝑁𝐹 is a finitely generated 𝐸𝑛+1 module. By the same argument as (46), we have βˆ— 𝑇K𝑁𝐹 = 𝑇K𝑁𝐹𝑑0 β‹… 𝐸𝑛+1 .

π‘Ÿ+1

are K𝑁-equivalent} .

βŠ‚ 𝑇K𝑁𝑓.

Hence 𝑇K𝑁𝐹𝑑0 also satisfies condition (2). So

3. The K𝑁-Determinacy of Map-Germs

βŠ‚ {𝑔 ∈ E (𝑓, 𝑁) : 𝑔 and 𝑓

(42)

Then (1) implies (2). Conversely, let 𝑑0 ∈ [0, 1] be fixed and 𝑔 ∈ E(𝑓, 𝑁) with π‘—π‘Ÿ+1 𝑓(0) = π‘—π‘Ÿ+1 𝑔(0). Define

(39) So (b) and (c) hold. This completes the proof.

×𝑝

βŠ‚ 𝑇K𝑁𝑓 + (π‘šπ‘›π‘Ÿ+1 π‘šπ‘) .

By Nakayama’s lemma, this implies

πœ”πΊ + (𝑑𝐺 + πΊβˆ— π‘šπ‘ƒΓ—{𝑑0 } β‹… 𝑇A𝑁,𝑃 𝐹) πΊβˆ— π‘šπ‘ƒΓ—{𝑑0 }

(41)

(48)

By (47) and (48), we get βˆ— (π‘šπ‘›π‘Ÿ π‘šπ‘πΈπ‘›+1 )

×𝑝

βŠ‚ 𝑇K𝑁𝐹.

(49)

Since πœ•πΉ/πœ•π‘‘ = 𝑔 βˆ’ 𝑓 ∈ (π‘šπ‘›π‘Ÿ+1 π‘šπ‘)×𝑝 , this means that there βˆ— , 𝑖 = 1, . . . , 𝑛, such that exist germs 𝑋𝑖 in π‘šπ‘πΈπ‘›+1 𝑛

(𝑔 βˆ’ 𝑓) + βˆ‘π‘‹π‘– (π‘₯, 𝑑) 𝑖=1

πœ•πΉ ×𝑝 βˆ— ∈ πΉβˆ— π‘šπ‘ β‹… (π‘šπ‘πΈπ‘›+1 ) . πœ•π‘₯𝑖

(50)

6

Journal of Function Spaces and Applications

Thus, we can find a germ of vector field 𝑋 in R𝑛 Γ— R of the following form: 𝑛 πœ• πœ• , + βˆ‘π‘‹π‘– (π‘₯, 𝑑) πœ•π‘‘ 𝑖=1 πœ•π‘₯𝑖

(51)

βˆ— such that DF(𝑋) ∈ πΉβˆ— π‘šπ‘ β‹… (π‘šπ‘πΈπ‘›+1 )×𝑝 . That is, we can find a (𝑝 Γ— 𝑝) matrix 𝐴(π‘₯, 𝑑) with entries βˆ— such that in π‘šπ‘πΈπ‘›+1

DF (𝑋) = 𝐴 (π‘₯, 𝑑) β‹… 𝐹 (π‘₯, 𝑑) .

(52)

By integrating the vector field 𝑋, we get a one-parameter family of local diffeomorphisms πœ™π‘‘ in R𝑁. Thus 𝑑 πœ• 𝐹 (πœ™π‘‘ (π‘₯) , 𝑑) = 𝐹 (πœ™π‘‘ (π‘₯) , 𝑑) 𝑑𝑑 πœ•π‘‘ 𝑛

+ βˆ‘π‘‹π‘– (πœ™π‘‘ (π‘₯) , 𝑑) 𝑖=1

πœ•πΉ (πœ™ (π‘₯) , 𝑑) πœ•π‘₯𝑖 𝑑

(53)

= 𝐴 (πœ™π‘‘ (π‘₯) , 𝑑) β‹… 𝐹 (πœ™π‘‘ (π‘₯) , 𝑑) . Hence, for fixed π‘₯ ∈ R𝑛 , 𝐹(πœ™π‘‘ (π‘₯), 𝑑) is a solution of the differential equation 𝑦̇ = 𝐴(πœ™π‘‘ (π‘₯), 𝑑)𝑦 with initial condition 𝑦(π‘₯, 𝑑0 ) = 𝐹𝑑0 (π‘₯). Since the solution of this differential equation is unique and of the form 𝑦 (π‘₯, 𝑑) = 𝐡 (π‘₯, 𝑑) β‹… 𝑦 (π‘₯, 𝑑0 ) ,

(54)

with 𝐡(π‘₯, 𝑑) as an invertible matrix, 𝐡(π‘₯, 𝑑0 ) = 𝐼𝑝 and 𝐡(π‘₯, 𝑑) = 𝐼𝑝 for each π‘₯ ∈ 𝑁. Thus 𝐹𝑑 (π‘₯) = 𝐡 (πœ™π‘‘βˆ’1 (π‘₯) , 𝑑) β‹… (𝐹𝑑0 ∘ πœ™π‘‘βˆ’1 (π‘₯)) .

(55)

Thus, 𝐹𝑑 and 𝐹𝑑0 are K𝑁-equivalent for all 𝑑 sufficiently close to 𝑑0 , which completes the proof. Theorem 10. Suppose that 𝑓 ∈ 𝐢𝑛𝑝 . Then 𝑓 is ∞-K𝑁determined if and only if ×𝑝

(π‘šπ‘›βˆž π‘šπ‘)

βŠ‚ 𝑇K𝑁𝑓.

(56)

Proof. β€œOnly if ”: if 𝑓 is ∞-K𝑁-determined, by the definition, we get ×𝑝

𝑓 + (π‘šπ‘›βˆž π‘šπ‘)

βŠ‚ K𝑁 β‹… 𝑓.

(57)

Taking tangent spaces at 𝑓 on both sides, we have ×𝑝

𝑇𝑓 (𝑓 + (π‘šπ‘›βˆž π‘šπ‘) ) βŠ‚ 𝑇𝑓 (K𝑁 β‹… 𝑓) .

(58)

Note that (π‘šπ‘›βˆž π‘šπ‘)×𝑝 βŠ‚ 𝑇𝑓 (𝑓+(π‘šπ‘›βˆž π‘šπ‘)×𝑝 ), and 𝑇𝑓 (K𝑁 β‹… 𝑓) βŠ‚ 𝑇K𝑁𝑓. Hence, ×𝑝

(π‘šπ‘›βˆž π‘šπ‘)

βŠ‚ 𝑇K𝑁𝑓.

β€œIf ”: the proof is the same as that of Theorem 9.

(59)

Acknowledgments This work was supported by the National Natural Science Foundation of China (Grant no. 11271063) and supported in part by Graduate Innovation Fund of Northeast Normal University of China (no. 12SSXT140). The authors would like to thank the referee for his/her valuable suggestions which improved the first version of the paper.

References [1] V. I. Arnol’d, V. V. Goryunov, O. V. Lyashko, and V. A. Vasil’ev, β€œSingularity theory II: classification and applications,” Encyclopaedia of Mathematical Sciences, vol. 39, pp. 1–235, 1993. [2] Z. Wang, D. Pei, L. Chen, L. Kong, and Q. Han, β€œSingularities of focal surfaces of null cartan curves in minkowski 3-space,” Abstract and Applied Analysis, vol. 2012, Article ID 823809, 20 pages, 2012. [3] L. C. Wilson, β€œInfinitely determined map germs,” Canadian Journal of Mathematics, vol. 33, no. 3, pp. 671–684, 1981. [4] L. C. Wilson, β€œMapgerms infinitely determined with respect to right-left equivalence,” Pacific Journal of Mathematics, vol. 102, no. 1, pp. 235–245, 1982. [5] H. Brodersen, β€œOn finite and infinite πΆπ‘˜ -𝐴-determinacy,” Proceedings of the London Mathematical Society, vol. 75, no. 2, pp. 369–435, 1997. [6] C. T. C. Wall, β€œFinite determinacy of smooth map-germs,” The Bulletin of the London Mathematical Society, vol. 13, no. 6, pp. 481–539, 1981. [7] B. Sun and L. C. Wilson, β€œDeterminacy of smooth germs with real isolated line singularities,” Proceedings of the American Mathematical Society, vol. 129, no. 9, pp. 2789–2797, 2001. [8] V. Grandjean, β€œInfinite relative determinacy of smooth function germs with transverse isolated singularities and relative Łojasiewicz conditions,” Journal of the London Mathematical Society, vol. 69, no. 2, pp. 518–530, 2004. [9] V. Thilliez, β€œInfinite determinacy on a closed set for smooth germs with non-isolated singularities,” Proceedings of the American Mathematical Society, vol. 134, no. 5, pp. 1527–1536, 2006. [10] R. Bulajich, J. A. GΒ΄omez, and L. Kushner, β€œRelative versality for map germs,” Unione Matematica Italiana, vol. 1, no. 7, pp. 305– 320, 1987. [11] T. Gaffney and A. du Plessis, β€œMore on the determinacy of smooth map-germs,” Inventiones Mathematicae, vol. 66, no. 1, pp. 137–163, 1982. [12] J. N. Mather, β€œStability of 𝐢∞ mappings III: finitely determined Β΄ map-germs,” Institut des Hautes Etudes Scientifiques. Publications MathΒ΄ematiques, vol. 35, pp. 127–156, 1969. [13] H. Brodersen, β€œA note on infinite determinacy of smooth map germs,” The Bulletin of the London Mathematical Society, vol. 13, no. 5, pp. 397–402, 1981.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014