Remarkable ionic conductivity and catalytic activity in

0 downloads 0 Views 1MB Size Report
[23] Liu Y, Fan L, Cai Y, Zhang W, Wang B, Zhu B. Superionic conductivity of Sm3ю, Pr3ю, and Nd3ю triple-doped ceria through bulk and surface two-step ...
i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y x x x ( 2 0 1 8 ) 1 e8

Available online at www.sciencedirect.com

ScienceDirect journal homepage: www.elsevier.com/locate/he

Remarkable ionic conductivity and catalytic activity in ceramic nanocomposite fuel cells € rvi, R. Jokiranta, P.D. Lund M.I. Asghar*, S. Jouttija New Energy Technologies Group, Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland

article info

abstract

Article history:

Although ceramic nanocomposite fuel cells (CNFCs) have attracted the attention of the fuel

Received 14 March 2018

cell community due to their low operating temperature (80 U cm2). Recently an outstanding performance of 2W/cm2 has been achieved using GDC based low-temperature SOFC at 550  C [6]. The cell had very low ohmic loss (0.058 U cm2) and even lower electrode resistance (0.051 U cm2) as compared to our cell's ohmic loss (0.23 U cm2) and polarization loss (0.63 U cm2) despite lower ionic conductivity of the electrolyte layer as compared to our nanocomposite electrolyte. However, their cell thickness was only 120 mm as compared to our 800 mm thick cell. We expect performance beyond the state of the art (>2W/cm2) with our promising nanocomposite materials if printing methods would be applied to decrease the cell thickness, as it is almost impossible to fabricate thin cells of around 100 thickness using the powder pressing method.

Conclusions The nanocomposite electrolyte (GDC 75 wt%: Na2CO3 þ Li2CO3 25 wt%) synthesized through solid route method showed promising electrochemical properties for CNFC application. This electrolyte demonstrated very high ionic conductivity, 0.34 S/cm and 0.41 S/cm at 550  C and 600  C, respectively. The high ionic conductivity can be attributed to the multipolar transport in the electrolyte. The carbonate phase had a melting temperature of 497  C in the nanocomposite electrolyte as obtained through DSC measurements, meaning that the carbonate salt is in the liquid state at the operational temperature of the fuel cell, and contributes to the ionic

conductivity. The CNFC utilizing this nanocomposite electrolyte produced a power of 1.02 W/cm2 at 550  C taking advantage of the high ionic transport in the electrolyte layer and efficient catalytic reaction at the electrodes. This is an order of magnitude higher performance than previously reported with similar materials.

Acknowledgments This study was funded by Academy of Finland (Grant No. 13282962 and 13279204). This work made use of the premises from Aalto University Nanomicroscopy Center (Aalto-NMC), Laboratory of Inorganic Chemistry and Department of Forest Products Technology.

references

[1] Wachsman ED, Lee KT. Lowering the temperature of solid oxide fuel cells. Science 2011;334:935e9. https://doi.org/ 10.1126/science.1204090. [2] Kakac S, Pramuanjaroenkij A, Zhou XY. A review of numerical modeling of solid oxide fuel cells. Int J Hydrogen Energy 2007;32:761e86. [3] Asghar MI, Lund PD. Improving catalyst stability in nanostructured solar and fuel cells. Catal Today 2016;259: 259e65. [4] Patakangas J, Ma Y, Jing Y, Lund P. Review and analysis of characterization methods and ionic conductivities for lowtemperature solid oxide fuel cells (LT-SOFC). J Power Sources 2014;263:315e31. [5] Gao Z, Mogni LV, Miller EC, Railsback JG, Barnett SA. A perspective on low-temperature solid oxide fuel cells. Energy Environ Sci 2016;9:1602e44. [6] Lee JG, Park JH, Shul YG. Tailoring gadolinium-doped ceriabased solid oxide fuel cells to achieve 2 W cm2 at 550 C. Nat Commun 2014;5. https://doi.org/10.1038/ncomms5045. [7] Antolini E. The stability of molten carbonate fuel cell electrodes: a review of recent improvements. Appl Energy 2011;88:4274e93. [8] Terada S, Nagashima I, Higaki K, Ito Y. Stability of LiAlO as electrolyte matrix for molten carbonate fuel cells. J Power Sources 1998;75:223e9. [9] Iacovangelo CD. Stability of molten carbonate fuel cell nickel anodes. J Electrochem Soc Solid State Sci Technol 1986;133:2410e6. [10] Ota K, Mitsushima S, Kato S, Asano S, Yoshitake H, Kamiya N. Solubilities of nickel oxide in molten carbonate. J Electrochem Soc 1992;139:667e71. [11] Doyon JD, Gilbert T, Davies G. NiO solubility in mixed alkali/ alkaline Earth carbonates. J Electrochem Soc 1987;134:3035e8. [12] Patakangas J, Jing Y, Asghar MI, Lund PD. Investigation of LiNiCuZn-oxide electrodes prepared by different methods: synthesis, characterization and properties for ceramic carbonate composite fuel cells. Int J Hydrogen Energy 2016;41:7609e13. [13] Asghar MI, Lund PD. Ceramic-carbonate nanocomposite fuel cells. Nanoworld 2016;3:7e11. [14] Zhu B, Liu X, Zhou P, Yang X, Zhu Z, Zhu W. Innovative solid carbonate-ceria composite electrolyte fuel cells. Fuel Cells Bull. 2002;2002:8e12. https://doi.org/10.1016/S1464-2859(02) 80005-0.

Please cite this article in press as: Asghar MI, et al., Remarkable ionic conductivity and catalytic activity in ceramic nanocomposite fuel cells, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/j.ijhydene.2018.05.045

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y x x x ( 2 0 1 8 ) 1 e8

[15] Zhu B. Functional ceriaesalt-composite materials for advanced ITSOFC applications. J Power Sources 2003;114:1e9. https://doi.org/10.1016/S0378-7753(02)00592-X. [16] Zhu B, Yang XT, Xu J, Zhu ZG, Ji SJ, Sun MT, et al. Innovative low temperature SOFCs and advanced materials. J Power Sources 2003;118:47e53. https://doi.org/10.1016/S03787753(03)00060-0. [17] Zhu B. Next generation fuel cell R&D. Int J Energy Res 2006;30:895e903. https://doi.org/10.1002/er.1195. [18] Fan L, Zhu B, Su P-C, He C. Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 2018;45:148e76. https://doi.org/10.1016/j.nanoen.2017.12.044. [19] Zhu B. Solid oxide fuel cell (SOFC) technical challenges and solutions from nano-aspects. Int J Energy Res 2009;33:1126e37. https://doi.org/10.1002/er.1600. [20] Raze R, Wang XD, Ma Y, Huang YZ, Zhu B. Enhancement of conductivity in ceria-carbonate nanocomposites for LTSOFCs. J Nano Res 2009;6:197e203. [21] Zhu B, Albinsson I, Andersson C, Borsand K, Nilsson M, Mellander B-E. Electrolysis studies based on ceria-based composites. Electrochem Commun 2006;8:495e8. https:// doi.org/10.1016/j.elecom.2006.01.011. [22] Zhu B, Liu X, Schober T. Novel hybrid conductors based on doped ceria and BCY20 for ITSOFC applications. Electrochem Commun 2004;6:378e83. https://doi.org/10.1016/ j.elecom.2004.01.015. [23] Liu Y, Fan L, Cai Y, Zhang W, Wang B, Zhu B. Superionic conductivity of Sm3þ, Pr3þ, and Nd3þ triple-doped ceria through bulk and surface two-step doping approach. ACS Appl Mater Interfaces 2017;9:23614e23. https://doi.org/ 10.1021/acsami.7b02224. [24] Zhu B. Proton and oxygen ion-mixed-conducting ceramic composites and fuel cells. Solid State Ion 2001;145:371e80. https://doi.org/10.1016/S0167-2738(01)00933-X. [25] Abbas G, Chaudhry MA, Raza R, Singh M, Liu Q, Qin H, et al. Study of CuNiZnGdCe-nanocomposite anode for low temperature SOFC. Nanosci Nanotechnol Lett 2012;4:389e93. https://doi.org/10.1166/nnl.2012.1306. [26] Rafique A, Raza R, Akram N, Ullah MK, Ali A, Irshad M, et al. Significance enhancement in the conductivity of core shell nanocomposite electrolytes. RSC Adv 2015;5:86322e9. https://doi.org/10.1039/C5RA16763A. € M, Lund PD. Advanced low-temperature [27] Asghar MI, Heikkila ceramic nanocomposite fuel cells using ultra high ionic conductivity electrolytes synthesized through freeze-dried method and solid-route. Mater Today Energy 2017;5:338e46. https://doi.org/10.1016/j.mtener.2017.07.017. [28] Khan I, Asghar MI, Lund PD, Basu S. High conductive (LiNaK)2CO3Ce0.85Sm0.15O2 electrolyte compositions for ITSOFC applications. Int J Hydrogen Energy 2017;42:20904e9. https://doi.org/10.1016/j.ijhydene.2017.05.152. [29] Fan L, He C, Zhu B. Role of carbonate phase in ceriaecarbonate composite for low temperature solid oxide fuel cells: a review. Int J Energy Res 2017;41:465e81. https:// doi.org/10.1002/er.3629. [30] Abbas G, Raza R, Khan MA, Ahmad I, Chaudhry MA, Sherazi TA, et al. Synthesize and characterization of nanocomposite anodes for low temperature solid oxide fuel cell. Int J Hydrogen Energy 2015;40:891e7. https://doi.org/ 10.1016/j.ijhydene.2014.10.119. [31] Jing Y, Patakangas J, Lund PD, Zhu B. An improved synthesis method of ceria-carbonate based composite electrolytes for low-temperature SOFC fuel cells. Int J Hydrogen Energy 2013;38:16532e8. [32] Xia C, Li Y, Tian Y, Li Y. A high performance composite ionic conducting electrolyte for intermediate temperature fuel cell and evidence for ternary ionic conduction. J Power Sources 2009;188:156e62.

7

[33] Loureiro FJA, Rajesh S, Figueiredo FML, Marques FMB. Stability of metal oxides against Li/Na carbonates in composite electrolytes. RSC Adv 2014;4:59943e52. [34] Pereira JRS, Rajesh S, Figueiredo M.L. F, Marques FMB. Composite electrodes for ceria-carbonate intermediate temperature electrolytes. Electrochim Acta 2013;90:71e9. [35] Evans A, Xing W, Norby T. Electromotive force (emf) determination of transport numbers for native and foreign ions in molten alkali metal carbonates. J Electrochem Soc 2015;162:F1135e43. [36] Zhu B, Fan L, Lund P. Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites. Appl Energy 2013;106:163e75. [37] Zhu B, Fan L, Deng H, He Y, Afzal M, Dong W, et al. LiNiFebased layered structure oxide and composite for advanced single layer fuel cells. J Power Sources 2016;316:37e43. https://doi.org/10.1016/j.jpowsour.2016.03.056. [38] Afzal M, Saleemi M, Wang B, Xia C, Zhang W, He Y, et al. Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3dSm0.2Ce0.8O1.9) and Schottky barrier. J Power Sources 2016;328:136e42. https://doi.org/10.1016/ j.jpowsour.2016.07.093. [39] Hu H, Lin Q, Zhu Z, Liu X, Zhu B. Time-dependent performance change of single layer fuel cell with Li0.4Mg0.3Zn0.3O/Ce0.8Sm0.2O2d composite. Int J Hydrogen Energy 2014;39:10718e23. https://doi.org/10.1016/ j.ijhydene.2014.04.185. [40] Chockalingam R, Basu S. Impedance Spectroscopy studies of Gd-CeO2-(LiNa)CO3 nano-composites electrolyte for low temperature SOFC applications. Int J Hydrogen Energy 2011;36:14977e83. [41] Benamira M, Ringuede A, Hildebrandt L, Lagergren C, Vannier RN, Cassir M. Gadolinia-doped ceria mixed with alkali carbonates for SOFC applications: II e an electrochemical insight. Int J Hydrogen Energy 2012;37:19371e9. [42] Huang J, Yang L, Gao R, Mao Z, Wang C. A high-performance ceramic fuel cell with samarium doped ceriaecarbonate composite electrolyte at low temperatures. Electrochem Commun 2006;8:785e9. https://doi.org/10.1016/ j.elecom.2006.03.016. [43] Wang X, Ma Y, Raza R, Muhammed M, Zhu B. Novel coreeshell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs. Electrochem Commun 2008;10:1617e20. https://doi.org/10.1016/ j.elecom.2008.08.023. [44] Di J, Chen M, Wang C, Zheng J, Fan L, Zhu B. Samarium doped ceriae(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell. J Power Sources 2010;195:4695e9. https://doi.org/ 10.1016/j.jpowsour.2010.02.066. [45] Pattterson AL. The Scherrer formula for X-ray particle size determination. Phys Rev 1939;56:978e82. https://doi.org/ 10.1103/PhysRev.56.978. [46] Masikhwa TM, Dangbegnon JK, Bello A, Madito MJ, Momodu D, Manyala N. Preparation and electrochemical investigation of the cobalt hydroxide carbonate/activated carbon nanocomposite for supercapacitor applications. J Phys Chem Solids 2016;88:60e7. [47] Di J, Chen MM, Wang CY, Zheng JM, Zhu B. Low temperature solid oxide fuel cells with SDC-carbonate electrolytes. Adv Mater Res 2010;105e106:687e90. [48] Lee C. Analysis of impedance in a molten carbonate fuel cell. J Electroanal Chem 2016;776:162e9. [49] Nguyen HVP, Kang MG, Ham HC, Choi SH, Han J, Nam SW, et al. A new cathode for reduced-temperature molten carbonate fuel cells. J Electrochem Soc 2014;161:F1458e67.

Please cite this article in press as: Asghar MI, et al., Remarkable ionic conductivity and catalytic activity in ceramic nanocomposite fuel cells, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/j.ijhydene.2018.05.045

8

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y x x x ( 2 0 1 8 ) 1 e8

[50] Yao X, Li P, Yu B, Yang F, Li J, Zhao Y, et al. Hydrothermally synthesized NiO-samarium doped ceria nano-composite as an anode material for intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energy 2017;42:22192e200. https:// doi.org/10.1016/j.ijhydene.2017.02.008. [51] Ding G, Gan T, Yu J, Li P, Yao X, Hou N, et al. Carbon-resistant Ni1-xCox-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol. Catal Today 2017;298:250e7. https://doi.org/ 10.1016/j.cattod.2017.03.060. [52] Raza R, Ahmad MA, Iqbal J, Akram N, Gao Z, Javed S, et al. Ce0.8(SmZr)0.2O2-carbonate nanocomposite electrolyte for

solid oxide fuel cell. Int J Energy Res 2014;38:524e9. https:// doi.org/10.1002/er.3150. [53] Raza R, Ahmed A, Akram N, Saleem M, Niaz Akhtar M, Sherazi TA, et al. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell. Appl Phys Lett 2015;107:183903. https://doi.org/10.1063/1.4934940. [54] Tan W, Fan L, Raza R, Khan MA, Zhu B. Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte. Int J Hydrogen Energy 2013;38:370e6.

Please cite this article in press as: Asghar MI, et al., Remarkable ionic conductivity and catalytic activity in ceramic nanocomposite fuel cells, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/j.ijhydene.2018.05.045