Remarks on contractive type mappings - Fixed Point Theory and

0 downloads 0 Views 2MB Size Report
be a binary relation on X and T : X → X be a mapping. We say that. T is -non-decreasing if Tx Ty for all x,y ∈ X such that x y. Definition . Let (X,d) be a metric ...
Górnicki Fixed Point Theory and Applications (2017) 2017:8 DOI 10.1186/s13663-017-0601-4

RESEARCH

Open Access

Remarks on contractive type mappings Jarosław Górnicki* *

Correspondence: [email protected] Department of Mathematics and Applied Physics, Rzeszów University of Technology, P.O. Box 85, Rzeszów, Poland

Abstract We present an analog of Banach’s fixed point theorem for CJM contractions in preordered metric spaces. These results substantially extend theorems of Ran and Reurings’ (Proc. Am. Math. Soc. 132(5): 1435-1443, 2003) and Nieto and Rodríguez-López (Order 22: 223-239, 2005). MSC: Primary 47H10; secondary 54H25 Keywords: contractive map; fixed point; preordered space; G-metric space

1 Introduction In , Ran and Reurings [] established a fixed point theorem that extends the Banach contraction principle (BCP) to the setting of partially ordered metric spaces. In the original version, Ran and Reurings used a continuous function. In , Nieto and RodríguezLópez [] established a similar result replacing the continuity of the nonlinear operator by monotonicity. The key feature in this theorems is that the contractivity condition on the nonlinear map is only assumed to hold on elements that are comparable in the partial order. As an application the authors obtained a theorem on the existence of a unique solution for periodic boundary problems relative to ordinary differential equations. Similar applications for a mixed monotone mapping were given by Gnana Bhaskar and Lakshmikantham []. Further improvements of the above results were found by Petruşel and Rus [] and Jachymski []. In this paper we extend fixed point theorems established by Ran and Reurings and Nieto and Rodríguez-López to CJM contractions on preordered metric spaces, where a preordered binary relation is weaker than a partial order. 2 Definitions We have to introduce many types of contractions. Definition . Let T be a mapping on a metric space (X, d). . T is said to be a (usual) contraction (C, for short) [], if there exists λ ∈ [, ) such that d(Tx, Ty) ≤ λd(x, y) for any

x, y ∈ X.

. T is said to be a Browder contraction (Bro, for short) [], if there exists a function ϕ from (, ∞) into itself satisfying the following: © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Górnicki Fixed Point Theory and Applications (2017) 2017:8

Page 2 of 12

(a) ϕ is non-decreasing and right continuous, (b) ϕ(t) < t for any t ∈ (, ∞), (c) d(Tx, Ty) ≤ ϕ(d(x, y)) for any x, y ∈ X. . T is said to be a Boyd-Wong contraction (BoWo, for short) [], if there exists a function ϕ from (, ∞) into itself satisfying the following: (a) ϕ is upper semicontinuous from the right, i.e., λi ↓ λ ≥  ⇒ lim supi→∞ ϕ(λi ) ≤ ϕ(λ), (b) ϕ(t) < t for any t ∈ (, ∞), (c) d(Tx, Ty) ≤ ϕ(d(x, y)) for any x, y ∈ X. . T is said to be an Ri contraction (Ri, for short) [], if there exists a function ϕ from [, ∞) into itself satisfying the following: (a) lim sups→t+ ϕ(s) < t for any t ∈ (, ∞), (b) ϕ(t) < t for any t ∈ (, ∞), (c) d(Tx, Ty) ≤ ϕ(d(x, y)) for any x, y ∈ X. . T is said to be a Meir-Keeler contraction (MeKe, for short) [], if for any ε > , there exists δ >  such that, for all x, y ∈ X, ε ≤ d(x, y) < ε + δ

implies

d(Tx, Ty) < ε.

. T is said to be a Matkowski contraction (Mat, for short) [], if there exists a function ϕ from (, ∞) into itself satisfying the following: (a) ϕ is non-decreasing, (b) limn→∞ ϕ n (t) =  for every t ∈ (, ∞), (c) d(Tx, Ty) ≤ ϕ(d(x, y)) for any x, y ∈ X. . T is said to be a Wardowski contraction (War, for short) [], if there exists a function F : (, ∞) → R satisfying the following: (a) F is strictly increasing, (b) for any sequence {αn } of positive numbers, lim αn =  iff

n→∞

lim F(αn ) = –∞,

n→∞

(c) there exists k ∈ (, ) such that limα→+ α k F(α) = , (d) for some t > , if Tx = Ty, then     t + F d(Tx, Ty) ≤ F d(x, y) . . T is said to be a Ćirić-Jachymski-Matkowski contraction (CJM, for short) [–], if the following hold: (a) for every ε > , there exists δ >  such that, for all x, y ∈ X, d(x, y) < ε + δ (b) x = y

implies

implies

d(Tx, Ty) ≤ ε,

d(Tx, Ty) < d(x, y).

We know the following implications: C ⇒ Bro ⇒ BoWo ⇒ MeKe ⇒ CJM,

Górnicki Fixed Point Theory and Applications (2017) 2017:8

Page 3 of 12

C ⇒ Bro ⇒ Mat ⇒ CJM. Recently Suzuki [] proved the following implications: Ri ⇒ BoWo, War ⇒ CJK, and War + F is continuous ⇒ Bro, War + F is left-continuous ⇒ Mat, War + F is right-continuous ⇒ MeKe. Remark . It is not difficult to prove that conditions (a) and (d) of Definition .() and the assumption that F is continuous or upper semicontinuous from the right is sufficient for the existence and uniqueness of fixed point of T if T maps a complete metric space (X, d) into itself (compare [] Theorem .).

3 Fixed point theorems In this section we extended fixed point theorems established by Ran and Reurings and Nieto and Rodríguez-López to CJM contractions on preordered metric spaces, where a preordered binary relation is weaker than a partial order. Definition . Let X = ∅ be a set. Binary relation  on X is (a) reflexive if x  x for all x ∈ X, (b) transitive if x  z for all x, y, z ∈ X such that x  y and y  z. A reflexive and transitive relation on X is a preordered on X. In such a case (X, ) is a preordered space. Write x ≺ y when x  y and x = y. Example . Let  be the binary relation on R given by xy



(x = y or x < y ≤ ).

Then  is a partial order (and so preordered) on R, but it is different from ≤. Definition . An preordered metric space is a triple (X, d, ) where (X, d) is a metric space and  is a preorder on X. One of the most important hypotheses that we shall use in this section is the monotonicity of the involved mappings. Definition . Let  be a binary relation on X and T : X → X be a mapping. We say that T is -non-decreasing if Tx  Ty for all x, y ∈ X such that x  y. Definition . Let (X, d) be a metric space, let A ⊂ X be a nonempty subset and let  be a binary relation on X. Then the triple (A, d, ) is said to be non-decreasing regular if for

Górnicki Fixed Point Theory and Applications (2017) 2017:8

Page 4 of 12

all sequences {xn } ⊂ A such that {xn } → x ∈ A and xn  xn+ for all n ∈ N, we have xn  x for all n ∈ N. The following result is the extension of Ran and Reurings’ result to CJM contraction on preordered metric spaces. Theorem . Let (X, d, ) be a preordered metric space and let T : X → X be a mapping. Suppose that the following conditions hold: (i) (X, d) is complete, (ii) T is -non-decreasing, (iii) T is continuous, (iv) there exists x ∈ X such that x  Tx , (v) for all x, y ∈ X with x  y, (a) for every ε > , there exists δ >  such that, d(x, y) < ε + δ

implies

d(Tx, Ty) ≤ ε,

(b) x = y implies d(Tx, Ty) < d(x, y). Then there exists a fixed point of T, and it is unique, say u, if for every (x, y) ∈ X × X there exists w ∈ X such that x  w and y  w. Moreover, for each x ∈ X such that x  Tx , the sequence {T n x } of iterates converges to u. Proof Let x ∈ X be a point satisfying (iv), that is, x  Tx . We define a sequence {xn } ⊂ X as follows: xn = Txn– ,

n ≥ .

()

Considering that T is a -non-decreasing mapping together with () we have x  Tx = x

implies

x = Tx  Tx = x .

Inductively, we obtain x  x  x  · · ·  xn–  xn  xn+  · · · .

()

Assume that there exists n such that xn = xn + . Since xn = xn + = Txn , so xn is the fixed point of T. Suppose that xn = xn+ for all n ≥ . Then by (), x ≺ x ≺ x ≺ · · · ≺ xn– ≺ xn ≺ xn+ ≺ · · · , and d(xn , xn+ ) = d(Txn– , Txn ) >  for all n ≥ . Using (b) the following holds, for every n ≥ : d(xn+ , xn+ ) = d(Txn , Txn+ ) < d(xn , xn+ ).

Górnicki Fixed Point Theory and Applications (2017) 2017:8

Page 5 of 12

Hence the sequence {d(xn , xn+ )} is monotone decreasing and bounded below, thus it is convergent and we let limn→∞ d(xn , xn+ ) = d ≥ . If d >  we obtain a contradiction. Indeed, then there exists j ∈ N such that d < d(xn , xn+ ) < d + δ(d) for

n ≥ j.

It follows from (a) that d(xn+ , xn+ ) ≤ d

for

n ≥ j,

which contradicts the above inequality, and therefore lim d(xn , xn+ ) = .

n→∞

Now, we show that {d(xn , xn+ )} is a Cauchy sequence. Fix an ε > . Without loss of generality we may assume that δ = δ(ε) < ε. Since d(xn , xn+ ) ↓ , there exists j ∈ N such that  d(xn , xn+ ) < δ 

for

n ≥ j.

()

We shall apply induction to show that, for any m ∈ N,  d(xj , xj+m ) < ε + δ. 

()

Obviously, () holds for m = ; see (). Assuming () to hold for some m, we shall prove it for m + . By the triangle inequality, we have d(xj , xj+m+ ) ≤ d(xj , xj+ ) + d(xj+ , xj+m+ ). Using (), observe that it suffices to show that d(xj+ , xm+j+ ) ≤ ε. By the induction hypothesis d(xj , xj+m ) < ε +  δ < ε + δ. So, by (a), d(xj+ , xj+m+ ) ≤ ε, completing the induction. Obviously, () implies that {xn } is a Cauchy sequence in X. From the completeness of X there exists u ∈ X such that {xn } → u. The continuity of T yields d(u, Tu) = lim d(xn , Txn ) = lim d(xn , xn+ ) = , n→∞

n→∞

so u = Tu. To prove uniqueness, we assume that v ∈ X is another fixed point of T such that u = v. By hypothesis, there exists w ∈ X such that u  w and v  w. Let {wn = Twn– } be the Picard sequence of T based on w = w. As T is -nondecreasing, v = Tv  Tw = w and u = Tu  Tw = w . By induction, v  wn and u  wn for all n ≥ . Case . If v = wn for some n ≥ , then v = Tv = Twn = wn + and by induction, wn = v for all n ≥ n , so {wn } → v. Case . If v ≺ wn for all n ≥ , then by (b), d(v, wn+ ) = d(Tv, Twn ) < d(v, wn ). Mimicking the previous part of the proof, we get limn→∞ d(v, wn ) = , so {wn } → v.

Górnicki Fixed Point Theory and Applications (2017) 2017:8

Page 6 of 12

Thus {wn } → v and {wn } → u. The uniqueness of the limit concludes that u = v, so T has a unique fixed point.  Remark . Theorem . remains true in the more general case, on satisfying the following (see [] the proof of Theorem ): (v) for all x, y ∈ X with x  y, (a) for every ε > , there exists δ >  such that     max d(x, y), d(x, Tx), d(y, Ty), d(x, Ty)+d(y, Tx) < ε +δ  (b) x = y

implies

d(Tx, Ty) ≤ ε,

implies     d(Tx, Ty) < max d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx) . 

From Theorem . we get the following corollary. Corollary . ([], Theorem .) Let (X, d, ) be a preordered metric space and let T : X → X be a mapping. Suppose that the following conditions hold: (i) (X, d) is complete, (ii) T is -non-decreasing, (iii) T is continuous, (iv) there exists x ∈ X such that x  Tx , (v) there exists λ ∈ [, ) such that, for all x, y ∈ X with x  y, d(Tx, Ty) ≤ λd(x, y).

()

Then there exists a fixed point of T, and it is unique, say u, if for every (x, y) ∈ X × X there exists w ∈ X such that x  w and y  w. Moreover, for each x ∈ X such that x  Tx , the sequence {T n x } of iterates converges to u. Observe that the BCP is stronger than Corollary ., which only requires the inequality for comparable points, that is, for all x, y ∈ X such that x  y. Example . Let X = R be the set of all real numbers endowed with the metric d(x, y) = |x – y| for all x, y ∈ R. Consider on R the partial order xy



(x = y or x < y ≤ ).

Define T : R → R by

Tx =

⎧ ⎨x

if x ≤ ,

⎩x

if x > .



Let x, y ∈ X be such that x  y. If x = y, then d(Tx, Ty) ≤ λd(x, y)

Górnicki Fixed Point Theory and Applications (2017) 2017:8

Page 7 of 12

trivially holds. Assume that x = y. Then y < x ≤ . Hence x y   d(Tx, Ty) = – = |x – y| = d(x, y).     Hence () holds. However, Definition .() is false in this case because if x =  and y = , then d(T, T) = | – | =  = d(, ). Although the BCP is not applicable, Corollary . guarantees that T has a unique fixed point, which is u = . After the appearance of the Ran and Reurings’ result, Nieto and Rodríguez-López exchanged the continuity of the mapping T with the condition non-decreasing regularity (Definition .). The following result is an extension of Nieto and Rodríguez-López’ theorem to a CJM contraction on preordered metric spaces. Theorem . Let (X, d, ) be a preordered metric space and let T : X → X be a mapping. Suppose that the following conditions hold: (i) (X, d) is complete, (ii) T is -non-decreasing, (iii) (X, d, ) is non-decreasing regular, (iv) there exists x ∈ X such that x  Tx , (v) for all x, y ∈ X with x  y, (a) for every ε > , there exists δ >  such that d(x, y) < ε + δ

implies

d(Tx, Ty) ≤ ε,

(b) x = y implies d(Tx, Ty) < d(x, y). Then there exists a fixed point of T, and it is unique, say u, if for every (x, y) ∈ X × X there exists w ∈ X such that x  w and y  w. Moreover, for each x ∈ X such that x  Tx , the sequence {T n x } of iterates converges to u. Proof Following the proof of Theorem ., we have a -non-decreasing sequence {xn = Txn– } which is convergent to u ∈ X. Due to (iii), we have xn  u for all n ≥ . Now, we show that u is a fixed point of T. Fix an ε > . Without loss of generality we may assume that δ < ε. Since d(u, xn ) →  as n → ∞, there exists j ∈ N such that d(u, xn ) < δ

for

n ≥ j.

So, by (a), d(Tu, Txn ) ≤ ε. Therefore, by the triangle inequality, taking n ≥ j and using xn  u for all n, we get d(u, Tu) ≤ d(u, xn+ ) + d(xn+ , Tu) = d(u, xn+ ) + d(Txn , Tu) < δ + ε < ε.

Górnicki Fixed Point Theory and Applications (2017) 2017:8

Page 8 of 12

Since ε >  is arbitrary, d(Tu, u) = . Hence u = Tu. Uniqueness of u can be observed as in the proof of Theorem ..  Corollary . ([], Theorem .) Let (X, d, ) be a preordered metric space and let T : X → X be a mapping. Suppose that the following conditions hold: (i) (X, d) is complete, (ii) T is -non-decreasing, (iii) (X, d, ) is non-decreasing regular, (iv) there exists x ∈ X such that x  Tx , (v) there exists λ ∈ [, ) such that, for all x, y ∈ X with x  y, d(Tx, Ty) ≤ λd(x, y). Then there exists a fixed point of T, and it is unique, say u, if for every (x, y) ∈ X × X there exists w ∈ X such that x  w and y  w. Moreover, for each x ∈ X such that x  Tx , the sequence {T n x } of iterates converges to u.

4 G-metric spaces We show the natural extension of Ran-Reurings’ and Nieto-Rodríguez-López’ results to the setting of G-metric spaces. In , Mustafa and Sims [] introduced a new class of generalized metric spaces which are called G-metric spaces as a generalization of metric spaces. Subsequently, many fixed point results on such spaces appeared; see []. Here, we present the necessary definitions and results, which will be useful for the rest of the paper. However, for more details, we refer to []. Definition . ([]) Let X be a nonempty set. A function G : X × X × X → [, +∞) satisfying the following axioms: (G ) (G ) (G ) (G ) (G )

G(x, y, z) =  if x = y = z, G(x, x, y) >  for all x, y ∈ X with x = y, G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z = y, G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables), G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X

is called a G-metric on X and the pair (X, G) is called a G-metric space. Definition . ([]) Let (X, G) be a G-metric space, and let {xn } be a sequence of points of X, therefore, we say that {xn } is G-convergent to x ∈ X if limn,m→∞ G(x, xn , xm ) = , that is, for any ε > , there exists N ∈ N such that G(x, xn , xm ) < ε for all n, m ≥ N . We call x the limit of the sequence and write xn → x or limn→∞ xn = x. Proposition . ([]) Let (X, G) be a G-metric space. The following statements are equivalent: () {xn } is G-convergent to x, () G(xn , xn , x) →  as n → ∞, () G(xn , x, x) →  as n → ∞, () G(xn , xm , x) →  as n, m → ∞.

Górnicki Fixed Point Theory and Applications (2017) 2017:8

Page 9 of 12

Definition . ([]) Let (X, G) be a G-metric space. A sequence {xn } in X is called a GCauchy sequence if for any ε >  there is N ∈ N such that G(xn , xm , xk ) < ε for all n, m, k ≥ N , that is, G(xn , xm , xk ) →  as n, m, k → ∞. Definition . ([]) A G-metric space (X, G) is called G-complete if every G-Cauchy sequence is G-convergent in (X, G). Definition . ([]) Let (X, G) and (X  , G ) be G-metric spaces and f : (X, G) → (X  , G ) be a function, then f is said to be G-continuous at a point a ∈ X if and only if, given ε > , there exists δ >  such that x, y ∈ X and G(a, x, y) < δ implies G (f (a), f (x), f (y)) < ε. A function f is G-continuous at X if and only if it is G-continuous at all a ∈ X. Definition . ([]) A G-metric space (X, G) is said to be symmetric if G(x, y, y) = G(y, x, x) for all x, y ∈ X. In the symmetric case, many fixed point theorems on G-metric spaces are particular cases of existing fixed point theorems in metric spaces. Also in the non-symmetry case (such spaces have a quasi-metric structure), many fixed point theorems follows directly from existing fixed point theorems on metric spaces. A key role in this case is played by the following theorem (see [, ]). Theorem . Let (X, G) be a G-metric space. Let δG : X × X → [, +∞) be defined by

δG (x, y) = max G(x, y, y), G(y, x, x) , for all x, y ∈ X. Then () (X, δG ) is a metric space, () {xn } ⊂ X is G-convergent to x ∈ X if and only if {xn } is convergent to x in (X, δG ), () {xn } ⊂ X is G-Cauchy if and only if {xn } is Cauchy in (X, δG ), () (X, G) is G-complete if and only if (X, δG ) is complete. Definition . An preordered G-metric space is a triple (X, G, ) where (X, G) is a Gmetric space and  is a preordered on X. The following result can be considered as the natural extension of Ran and Reurings’ result to CJM contractions on preordered G-metric spaces. Theorem . Let (X, G, ) be a preordered G-metric space and let T : X → X be a mapping. Suppose that the following conditions hold: (i) (X, G) is G-complete, (ii) T is -non-decreasing, (iii) T is G-continuous, (iv) there exists x ∈ X such that x  Tx , (v) for all x, y, z ∈ X with x  y  z, (a) for every ε > , there exists δ >  such that G(x, y, z) < ε + δ

implies

G(Tx, Ty, Tz) ≤ ε,

Górnicki Fixed Point Theory and Applications (2017) 2017:8

Page 10 of 12

(b) G(x, y, z) >  implies G(Tx, Ty, Tz) < G(x, y, z). Then there exists a fixed point of T, and it is unique, say u, if for every x, y, z ∈ X there exists w ∈ X such that x  w and y  w and z  w. Moreover, for each x ∈ X such that x  Tx , the sequence {T n x } of iterates converges to u. Proof Theorem . is a particular case of Theorem .. Taking z = y in (a) and (b), we get, for all x, y ∈ X with x  y, G(x, y, y) < ε + δ

implies

G(Tx, Ty, Ty) ≤ ε

and G(x, y, y) >  implies

G(Tx, Ty, Ty) < G(x, y, y).

Similarly, we can write G(y, x, x) < ε + δ

implies

G(Ty, Tx, Tx) ≤ ε

and G(y, x, x) >  implies

G(Ty, Tx, Tx) < G(y, x, x).

It follows from the above, and the definition of δG , that, for all x, y ∈ X with x  y, δG (x, y) < ε + δ

implies

δG (Tx, Ty) ≤ ε

and δG (x, y) >  implies

δG (Tx, Ty) < δG (x, y).

The existence and uniqueness of the fixed point follow immediately by Theorem . and Theorem ..  Corollary . ([], Theorem ..) Let (X, G, ) be a preordered G-metric space and let T : X → X be a mapping. Suppose that the following conditions hold: (i) (X, G) is G-complete, (ii) T is -non-decreasing, (iii) T is G-continuous, (iv) there exists x ∈ X such that x  Tx , (v) there exists λ ∈ [, ) such that G(Tx, Ty, Ty) ≤ λG(x, y, y) for all

x, y ∈ X with x  y.

()

Then there exists a fixed point of T, and it is unique, say u, if for every (x, y) ∈ X × X there exists w ∈ X such that x  w and y  w. Moreover, for each x ∈ X such that x  Tx , the sequence {T n x } of iterates converges to u.

Górnicki Fixed Point Theory and Applications (2017) 2017:8

Page 11 of 12

The main advantage of the contractivity condition () versus ’G(Tx, Ty, Ty) ≤ λG(x, y, y) for all

x, y ∈ X’

()

is that () only requires the inequality to hold for comparable points, that is, for all x, y ∈ X such that x  y. As in Example ., consider the G-metric

G(x, y, z) = max |x – y|, |x – z|, |y – z|

for all

x, y, z ∈ X = R.

Let x, y ∈ X be such that x  y. If x = y, then G(Tx, Ty, Ty) ≤ λG(x, y, y) trivially holds. Assume that x = y. Then y < x ≤ . Hence x y   G(Tx, Ty, Ty) = – = |x – y| = G(x, y, y),     so () holds. However, () is false in this case, if x =  and y = , then G(T, T, T) = G(, , ) =  = G(, , ). Definition . Let (X, G) be a G-metric space, let A ⊂ X be a nonempty subset and let  be a binary relation on X. Then the triple (A, G, ) is said to be non-decreasing regular if for all sequences {xn } ⊂ A such that {xn } → x ∈ A and xn  xn+ for all n ∈ N, we have xn  x for all n ∈ N. The following result can be considered as the natural extension of Nieto and RodríguezLópez’ result to CJM contractions on preordered G-metric spaces. Theorem . Let (X, G, ) be a preordered metric space and let T : X → X be a mapping. Suppose that the following conditions hold: (i) (X, G) is G-complete, (ii) T is -non-decreasing, (iii) (X, G, ) is non-decreasing regular, (iv) there exists x ∈ X such that x  Tx , (v) for all x, y, z ∈ X with x  y  z, (a) for every ε > , there exists δ >  such that G(x, y, z) < ε + δ

implies

G(Tx, Ty, Tz) ≤ ε,

(b) G(x, y, z) >  implies G(Tx, Ty, Tz) < G(x, y, z). Then there exists a fixed point of T, and it is unique, say u, if for every x, y, z ∈ X there exists w ∈ X such that x  w and y  w and z  w. Moreover, for each x ∈ X such that x  Tx , the sequence {T n x } of iterates converges to u. Proof Theorem . is a particular case of Theorem ..



Corollary . ([], Theorem ..) Let (X, G, ) be a preordered metric space and let T : X → X be a mapping. Suppose that the following conditions hold:

Górnicki Fixed Point Theory and Applications (2017) 2017:8

(i) (ii) (iii) (iv) (v)

Page 12 of 12

(X, G) is G-complete, T is -non-decreasing, (X, G, ) is non-decreasing regular, there exists x ∈ X such that x  Tx , there exists λ ∈ [, ) such that, for all x, y ∈ X with x  y, G(Tx, Ty, Ty) ≤ λG(x, y, y).

Then there exists a fixed point of T, and it is unique, say u, if for every (x, y) ∈ X × X there exists w ∈ X such that x  w and y  w. Moreover, for each x ∈ X such that x  Tx , the sequence {T n x } of iterates converges to u. Competing interests The author declares that he has no competing interests.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Received: 9 December 2016 Accepted: 4 May 2017 References 1. Ran, ACM, Reurings, MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132(5), 1435-1443 (2003) 2. Nieto, JJ, Rodríguez-López, R: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223-239 (2005) 3. Gnana Bhaskar, T, Lakshmikantham, V: Fixed point theorems in partially ordered metric spaces. Nonlinear Anal. 65, 1379-1393 (2006) 4. Petru¸sel, A, Rus, IA: Fixed point theorems in ordered L-spaces. Proc. Am. Math. Soc. 134, 411-418 (2006) 5. Jachymski, J: The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 136, 1359-1373 (2008) 6. Banach, S: Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundam. Math. 3, 133-181 (1922) 7. Browder, FE: On the convergence of successive approximations for nonlinear funcional equations. Proc. K. Ned. Akad. Wet., Ser. A, Indag. Math. 30, 27-35 (1968) 8. Boyd, DW, Wong, JSW: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458-464 (1969) 9. Ri, S-I: A new fixed point theorem in the fractal space. Indag. Math. 27, 85-93 (2016) 10. Meir, A, Keeler, E: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326-329 (1969) 11. Matkowski, J: Integrable solutions of functional equations. Diss. Math. 127, 1-68 (1975) 12. Wardowski, D: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012) ´ c, LB: A new fixed-point theorem for contractive mappings. Publ. Inst. Math. (Belgr.) 30, 25-27 (1981) 13. Ciri´ 14. Jachymski, J: Eqiuvalent conditions and the Meir-Keeler type theorems. J. Math. Anal. Appl. 194, 293-303 (1995) ˘ 15. Matkowski, J: Fixed point theorems for contractive mappings in metric spaces. Casopis. P˘est. Mat. 105, 341-344 (1980) 16. Suzuki, T: Discussion of several contractions by Jachymski’s approach. Fixed Point Theory Appl. 2016, 91 (2016) 17. Mustafa, Z, Sims, B: A new approach to generalized metric space. J. Nonlinear Convex Anal. 7, 289-297 (2006) 18. Agarwal, RP, Karapinar, E, O’Regan, D, Roldán-López-de-Hierro, AF: Fixed Point Theory in Metric Type Spaces. Springer, Switzerland (2015) 19. Mustafa, Z, Sims, B: Fixed point theorems for contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2009, Article ID 189870 (2009) 20. Jleli, M, Samet, B: Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, 210 (2012) 21. Samet, B, Vetro, C, Vetro, F: Remarks on G-metric spaces. Int. J. Anal. 2013, Article ID 917158 (2013)