research 1..10

0 downloads 0 Views 8MB Size Report
Apr 13, 2018 - 96 CNT@MoSe2 sponge not only possesses a 3D porous network ... The sponge was then transferred into a Teflon-lined stainless. 135.
bsh00 | ACSJCA | JCA10.0.1465/W Unicode | research.3f (R3.6.i12 HF03:4459 | 2.0 alpha 39) 2017/11/27 07:41:00 | PROD-JCA1 | rq_12141496 |

4/17/2018 15:28:51 | 10 | JCA-DEFAULT

Research Article www.acsami.org

Tunable Free-Standing Core−Shell CNT@MoSe2 Anode for Lithium 2 Storage 1

Muhammad Yousaf,† Yunsong Wang,† Yijun Chen,† Zhipeng Wang,† Waseem Aftab,† Asif Mahmood,†,‡ † ,† 4 Wei Wang, Shaojun Guo,* and Ray P. S. Han*,† 3

5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48



Department of Material Science and Engineering, Peking University, Beijing 100871, China Department of Physics, South University of Sciences and Technology, Shenzhen 518000, China



S Supporting Information *

ABSTRACT: Heterogeneous nanostructuring of MoSe2 over a carbon nanotube (CNT) sponge as a free-standing electrode not only brings higher performance but also eliminates the need for dead elements such as a binder, conductive carbon, and supportive current collectors. Further, the porous CNT sponge can be easily compacted via an intense densification of the active material MoSe2 to produce an electrode with a high mass loading for a significantly improved areal capacity. In this work, we present a tunable coating of MoSe2 on a CNT sponge to fabricate a core−shell MoSe2@CNT anode. The three-dimensional nanotubular sponge is synthesized via a solvothermal process, followed by thermal annealing to improve crystallization. Structural and morphological studies revealed that MoSe2 grew as a layered structure (d = 0.66 nm), where numbers of layers can be controlled to yield optimized results for Li+ storage. We showed that the 10-layer core−shell CNT@MoSe2 hybrid sponge delivered a discharge capacity of 820.5 mAh g−1 after 100 cycles at 100 mA g−1 with a high cyclic stability and rate capability. Further, an ex situ structural and morphological analysis revealed that ionic storage causes a phase change in MoSe2 from a crystalline to a partial amorphous state for a continuous increase in the capacity with extended cycling. We believe that the strategy developed here will assist users to tune the electrode materials for future energy-storage devices, especially how the materials are changing with the passage of time and their effects on the device performance. KEYWORDS: heteronanotubes, core−shell structures, MoSe2, free-standing electrodes, LIBs

1. INTRODUCTION Considerable attention has been focused on the development of new electrode materials for lithium-ion batteries (LIBs) in order to meet the overwhelming demands of electric vehicles, small grid stations, and portable electronic devices.1−7 Since the discovery of unusual properties in graphene, two-dimensional (2D)-layered materials, especially transition-metal dichalcogenides (TMDs), have received considerable attention for use in energy conversion and storage devices because of their superior physical, chemical, and electronic properties.8−12 The layered structure provides a short diffusion path for various guest species to readily intercalate/deintercalate for energy drawdown and drawup.13−19 As a well-known TMD, molybdenum diselenide (MoSe2) has a sandwich layered structure (Mo−Se− Mo) similar to MoS2.20−23 MoSe2 offers a high theoretical capacity due to the conversion reaction along with the intercalation of Li+, better contact with the electrolyte due to the high specific surface area, and a relatively low operating voltage.24−27 However, MoSe2 electrodes have many inherent limitations such as low intrinsic conductivity, restacking, and large volume expansions at high current densities, which can © XXXX American Chemical Society

affect the battery performance in terms of low Columbic efficiency, fast capacity decay, and inadequate rate capability.28−30 Controlling MoSe2 at the nanoscale can result in improved physical and chemical properties with enhanced Li+ storage capacity.9 Moreover, making a one-dimensional (1D) core−shell nanotubular structure by wrapping 2D TMD sheets over a 1D tubular substrate produces features such as radial heterojunctions and multifunctionalities.31−34 The presence of a highly conductive and flexible substrate not only provides pathways for an efficient conductivity but also provides structural stability during volume expansion, with the shell (active material) offering active sites for charge storage that leads to an improved electrochemical performance and overall cyclic stability.35−37 However, coating a layer of TMDs onto a substrate is challenging because of the rigid atomic layers of 2D TMDs and the absence of spatial confinement that can affect the conformal coating on the outer surface of the template. Received: December 28, 2017 Accepted: April 13, 2018 Published: April 13, 2018 A

DOI: 10.1021/acsami.7b19739 ACS Appl. Mater. Interfaces XXXX, XXX, XXX−XXX

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

Research Article

ACS Applied Materials & Interfaces 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

was added to improve its hydrophilicity. Two precursors were loaded one after the other into the CNT sponge with a micropipette. First, the molybdenum precursor was loaded into the CNT sponge and dried at 70 °C; subsequently, the selenium precursor was loaded into the molybdenum-precursor-embedded sponge at a ratio of Mo-to-Se of 1:2. The sponge was then transferred into a Teflon-lined stainless steel autoclave, which was sealed and baked in an oven at 200 °C for 24 h. The sponge was then taken out and washed several times with a mixture of ethanol and DI water (1:1) and freeze-dried to maintain the 3D porous structure. Finally, the sponge was annealed at 800 °C for 3 h in an argon flow to improve the crystallinity. The mass loading of MoSe2 in the core−shell CNT@MoSe2 could be controlled by simply adjusting the quantity of both precursors loaded into the bulk sponge using a micropipette. The percentage of mass loading of MoSe2 was determined by measuring the mass of sponge with a microbalance before and after the solvothermal−calcination process. 2.3. Characterization. X-ray diffraction (XRD) was executed using a Bruker D8 Focus X-ray diffractometer having a graphitemonochromatized Cu Kα radiation (λ = 1.54178 Å). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM) imaging with energydispersive X-ray spectroscopy (EDX) spectra were acquired on Hitachi S-4800 and FEI Tecnai F20 microscopes, respectively. Raman spectroscopy was performed on a Renishaw by Raman microscope using laser excitation at 532 nm. X-ray photoelectron spectroscopy (XPS) spectra were collected on an AXIS-Ultra instrument from Kratos Analytical with monochromatic Al Kα radiation (225 W, 15 mA, and 15 kV) and low-energy electron flooding for charge reimbursement. Thermogravimetric analysis (TGA) was carried out from 30 to 700 °C under the flow of air with a temperature ramp of 10 °C min−1. The N2 adsorption−desorption isotherms were provided by an automated gas sorption analyzer (Autosorb-iQ-2MP, Quantachrome, USA) at 77 K, and the pore-size distribution was measured by nonlinear density functional theory (NL-DFT). 2.4. Electrochemical Testing. The core−shell CNT@MoSe2 sponges were used as the positive electrodes (without dead elements), with lithium metal acting as the negative electrode and a polypropylene film (Celgard 2400) as a separator. LiPF6 (1 M) dissolved in a mixed solution of ethylene carbonate, dimethyl carbonate (DMC), and ethyl methylcarbonate with a volume ratio of 1:1:1 was used as the electrolyte. Coin-type (CR 2032) half-cells were manufactured in an argon-filled glovebox with oxygen and water contents of 10 times higher than that of the pure MoSe2 (7.46 × 10−12 cm2 s−1). This can be attributed to the presence of the highly conductive CNT network in the hybrid sponge. Although some composite electrodes of MoSe2 with CNT or amorphous carbon have been reported,39,40,54 our 3D core− shell hybrid sponge is unique in that it consists of continuously coated CNTs with MoSe2 nanosheets for its simple and controllable microstructure with superior electrochemical properties over traditional powder hybrids. First, the sponge is flexible and can be used as a free-standing electrode with high active mass loading and without dead elements (current collector, binder, and conductive agent), which makes it a viable applicant for a flexible and compressible electrochemical energy storage and conversion device. Second, the loading of MoSe2 can be controlled for optimized performance simply by adjusting the number of MoSe2 layers in the core−shell nanotube sponge for a selected application. Third, the porosity G

DOI: 10.1021/acsami.7b19739 ACS Appl. Mater. Interfaces XXXX, XXX, XXX−XXX

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

Research Article

ACS Applied Materials & Interfaces

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

588 589



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.7b19739. Insight into EDX, TEM, HRTEM, XPS analysis, and battery tests of several products presented in this manuscript (PDF)



AUTHOR INFORMATION

Corresponding Authors

591

*E-mail: [email protected] (S.G.). *E-mail: [email protected] (R.P.S.H.).

592

ORCID

593 594

Shaojun Guo: 0000-0003-4427-6837 Ray P. S. Han: 0000-0002-3551-4795

595

Notes

596

The authors declare no competing financial interest.

590

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

(5) Eftekhari, A. Lithium-Ion Batteries with High Rate Capabilities. ACS Sustainable Chem. Eng. 2017, 5, 2799−2816. (6) Tabassum, H.; Zou, R.; Mahmood, A.; Liang, Z.; Wang, Q.; Zhang, H.; Gao, S.; Qu, C.; Guo, W.; Guo, S. A Universal Strategy for Hollow Metal Oxide Nanoparticles Encapsulated into B/N Co-Doped Graphitic Nanotubes as High-Performance Lithium-Ion Battery Anodes. Adv. Mater. 2018, 30, 1705441. (7) Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. Synthesis of Phosphorus-Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries. Adv. Mater. 2013, 25, 4932−4937. (8) Yousaf, M.; Mahmood, A.; Wang, Y.; Chen, Y.; Ma, Z.; Han, R. P. S. Advancement in Layered Transition Metal Dichalcogenide Composites for Lithium and Sodium Ion Batteries. J. Electr. Eng. 2016, 4, 58−74. (9) Tan, C.; Zhang, H. Two-dimensional Transition Metal Dichalcogenide Nanosheet-Based Composites. Chem. Soc. Rev. 2015, 44, 2713−2731. (10) Cai, Y.; Yang, H.; Zhou, J.; Luo, Z.; Fang, G.; Liu, S.; Pan, A.; Liang, S. Nitrogen Doped Hollow MoS2/C Nanospheres as Anode for Long-Life Sodium-Son Batteries. Chem. Eng. J. 2017, 327, 522−529. (11) Zhao, X.; Wang, H.-E.; Yang, Y.; Neale, Z. G.; Massé, R. C.; Cao, J.; Cai, W.; Sui, J.; Cao, G. Reversible and Fast Na-Ion Storage in MoO2/MoSe2 Heterostructures for High Energy-High Power Na-ion Capacitors. Energy Storage Materials 2018, 12, 241−251. (12) Luo, Z.; Zhou, J.; Wang, L.; Fang, G.; Pan, A.; Liang, S. TwoDimensional Hybrid Nanosheets of Few Layered MoSe2 on Reduced Graphene Oxide as Anodes for Long-Cycle-Life Lithium-Ion Batteries. J. Mater. Chem. A 2016, 4, 15302−15308. (13) Yoo, H.; Tiwari, A. P.; Lee, J.; Kim, D.; Park, J. H.; Lee, H. Cylindrical Nanostructured MoS 2 Directly Grown on CNT Composites for Lithium-Ion Batteries. Nanoscale 2015, 7, 3404−3409. (14) Wang, J.-Z.; Lu, L.; Lotya, M.; Coleman, J. N.; Chou, S.-L.; Liu, H.-K.; Minett, A. I.; Chen, J. Development of MoS2 CNT Composite Thin Film from Layered MoS2 for Lithium Batteries. Adv. Eng. Mater. 2013, 3, 798−805. (15) Zhang, Z.; Fu, Y.; Yang, X.; Qu, Y.; Zhang, Z. Hierarchical MoSe2 Nanosheets/Reduced Graphene Oxide Composites as Anodes for Lithium-Ion and Sodium-Ion Batteries with Enhanced Electrochemical Performance. ChemNanoMat 2015, 1, 409−414. (16) Fan, S.; Zou, X.; Du, H.; Gan, L.; Xu, C.; Lv, W.; He, Y.-B.; Yang, Q.-H.; Kang, F.; Li, J. Theoretical Investigation of the Intercalation Chemistry of Lithium/Sodium Ions in Transition Metal Dichalcogenides. J. Phys. Chem. C 2017, 121, 13599−13605. (17) Yang, X.; Zhang, Z.; Shi, X. Rational Design of Coaxial-Cable MoSe2/C: Towards High Performance Electrode Materials for Lithium-Ion and Sodium-Ion Batteries. J. Alloys Compd. 2016, 686, 413−420. (18) Yang, Y.; Wang, S.; Zhang, J.; Li, H.; Tang, Z.; Wang, X. Nanosheet-Assembled MoSe2 and S-doped MoSe2−x Nanostructures for Superior Lithium Storage Properties and Hydrogen Evolution Reactions. Inorg. Chem. Front. 2015, 2, 931−937. (19) Tang, W.; Xie, D.; Shen, T.; Wang, X.; Wang, D.; Zhang, X.; Xia, X.; Wu, J.; Tu, J. Construction of Nitrogen-Doped CarbonCoated MoSe2 Microspheres with Enhanced Performance for Lithium Storage. Chem. - Eur. J. 2017, 23, 12924−12929. (20) Hwang, H.; Kim, H.; Cho, J. MoS2 Nanoplates Consisting of Disordered Graphene-Like Layers for High Rate Lithium Battery Anode Materials. Nano Lett. 2011, 11, 4826−4830. (21) Jin, R.; Cui, Y.; Wang, Q.; Li, G. Facile Fabrication of CNTs@ C@MoSe2@Se Hybrids with Amorphous Structure for High Performance Anode in Lithium-Ion Batteries. J. Colloid Interface Sci. 2017, 508, 435−442. (22) Jin, R.; Liu, X.; Yang, L.; Li, G.; Gao, S. Sandwich-Like Cu2‑x Se@C@MoSe2 Nanosheets as an Improved-Performance Anode for Lithium-Ion Battery. Electrochim. Acta 2018, 259, 841−849. (23) Zheng, C.; Chen, C.; Chen, L.; Wei, M. A CMK-5-Encapsulated MoSe2 Composite for Rechargeable Lithium-Ion batteries with

4. CONCLUSION In summary, we have fabricated a 3D-interconnected core− shell CNT@MoSe2 sponge by a facile solvothermal method and a calcination process. The hybrid sponge has a core−shell nanotubular structure with a uniform MoSe2-nanosheet-layered coating over the CNTs. The number of MoSe2 layers in the core−shell structure can be tuned simply by adjusting the active material loading. The hybrid sponge can be used as a freestanding electrode for LIBs, and it delivered a discharge capacity of 820.5 mAh g−1 after 100 cycles at 100 mA g−1 with a good cyclic stability and rate capability. The high electrochemical performance can be attributed to the structural evolution from a continuous long crystalline MoSe2 shell into an amorphous state, as is evident by ex situ investigations. The 3D core−shell coaxial nanotubular sponge design has the advantage of being flexible, easily tunable together with an intense compaction of the active material to yield a significantly improved areal capacity, and possesses a large number of active sites for reversible charge storage with a large number of pathways via CNTs for fast charge transport. The resulting electrode can be potentially used in applications for flexible and compressible electrochemical energy storage and conversion devices.



ACKNOWLEDGMENTS This work was financially supported by the National Nature Science Foundation of China (Grant 51325202). Further, researchers acknowledge the provision of bulk CNT sponges from Professor A. Y. Cao’s laboratory.



REFERENCES

(1) Mahmood, N.; Hou, Y. Electrode Nanostructures in LithiumBased Batteries. Adv. Sci. 2014, 1, 1400012. (2) Yousaf, M.; Shi, H. T. H.; Wang, Y.; Chen, Y.; Ma, Z.; Cao, A.; Naguib, H. E.; Han, R. P. S. Novel Pliable Electrodes for Flexible Electrochemical Energy Storage Devices: Recent Progress and Challenges. Adv. Eng. Mater. 2016, 6, 1600490. (3) Mahmood, N.; Tang, T.; Hou, Y. Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective. Adv. Eng. Mater. 2016, 6, 1600374. (4) Chen, Y.; Wang, Y.; Yousaf, M.; Ma, Z.; Zou, M.; Cao, A.; Han, R. P. S. A 3-D Binder-Free Nanoporous Anode for a Safe and Stable Charging of Lithium Ion Batteries. Mater. Res. Bull. 2017, 93, 1−8. H

DOI: 10.1021/acsami.7b19739 ACS Appl. Mater. Interfaces XXXX, XXX, XXX−XXX

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

Research Article

ACS Applied Materials & Interfaces 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

Improved Electrochemical Performance. J. Mater. Chem. A 2017, 5, 19632−19638. (24) Zhu, X.; Liang, X.; Fan, X.; Su, X. Fabrication of Flower-Like MoS2/TiO2 Hybrid as an Anode Material for Lithium Ion Batteries. RSC Adv. 2017, 7, 38119−38124. (25) Wang, H.; Feng, H.; Li, J. Graphene and Graphene-Like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small 2014, 10, 2165−2181. (26) Zhao, X.; Sui, J.; Li, F.; Fang, H.; Wang, H.; Li, J.; Cai, W.; Cao, G. Lamellar MoSe2 Nanosheets Embedded with MoO2 Nanoparticles: Novel Hybrid Nanostructures Promoted Excellent Performances for Lithium Ion Batteries. Nanoscale 2016, 8, 17902−17910. (27) Lee, Y. Y.; Park, G. O.; Choi, Y. S.; Shon, J. K.; Yoon, J.; Kim, K. H.; Yoon, W.-S.; Kim, H.; Kim, J. M. Mesoporous Transition Metal Dichalcogenide ME2 (M = Mo, W; E = S, Se) with 2-D Layered Crystallinity as Anode Materials for Lithium Ion Batteries. RSC Adv. 2016, 6, 14253−14260. (28) Huang, Y.; Miao, Y.-E.; Fu, J.; Mo, S.; Wei, C.; Liu, T. Perpendicularly Oriented Few-Layer MoSe2 on SnO2 Nanotubes for Efficient Hydrogen Evolution Reaction. J. Mater. Chem. A 2015, 3, 16263−16271. (29) Tang, H.; Dou, K.; Kaun, C.-C.; Kuang, Q.; Yang, S. MoSe2 Nanosheets and their Graphene Hybrids: Synthesis, Characterization and Hydrogen Evolution Reaction Studies. J. Mater. Chem. A 2014, 2, 360−364. (30) Wang, H.; Wang, X.; Wang, L.; Wang, J.; Jiang, D.; Li, G.; Zhang, Y.; Zhong, H.; Jiang, Y. Phase Transition Mechanism and Electrochemical Properties of Nanocrystalline MoSe2 as Anode Materials for the High Performance Lithium-Ion Battery. J. Phys. Chem. C 2015, 119, 10197−10205. (31) Rao, C. N. R.; Nath, M. Inorganic Nanotubes. Dalton Trans. 2003, 1−24. (32) Cabana, L.; Ballesteros, B.; Batista, E.; Magen, C.; Arenal, R.; Oro-Sole, J.; Rurali, R.; Tobias, G. Synthesis of PbI2 Single-Layered Inorganic Nanotubes Encapsulated within Carbon Nanotubes. Adv. Mater. 2014, 26, 2016−2021. (33) Kreizman, R.; Enyashin, A. N.; Deepak, F. L.; Albu-Yaron, A.; Popovitz-Biro, R.; Seifert, G.; Tenne, R. Synthesis of Core-Shell Inorganic Nanotubes. Adv. Funct. Mater. 2010, 20, 2459−2468. (34) Qu, B.; Yu, X.; Chen, Y.; Zhu, C.; Li, C.; Yin, Z.; Zhang, X. Ultrathin MoSe2 Nanosheets Decorated on Carbon Fiber Cloth as Binder-Free and High-Performance Electrocatalyst for Hydrogen Evolution. ACS Appl. Mater. Interfaces 2015, 7, 14170−14175. (35) Jian, X.; Liu, S.; Gao, Y.; Zhang, W.; He, W.; Mahmood, A.; Subramaniyam, C. M.; Wang, X.; Mahmood, N.; Dou, S. X. Facile Synthesis of Three-Dimensional Sandwiched MnO2@GCs@MnO2 Hybrid Nanostructured Electrode for Electrochemical Capacitors. ACS Appl. Mater. Interfaces 2017, 9, 18872−18882. (36) Mahmood, A.; Zou, R.; Wang, Q.; Xia, W.; Tabassum, H.; Qiu, B.; Zhao, R. Nanostructured Electrode Materials Derived from MetalOrganic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor. ACS Appl. Mater. Interfaces 2016, 8, 2148−2157. (37) Yao, J.; Liu, B.; Ozden, S.; Wu, J.; Yang, S.; Rodrigues, M.-T. F.; Kalaga, K.; Dong, P.; Xiao, P.; Zhang, Y.; Vajtai, R.; Ajayan, P. M. 3D Nanostructured Molybdenum Diselenide/ Graphene Foam as Anodes for Long-Cycle Life Lithium-ion Batteries. Electrochim. Acta 2015, 176, 103−111. (38) Bindumadhavan, K.; Srivastava, S. K.; Mahanty, S. MoS2MWCNT hybrids as a superior anode in lithium-ion batteries. Chem. Commun. 2013, 49, 1823−1825. (39) Zhang, Z.; Yang, X.; Fu, Y.; Du, K. Ultrathin Molybdenum Diselenide Nanosheets Anchored on Multi-Walled Carbon Nanotubes as Anode Aomposites for High Performance Sodium-Ion Batteries. J. Power Sources 2015, 296, 2−9. (40) Huang, Y.; Lu, H.; Gu, H.; Fu, J.; Mo, S.; Wei, C.; Miao, Y. E.; Liu, T. A CNT@MoSe2 Hybrid Catalyst for Efficient and Stable Hydrogen Evolution. Nanoscale 2015, 7, 18595−18602. (41) Xiang, T.; Tao, S.; Xu, W.; Fang, Q.; Wu, C.; Liu, D.; Zhou, Y.; Khalil, A.; Muhammad, Z.; Chu, W.; Wang, Z.; Xiang, H.; Liu, Q.;

Song, L. Stable 1T-MoSe2 and Carbon Nanotube Hybridized Flexible Film: Binder-Free and High-Performance Li-Ion Anode. ACS Nano 2017, 11, 6483−6491. (42) Ding, S.; Chen, J. S.; Lou, X. W. Glucose-Assisted Growth of MoS2 nanosheets on CNT Backbone for Improved Lithium Storage Properties. Chem. - Eur. J. 2011, 17, 13142−13145. (43) Mendoza-Sánchez, B.; Coelho, J.; Pokle, A.; Nicolosi, V. A Study of the Charge Storage Properties of a MoSe2 Nanoplatelets/ SWCNTs Electrode in a Li-ion Based Electrolyte. Electrochim. Acta 2016, 192, 1−7. (44) Gui, X.; Wei, J.; Wang, K.; Cao, A.; Zhu, H.; Jia, Y.; Shu, Q.; Wu, D. Carbon Nanotube Sponges. Adv. Mater. 2010, 22, 617−621. (45) Wang, Q.; Li, J. Facilitated Lithium Storage in MoS2 Overlayers Supported on Coaxial Carbon Nanotubes. J. Phys. Chem. C 2007, 111, 1675−1682. (46) Bhatt, S. V.; Deshpande, M. P.; Sathe, V.; Rao, R.; Chaki, S. H. Raman Spectroscopic Investigations on Transition-Metal Dichalcogenides MX2 (M = Mo, W; X = S, Se) at High Pressures and Low Temperature. J. Raman Spectrosc. 2014, 45, 971−979. (47) Nam, D.; Lee, J. U.; Cheong, H. Excitation Energy Dependent Raman Spectrum of MoSe2. Sci. Rep. 2015, 5, 17113. (48) Sekine, T.; Izumi, M.; Nakashizu, T.; Uchinokura, K.; Matsuura, E. Raman Scattering and Infrared Reflectance in 2H-MoSe2. J. Phys. Soc. Jpn. 1980, 49, 1069−1077. (49) Xenogiannopoulou, E.; Tsipas, P.; Aretouli, K. E.; Tsoutsou, D.; Giamini, S. A.; Bazioti, C.; Dimitrakopulos, G. P.; Komninou, P.; Brems, S.; Huyghebaert, C.; Radu, I. P.; Dimoulas, A. High-quality, Large-Area MoSe 2 and MoSe 2 /Bi 2 Se 3 Heterostructures on AlN(0001)/Si(111) Substrates by Molecular Beam Epitaxy. Nanoscale 2015, 7, 7896−7905. (50) Wu, Y.; Xu, M.; Chen, X.; Yang, S.; Wu, H.; Pan, J.; Xiong, X. CTAB-Assisted Synthesis of Novel Ultrathin MoSe2 Nanosheets Perpendicular to Graphene for the Adsorption and Photodegradation of Organic Dyes Under Visible Light. Nanoscale 2016, 8, 440−450. (51) Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J.; Grossman, J. C.; Wu, J. Thermally Driven Crossover from Indirect Toward Direct Bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576−5580. (52) Tien, H.-W.; Huang, Y.-L.; Yang, S.-Y.; Wang, J.-Y.; Ma, C.-C. M. The Production of Graphene Nanosheets Decorated with Silver Nanoparticles for Use in Transparent, Conductive Films. Carbon 2011, 49, 1550−1560. (53) Ren, L.; Yang, F.; Wang, C.; Li, Y.; Liu, H.; Tu, Z.; Zhang, L.; Liu, Z.; Gao, J.; Xu, C. Plasma Synthesis of Oxidized Graphene Foam Supporting Pd Nanoparticles as a New Catalyst for One-Pot Synthesis of Dibenzyls. RSC Adv. 2014, 4, 63048−63054. (54) Liu, Y.; Zhu, M.; Chen, D. Sheet-Like MoSe2/C Composites with Enhanced Li-Ion Storage Properties. J. Mater. Chem. A 2015, 3, 11857−11862. (55) Zhou, X.; Jiang, J.; Ding, T.; Zhang, J.; Pan, B.; Zuo, J.; Yang, Q. Fast Colloidal Synthesis of Scalable Mo-Rich Hierarchical Ultrathin MoSe2‑x Nanosheets for High-Performance Hydrogen Evolution. Nanoscale 2014, 6, 11046−11051. (56) Yang, X.; Zhang, Z.; Fu, Y.; Li, Q. Porous Hollow Carbon Spheres Decorated with Molybdenum Diselenide Nanosheets as Anodes for Highly Reversible Lithium and Sodium Storage. Nanoscale 2015, 7, 10198−10203. (57) Yang, L.; Wang, S.; Mao, J.; Deng, J.; Gao, Q.; Tang, Y.; Schmidt, O. G. Hierarchical MoS2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries. Adv. Mater. 2013, 25, 1180−1184. (58) Wang, J.; Liu, J.; Chao, D.; Yan, J.; Lin, J.; Shen, Z. X. SelfAssembly of Honeycomb-Like MoS2 Nanoarchitectures Anchored into Graphene Foam for Enhanced Lithium-Ion Storage. Adv. Mater. 2014, 26, 7162−7169. (59) Gong, Y.; Yang, S.; Zhan, L.; Ma, L.; Vajtai, R.; Ajayan, P. M. A Bottom-Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage. Adv. Funct. Mater. 2014, 24, 125−130. I

DOI: 10.1021/acsami.7b19739 ACS Appl. Mater. Interfaces XXXX, XXX, XXX−XXX

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819

Research Article

ACS Applied Materials & Interfaces 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

(60) Wang, Y.; Ma, Z.; Chen, Y.; Zou, M.; Yousaf, M.; Yang, Y.; Yang, L.; Cao, A.; Han, R. P. Controlled Synthesis of Core-Shell Carbon@MoS2 Nanotube Sponges as High-Performance Battery Electrodes. Adv. Mater. 2016, 28, 10175−10181. (61) Ma, Z.; Wang, Y.; Yang, Y.; Yousaf, M.; Zou, M.; Cao, A.; Han, R. P. S. Flexible Hybrid Carbon Nanotube Sponges Embedded with SnS2 from Tubular Nanosheaths to Nanosheets as Free-Standing Anodes for Lithium-Ion Batteries. RSC Adv. 2016, 6, 30098−30105. (62) Fang, X.; Yu, X.; Liao, S.; Shi, Y.; Hu, Y.-S.; Wang, Z.; Stucky, G. D.; Chen, L. Lithium Storage Performance in Ordered Mesoporous MoS2 Electrode Material. Microporous Mesoporous Mater. 2012, 151, 418−423. (63) Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The Role of Graphene for Electrochemical Energy Storage. Nat. Mater. 2015, 14, 271−279. (64) Zhou, F.; Xin, S.; Liang, H. W.; Song, L. T.; Yu, S. H. Carbon Nanofibers Decorated with Molybdenum Disulfide Nanosheets: Synergistic Lithium Storage and Enhanced Electrochemical Performance. Angew. Chem., Int. Ed. 2014, 53, 11552−11556. (65) Ma, T.; Yu, X.; Li, H.; Zhang, W.; Cheng, X.; Zhu, W.; Qiu, X. High Volumetric Capacity of Hollow Structured SnO2@Si Nanospheres for Lithium-Ion Batteries. Nano Lett. 2017, 17, 3959−3964. (66) Ding, J.; Zhou, H.; Zhang, H.; Tong, L.; Mitlin, D. Selenium Impregnated Monolithic Carbons as Free-Standing Cathodes for High Volumetric Energy Lithium and Sodium Metal Batteries. Adv. Eng. Mater. 2018, 8, 1701918. (67) Wang, B.; Li, X.; Qiu, T.; Luo, B.; Ning, J.; Li, J.; Zhang, X.; Liang, M.; Zhi, L. High Volumetric Capacity Silicon-Based Lithium Battery Anodes by Nanoscale System Engineering. Nano Lett. 2013, 13, 5578−5584. (68) Zhao, X.; Wang, H.-E.; Chen, X.; Cao, J.; Zhao, Y.; Garbe Neale, Z.; Cai, W.; Sui, J.; Cao, G. Tubular MoO2 Organized by 2D Assemblies for Fast and Durable Alkali-Ion Storage. Energy Storage Materials 2018, 11, 161−169. (69) Mahmood, N.; Zhang, C.; Hou, Y. Nickel Sulfide/ NitrogenDoped Graphene Composites: Phase-Controlled Synthesis and High Performance Anode Materials for Lithium Ion Batteries. Small 2013, 9, 1321−1328. (70) Mahmood, N.; Zhang, C.; Jiang, J.; Liu, F.; Hou, Y. Multifunctional Co3S4/Graphene Composites for Lithium Ion Batteries and Oxygen Reduction Reaction. Chem. - Eur. J. 2013, 19, 5183−5190. (71) Cai, Y.; Wang, H. E.; Zhao, X.; Huang, F.; Wang, C.; Deng, Z.; Li, Y.; Cao, G.; Su, B. L. Walnut-like Porous Core/Shell TiO2 with Hybridized Phases Enabling Fast and Stable Lithium Storage. ACS Appl. Mater. Interfaces 2017, 9, 10652−10663.

J

DOI: 10.1021/acsami.7b19739 ACS Appl. Mater. Interfaces XXXX, XXX, XXX−XXX