Research Article Asymptotic Behavior of Certain Integrodifferential

0 downloads 0 Views 2MB Size Report
2Missouri University of Science Technology, 310 Rolla Building, Rolla, MO 65409-0020, USA ... Academic Editor: Zhan Zhou ... Hindawi Publishing Corporation.
Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 2016, Article ID 4231050, 6 pages http://dx.doi.org/10.1155/2016/4231050

Research Article Asymptotic Behavior of Certain Integrodifferential Equations Said Grace1 and Elvan Akin2 1

Department of Engineering Mathematics, Cairo University, Orman, Giza 12221, Egypt Missouri University of Science Technology, 310 Rolla Building, Rolla, MO 65409-0020, USA

2

Correspondence should be addressed to Elvan Akin; [email protected] Received 11 February 2016; Revised 13 May 2016; Accepted 5 June 2016 Academic Editor: Zhan Zhou Copyright Β© 2016 S. Grace and E. Akin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper deals with asymptotic behavior of nonoscillatory solutions of certain forced integrodifferential equations of the form: 𝑑 (π‘Ž(𝑑)π‘₯σΈ€  (𝑑))σΈ€  = 𝑒(𝑑) + βˆ«π‘ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘˜(𝑑, 𝑠)𝑓(𝑠, π‘₯(𝑠))𝑑𝑠, 𝑐 > 1, 0 < 𝛼 < 1. From the obtained results, we derive a technique which can be applied to some related integrodifferential as well as integral equations.

1. Introduction In this paper, we consider the integrodifferential equation σΈ€ 

(π‘Ž (𝑑) π‘₯σΈ€  (𝑑)) = 𝑒 (𝑑) 𝑑

+ ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘˜ (𝑑, 𝑠) 𝑓 (𝑠, π‘₯ (𝑠)) 𝑑𝑠,

(1)

𝑐

𝑐 > 1, 0 < 𝛼 < 1. In the sequel, we assume that (i) π‘Ž, 𝑒 ∈ 𝐢([𝑐, ∞), R+ ); (ii) π‘˜ ∈ 𝐢([𝑐, ∞) Γ— [𝑐, ∞), R) and also there exists 𝑏 ∈ 𝐢([𝑐, ∞), R+ ) such that |π‘˜(𝑑, 𝑠)| ≀ 𝑏(𝑑) for all 𝑑 β‰₯ 𝑠 β‰₯ 𝑐; (iii) 𝑓 ∈ 𝐢([𝑐, ∞) Γ— R, R) and also there exist β„Ž ∈ 𝐢([𝑐, ∞), R+ ) and real numbers πœ†, 0 < πœ† ≀ 1, and 𝛾 such that π›Ύβˆ’1

0 ≀ π‘₯𝑓 (𝑑, π‘₯) ≀ 𝑑

πœ†+1

β„Ž (𝑑) |π‘₯|

(2)

for π‘₯ =ΜΈ 0 and 𝑑 β‰₯ 𝑐. We only consider solutions of (1) which are continuable and nontrivial in any neighborhood of ∞. Such a solution is said to be oscillatory if there exists a sequence {𝑑𝑛 } βŠ‚ [𝑐, ∞), 𝑑𝑛 β†’ ∞, such that π‘₯(𝑑𝑛 ) = 0, and it is nonoscillatory otherwise.

In the last few decades, integral, integrodifferential, and fractional differential equations have gained considerable attention due to their applications in many engineering and scientific disciplines as the mathematical models for systems and processes in fields such as physics, mechanics, chemistry, aerodynamics, and the electrodynamics of complex media. For more details one can refer to [1–8]. Oscillation and asymptotic results for integral and integrodifferential equations are scarce; some results can be found in [5, 9–13]. It seems that there are no such results for integral equations of type (1). The main objective of this paper is to establish some new criteria on the oscillatory and the asymptotic behavior of all solutions of (1). From the obtained results, we derive a technique which can be applied to some related integrodifferential as well as integral equations.

2. Main Results To obtain our main results of this paper, we need the following two lemmas. Lemma 1 (see [5, 7]). Let 𝛽, 𝛾, and 𝑝 be positive constants such that 𝑝(𝛽 βˆ’ 1) + 1 > 0 and 𝑝(𝛾 βˆ’ 1) + 1 > 0. Then 𝑑

∫ (𝑑 βˆ’ 𝑠)𝑝(π›½βˆ’1) 𝑠𝑝(π›Ύβˆ’1) 𝑑𝑠 = π‘‘πœƒ 𝐡, 𝑑 β‰₯ 0,

(3)

0

1

where 𝐡 fl 𝐡[𝑝(𝛾 βˆ’ 1) + 1, 𝑝(𝛽 βˆ’ 1) + 1], 𝐡[𝜁, πœ‚] = ∫0 π‘ πœβˆ’1 (1 βˆ’ 𝑠)πœ‚βˆ’1 𝑑𝑠, 𝜁, πœ‚ > 0, and πœƒ = 𝑝(𝛽 + 𝛾 βˆ’ 2) + 1.

2

Discrete Dynamics in Nature and Society

Lemma 2 (see [14]). If 𝑋 and π‘Œ are nonnegative, then π‘‹πœ† βˆ’ (1 βˆ’ πœ†) π‘Œπœ† βˆ’ πœ†π‘‹π‘Œπœ†βˆ’1 ≀ 0, 0 < πœ† < 1,

(4)

Applying (4) of Lemma 2 to β„Ž(𝑠)π‘₯πœ† (𝑠) βˆ’ π‘š(𝑠)π‘₯(𝑠) with 𝑋 = β„Ž1/πœ† π‘₯ and π‘Œ = ((1/πœ†)π‘šβ„Žβˆ’1/πœ† )1/(πœ†βˆ’1) we have β„Ž (𝑠) π‘₯πœ† (𝑠) βˆ’ π‘š (𝑠) π‘₯ (𝑠)

where equality holds if and only if 𝑋 = π‘Œ.

≀ (1 βˆ’ πœ†) πœ†πœ†/(1βˆ’πœ†) π‘šπœ†/(πœ†βˆ’1) (𝑠) β„Ž1/(1βˆ’πœ†) (𝑠) ,

In what follows, we let 𝑔± (𝑑) = 𝑒 (𝑑) Β± (1 βˆ’ πœ†) πœ†πœ†/(1βˆ’πœ†) 𝑏 (𝑑) 𝑑

β‹… ∫ (𝑑 βˆ’ 𝑠)

π›Όβˆ’1 π›Ύβˆ’1

𝑠

𝑑1

πœ†/(πœ†βˆ’1)

π‘š

1/(1βˆ’πœ†)

(𝑠) β„Ž

(𝑠) 𝑑𝑠

(5)

and hence we obtain

𝑐

+ (1 βˆ’ πœ†) πœ†πœ†/(1βˆ’πœ†) 𝑏 (𝑑) 𝑑

β‹… ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 π‘šπœ†/(πœ†βˆ’1) (𝑠) β„Ž1/(1βˆ’πœ†) (𝑠) 𝑑𝑠 + 𝑏 (𝑑)

∞

𝑑1

𝑠 𝑑𝑠 < ∞, π‘Ž (𝑠)

∞

π‘ž

∫ (𝑠2 π‘š (𝑠)) 𝑑𝑠 < ∞. 𝑑1

(6) (7)

(14)

𝑑1

Theorem 3. Let 0 < πœ† < 1 and conditions (i)–(iii) hold and suppose that 𝑝 > 1, π‘ž = 𝑝/(𝑝 βˆ’ 1), 𝛼 > 0, 𝛾 = 2 βˆ’ 𝛼 βˆ’ 1/𝑝, 𝑝(𝛼 βˆ’ 1) + 1 > 0, 𝑝(𝛾 βˆ’ 1) + 1 > 0, and

∫

𝑑1

σΈ€ 

(π‘Ž (𝑑) π‘₯σΈ€  (𝑑)) ≀ 𝑒 (𝑑) + 𝑏 (𝑑) ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 |𝐹 (𝑠)| 𝑑𝑠

and 0 < πœ† < 1, 𝑑 β‰₯ 𝑑1 for some 𝑑1 β‰₯ 𝑐, where π‘š ∈ 𝐢([𝑐, ∞), R+ ). Now we give sufficient conditions under which any solution π‘₯ of (1) satisfies |π‘₯(𝑑)| = 𝑂(𝑑2 ) as 𝑑 β†’ ∞.

𝑑 and 𝑏 (𝑑) are bounded on [𝑐, ∞) , π‘Ž (𝑑)

(13)

𝑑

β‹… ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠 𝑑1

or 𝑑1

σΈ€ 

π›Όβˆ’1

(π‘Ž (𝑑) π‘₯σΈ€  (𝑑)) ≀ 𝑏 (𝑑) ∫ (𝑑1 βˆ’ 𝑠) 𝑐

|𝐹 (𝑠)| 𝑑𝑠 + 𝑔+ (𝑑)

𝑑

+ 𝑏 (𝑑) ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠

(8)

𝑑1

(15)

≀ 𝐢1 + 𝑔+ (𝑑)

If lim sup π‘‘β†’βˆž

lim inf π‘‘β†’βˆž

𝑒 1 𝑑 1 ∫ π‘”βˆ’ (𝑠) 𝑑𝑠 𝑑𝑒 < ∞, ∫ 2 𝑑 𝑑1 π‘Ž (𝑒) 𝑑0 𝑒 1 𝑑 1 ∫ 𝑔+ (𝑠) 𝑑𝑠 𝑑𝑒 > βˆ’βˆž ∫ 2 𝑑 𝑑1 π‘Ž (𝑒) 𝑑0

𝑑

+ π‘˜1 ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠,

for any 𝑑1 β‰₯ 𝑐, then every nonoscillatory solution π‘₯(𝑑) of (1) satisfies lim sup π‘‘β†’βˆž

|π‘₯ (𝑑)| < ∞. 𝑑2

(10)

Proof. Let π‘₯ be a nonoscillatory solution of (1). We may assume that π‘₯(𝑑) > 0 for 𝑑 β‰₯ 𝑑1 for some 𝑑1 β‰₯ 𝑐. We let 𝐹(𝑑) = 𝑓(𝑑, π‘₯(𝑑)). In view of (i)–(iii) we may then write 𝑑

σΈ€ 

(π‘Ž (𝑑) π‘₯σΈ€  (𝑑)) ≀ 𝑒 (𝑑) + 𝑏 (𝑑) ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 𝑓 (𝑠, π‘₯ (𝑠)) 𝑑𝑠 (11) 𝑐

𝑑1

(π‘Ž (𝑑) π‘₯σΈ€  (𝑑)) ≀ 𝑒 (𝑑) + 𝑏 (𝑑) ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 |𝐹 (𝑠)| 𝑑𝑠 𝑐

𝑑

𝑑1

𝑑

+ 𝑏 (𝑑) ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠. 𝑑1

π‘₯σΈ€  (𝑑) ≀

π‘Ž (𝑑1 ) π‘₯σΈ€  (𝑑1 ) 𝐢1 (𝑑 βˆ’ 𝑑1 ) + π‘Ž (𝑑) π‘Ž (𝑑) +

𝑑 1 ∫ 𝑔+ (𝑠) 𝑑𝑠 π‘Ž (𝑑) 𝑑1

+

π‘˜1 𝑑 𝑒 ∫ ∫ (𝑒 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠 𝑑𝑒. π‘Ž (𝑑) 𝑑1 𝑑1

π‘₯σΈ€  (𝑑) ≀

+ 𝑏 (𝑑) β‹… ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 [β„Ž (𝑠) π‘₯πœ† (𝑠) βˆ’ π‘š (𝑠) π‘₯ (𝑠)] 𝑑𝑠

where 𝐢1 and π‘˜1 are the upper bounds of the functions 𝑑 𝑏(𝑑) βˆ«π‘Ž 1 (𝑑1 βˆ’ 𝑠)π›Όβˆ’1 |𝐹(𝑠)|𝑑𝑠 and 𝑏(𝑑), respectively. Integrating inequality (15) from 𝑑1 to 𝑑 we have

(16)

Interchanging the order of integration in the last integral, we have

and so σΈ€ 

𝑑1

(9)

(12)

π‘Ž (𝑑1 ) π‘₯σΈ€  (𝑑1 ) 𝐢1 (𝑑 βˆ’ 𝑑1 ) + π‘Ž (𝑑) π‘Ž (𝑑) +

𝑑 1 ∫ 𝑔+ (𝑠) 𝑑𝑠 π‘Ž (𝑑) 𝑑1 𝑑

+ π‘˜2 ∫ (𝑑 βˆ’ 𝑠)𝛼 π‘ π›Ύβˆ’1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠, 𝑑1

(17)

Discrete Dynamics in Nature and Society

3

where π‘˜2 is the upper bound of the function π‘˜1 /π›Όπ‘Ž(𝑑). Integrating (17) from 𝑑1 to 𝑑 and interchanging the order of integration in the last integral we find π‘₯ (𝑑) ≀ π‘₯ (𝑑1 ) + π‘Ž (𝑑1 ) π‘₯σΈ€  (𝑑1 ) ∫

𝑑

𝑑1

where 𝐡 = 𝐡[𝑝(π›Ύβˆ’1)+1, 𝑝(π›Όβˆ’1)+1], and πœƒ = 𝑝(𝛼+π›Ύβˆ’2)+1 = 0 and so 𝑑

∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠

1 𝑑𝑠 π‘Ž (𝑠)

𝑑1

𝑑 𝑒 𝐢 (𝑠 βˆ’ 𝑑1 ) 1 +∫ 1 𝑑𝑠 + ∫ ∫ 𝑔+ (𝑠) 𝑑𝑠 𝑑𝑒 (18) π‘Ž (𝑠) 𝑑1 𝑑1 π‘Ž (𝑒) 𝑑1

≀ 𝐡1/𝑝 (∫ π‘šπ‘ž (𝑠) π‘₯π‘ž (𝑠) 𝑑𝑠)

𝑑

𝑑 π‘˜ + 2 ∫ (𝑑 βˆ’ 𝑠)𝛼+1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠. 𝛼 + 1 𝑑1

𝑑

𝑑1

Thus, inequality (20) becomes 1/π‘ž

1 𝑑𝑠 π‘Ž (𝑠)

𝑑 π‘₯ (𝑑) ≀ 𝐢 + π‘˜π΅1/𝑝 (∫ π‘šπ‘ž (𝑠) π‘₯π‘ž (𝑠) 𝑑𝑠) 2 𝑑 𝑑1

π‘ž

(π‘₯ + 𝑦) ≀ 2π‘žβˆ’1 (π‘₯π‘ž + π‘¦π‘ž ) ,

𝑑

𝑑 𝑒 𝐢 (𝑠 βˆ’ 𝑑1 ) 1 𝑑𝑠 + ∫ +∫ 1 ∫ 𝑔+ (𝑠) 𝑑𝑠 𝑑𝑒 (19) π‘Ž (𝑠) 𝑑1 𝑑1 π‘Ž (𝑒) 𝑑1

π‘§π‘ž (𝑑) (26)

If we denote 𝑒(𝑑) = π‘§π‘ž (𝑑), that is, 𝑧(𝑑) = 𝑒1/π‘ž (𝑑), 𝑃 = 2π‘žβˆ’1 (1 + 𝐢)π‘ž , and 𝑄 = 2π‘žβˆ’1 π‘˜π‘ž π΅π‘ž/𝑝 , then 𝑑

𝑒 (𝑑) ≀ 𝑃 + 𝑄 ∫ 𝑠2π‘ž π‘šπ‘ž (𝑠) 𝑒 (𝑠) 𝑑𝑠, 𝑑 β‰₯ 𝑑1 β‰₯ 𝑐.

(27)

The conclusion follows from Gronwall’s inequality and we conclude that

𝑑

1 1 𝑑𝑠 [π‘₯ (𝑑1 ) + π‘Ž (𝑑1 ) π‘₯σΈ€  (𝑑1 ) ∫ 𝑑2 π‘Ž (𝑠) 𝑑1 𝑑

𝑑 𝑒 𝐢 (𝑠 βˆ’ 𝑑1 ) 1 +∫ 1 𝑑𝑠 + ∫ ∫ 𝑔+ (𝑠) 𝑑𝑠 𝑑𝑒] π‘Ž (𝑠) 𝑑1 𝑑1 π‘Ž (𝑒) 𝑑1

lim sup

(21)

and π‘˜ = π‘˜2 /(𝛼+1). Applying Holder’s inequality and Lemma 1 we obtain

π‘‘β†’βˆž

π‘₯ (𝑑) < ∞. 𝑑2

(28)

If π‘₯ is eventually negative, we can set 𝑦 = βˆ’π‘₯ to see that 𝑦 satisfies (1) with 𝑒(𝑑) being replaced by βˆ’π‘’(𝑑) and 𝑓(𝑑, π‘₯) by βˆ’π‘“(𝑑, βˆ’π‘¦). It follows in a similar manner that lim sup

𝑠

(25)

we obtain from (24)

𝑑1

where 𝐢 is the upper bound of the function

𝑑1

(24)

𝑑1

𝑑 π‘₯ (𝑑) ≀ 1 + 𝐢 + π‘˜ ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠, (20) 2 𝑑 𝑑1

∫ (𝑑 βˆ’ 𝑠)

π‘₯, 𝑦 β‰₯ 0, π‘ž > 1,

≀ 2π‘žβˆ’1 ((1 + 𝐢)π‘ž + π‘˜π‘ž π΅π‘ž/𝑝 ∫ 𝑠2π‘ž π‘šπ‘ž (𝑠) π‘§π‘ž (𝑠) 𝑑𝑠) .

or

π›Όβˆ’1 π›Ύβˆ’1

.

𝑑

π‘˜2 2 𝑑 𝑑 ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠 𝛼 + 1 𝑑1

𝑑

.

Using (24) and the elementary inequality

π‘₯ (𝑑) ≀ π‘₯ (𝑑1 ) + π‘Ž (𝑑1 ) π‘₯σΈ€  (𝑑1 ) ∫

𝑧 (𝑑) fl

𝑑1

𝑧 (𝑑) fl

Now, one can easily see that

+

(23)

1/π‘ž

𝑑

π‘‘β†’βˆž

π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠

βˆ’π‘₯ (𝑑) < ∞. 𝑑2

(29)

From (28) and (29) we get (10). This completes the proof. 𝑑

≀ (∫ (𝑑 βˆ’ 𝑠)𝑝(π›Όβˆ’1) 𝑠𝑝(π›Ύβˆ’1) 𝑑𝑠)

1/𝑝

Next, by employing Theorem 3 we present the following oscillation result for (1).

𝑑1

𝑑

β‹… (∫ π‘šπ‘ž (𝑠) π‘₯π‘ž (𝑠) 𝑑𝑠)

1/π‘ž

𝑑1

𝑑

≀ (∫ (𝑑 βˆ’ 𝑠) 0

𝑝(π›Όβˆ’1) 𝑝(π›Ύβˆ’1)

𝑠

𝑑

β‹… (∫ π‘šπ‘ž (𝑠) π‘₯π‘ž (𝑠) 𝑑𝑠)

1/π‘ž

𝑑1 𝑑

β‹… (∫ π‘šπ‘ž (𝑠) π‘₯π‘ž (𝑠) 𝑑𝑠) 𝑑1

(22)

1/𝑝

𝑑𝑠)

Theorem 4. Let 0 < πœ† < 1 and conditions (i)–(iii), (6)–(9) hold and suppose that 𝑝 > 1, π‘ž = 𝑝/(𝑝 βˆ’ 1), 𝛼 > 0, 𝛾 = 2 βˆ’ 𝛼 βˆ’ 1/𝑝, 𝑝(𝛼 βˆ’ 1) + 1 > 0, and 𝑝(𝛾 βˆ’ 1) + 1 > 0. If for every 𝑀, 0 < 𝑀 < 1, lim sup [𝑀𝑑2 + ∫

≀ (π΅π‘‘πœƒ )

1/𝑝

𝑑1

π‘‘β†’βˆž

,

𝑒 1 ∫ π‘”βˆ’ (𝑠) 𝑑𝑠 𝑑𝑒] = ∞, π‘Ž (𝑒) 𝑑1

𝑒 1 lim inf [𝑀𝑑 + ∫ ∫ 𝑔+ (𝑠) 𝑑𝑠 𝑑𝑒] = βˆ’βˆž π‘‘β†’βˆž 𝑑1 π‘Ž (𝑒) 𝑑1 2

1/π‘ž

𝑑

𝑑

for all 𝑑1 β‰₯ 𝑐, then (1) is oscillatory.

(30)

4

Discrete Dynamics in Nature and Society

Proof. Let π‘₯ be a nonoscillatory solution of (1), say π‘₯(𝑑) > 0, for 𝑑 β‰₯ 𝑑1 for some 𝑑1 β‰₯ 0. The proof when π‘₯ is eventually negative is similar. Proceeding as in the proof of Theorem 3 we arrive at (19). Therefore, π‘₯ (𝑑) ≀ π‘₯ (𝑑1 ) + π‘Ž (𝑑1 ) π‘₯σΈ€  (𝑑1 ) ∫

∞

𝑑1

∞

𝑑1

𝐢1 (𝑠 βˆ’ 𝑑1 ) 𝑑𝑠 π‘Ž (𝑠)

𝑑

𝑒

+∫

+∫

𝑑1

∞

𝑑1

(31)

π‘₯ (𝑠) π‘ž ) 𝑑𝑠) 𝑠2

1/π‘ž

𝑒 1 π‘₯ (𝑑) ≀ 𝑀1 + 𝑀𝑑2 + ∫ ∫ 𝑔+ (𝑠) 𝑑𝑒, 𝑑1 π‘Ž (𝑒) 𝑑1

.

π‘‘β†’βˆž

(32)

The following corollary is immediate. Corollary 5. Let 0 < πœ† < 1 and conditions (i)–(iii), (6)–(9) hold for some 𝑑1 β‰₯ 𝑐. In addition, assume that

(33)

π‘‘β†’βˆž

𝑑1

Theorem 7. Let πœ† = 1 and the hypotheses of Theorems 3 and 4 hold with π‘š(𝑑) = β„Ž(𝑑) and 𝑔± = 𝑒(𝑑). Then the conclusion of Theorems 3 and 4 holds, respectively. From the obtained results, we apply the employed technique to some related integrodifferential equations. Now, we consider the integrodifferential equation

We will give sufficient conditions under which any nonoscillatory solution π‘₯ of (37) satisfies |π‘₯(𝑑)| = 𝑂(𝑑) as 𝑑 β†’ ∞.

∞

∫ π‘ π‘ž π‘šπ‘ž (𝑠) 𝑑𝑠 < ∞, 𝑑1

𝑒

1 ∫ 𝑒 (𝑠) 𝑑𝑠 𝑑𝑒] = βˆ’βˆž, π‘Ž (𝑒) 𝑑1

for all 𝑑1 > 𝑐, then (1) is oscillatory. The following example is illustrative.

(37)

Theorem 8. Let 0 < πœ† < 1 and let condition (ii) hold and suppose that 𝑝 > 1, π‘ž = 𝑝/(𝑝 βˆ’ 1), 0 < 𝛼 < 1, and 𝛾 = 2 βˆ’ 𝛼 βˆ’ 1/𝑝, 𝑝(𝛼 βˆ’ 1) + 1 > 0, and 𝑝(𝛾 βˆ’ 1) + 1 > 0,

If for every 𝑀, 0 < 𝑀 < 1,

lim inf [𝑀𝑑2 + ∫

Now if 𝑒(𝑑) = 𝑑𝛿 𝑒𝑑 sin 𝑑, 𝛿 β‰₯ 2, we see that all the hypotheses of Corollary 5 are satisfied and hence (1) is oscillatory. Similar reasoning to that in the sublinear case guarantees the following theorems for the integrodifferential equation (1) when πœ† = 1.

𝑐 > 1, 𝛼 ∈ (0, 1) .

β‹… β„Ž1/(1βˆ’πœ†) (𝑠) 𝑑𝑠 𝑑𝑒 < ∞.

𝑑

Condition (34) is also fulfilled. Thus, all conditions of Theorem 3 are satisfied and hence every nonoscillatory solution π‘₯ of (1) satisfies lim supπ‘‘β†’βˆž (|π‘₯(𝑑)|/𝑑2 ) < ∞.

𝑐

𝑒 1 𝑑 1 ∫ ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 π‘šπœ†/(πœ†βˆ’1) (𝑠) π‘‘β†’βˆž 𝑑2 𝑑 π‘Ž (𝑒) 𝑑 1 1

𝑒 1 ∫ 𝑒 (𝑠) 𝑑𝑠 𝑑𝑒] = ∞, π‘Ž (𝑒) 𝑑1

(36)

𝑑

lim

𝑑1

1 𝑑 βˆ’π‘’ 𝑒 ∫ 𝑒 ∫ (𝑒 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 β„Ž (𝑠) 𝑑𝑠 𝑑𝑒 < ∞. 𝑑2 𝑑1 𝑑1

π‘₯σΈ€  (𝑑) = 𝑒 (𝑑) + ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘˜ (𝑑, 𝑠) 𝑓 (𝑠, π‘₯ (𝑠)) 𝑑𝑠,

𝑒 1 𝑑 1 lim sup 2 ∫ ∫ 𝑒 (𝑠) 𝑑𝑠 𝑑𝑒 > ∞, 𝑑1 π‘Ž (𝑒) 𝑑1 π‘‘β†’βˆž 𝑑 𝑒 1 𝑑 1 lim inf 2 ∫ ∫ 𝑒 (𝑠) 𝑑𝑠 𝑑𝑒 > βˆ’βˆž, π‘‘β†’βˆž 𝑑 𝑑1 π‘Ž (𝑒) 𝑑1

Let the functions π‘Ž(𝑑) and 𝑏(𝑑) be as in (i) and (ii) with 𝑏(𝑑) being a bounded function and let π‘Ž(𝑑) = 𝑒𝑑 , 𝑒(𝑑) = 𝑑𝑒𝑑 sin𝑑, and 𝑓(𝑑, π‘₯) = π‘‘π›Ύβˆ’1 β„Ž(𝑑)π‘₯πœ† , where 0 < πœ† < 1, β„Ž ∈ 𝐢(R+ , R+ ) with ∞ β„Ž(𝑑) = π‘š(𝑑), ∫ 𝑠2π‘ž β„Žπ‘ž (𝑠)𝑑𝑠 < ∞, and lim sup

where 𝑀1 and 𝑀 are positive constants. Note that we make 𝑀 < 1 possible by increasing the size of 𝑑1 . Finally, taking lim inf in (32) as 𝑑 β†’ ∞ as well as using (30) result is a contradiction with the fact that π‘₯ is eventually positive.

π‘‘β†’βˆž

(35)

πœƒ = 𝑝 (𝛼 + 𝛾 βˆ’ 2) + 1 = 0.

𝑑

𝑑

1 βˆ’ 1) + 1 2𝑝

1 > 0, 2

=

Clearly, the conclusion of Theorem 3 holds. This together with (7) and (8) implies that the first, second, and fourth integrals on the above inequality are bounded and hence one can easily see that

lim sup [𝑀𝑑2 + ∫

𝑝 (𝛼 βˆ’ 1) + 1 = 𝑝 (𝛾 βˆ’ 1) + 1 = 𝑝 (1 βˆ’

1 𝑑𝑠 π‘Ž (𝑠)

1 ∫ 𝑔 (𝑠) 𝑑𝑠 𝑑𝑒 π‘Ž (𝑒) 𝑑1 +

+ π‘˜π‘‘2 (∫ 𝑠2π‘ž π‘šπ‘ž (𝑠) (

Example 6. Let 𝑝 > 1, 0 < 𝛼 = 1 βˆ’ 1/2𝑝 < 1, 𝛼 = 𝛾, and π‘ž = 𝑝/(𝑝 βˆ’ 1). Clearly,

1 𝑑 lim sup ∫ π‘”βˆ’ (𝑠) 𝑑𝑠 < ∞, π‘‘β†’βˆž 𝑑 𝑐 (34)

1 𝑑 lim inf ∫ 𝑔+ (𝑠) 𝑑𝑠 > βˆ’βˆž π‘‘β†’βˆž 𝑑 𝑐

(38)

(39)

for any 𝑑1 β‰₯ 𝑐. If π‘₯ is a nonoscillatory solution of (37), then lim sup π‘‘β†’βˆž

|π‘₯ (𝑑)| < ∞. 𝑑

(40)

Discrete Dynamics in Nature and Society

5

Proof. Let π‘₯ be a nonoscillatory solution of (37). We may assume that π‘₯(𝑑) > 0 for 𝑑 β‰₯ 𝑑1 for some 𝑑1 β‰₯ 𝑐. We let 𝐹(𝑑) = 𝑓(𝑑, π‘₯(𝑑)). In view of (ii) we may then write

Let the functions 𝑒(𝑑) = 𝑑 sin 𝑑 and 𝑓(𝑑, π‘₯) = π‘‘π›Ύβˆ’1 β„Ž(𝑑)π‘₯πœ† , where ∞ 0 < πœ† < 1, β„Ž ∈ 𝐢(R+ , R+ ) with β„Ž(𝑑) = π‘š(𝑑), ∫ π‘ π‘ž β„Žπ‘ž (𝑠)𝑑𝑠 < ∞, and

π‘₯σΈ€  (𝑑) 𝑑1

≀ 𝑒 (𝑑) + ∫ (𝑑 βˆ’ 𝑠)

π›Όβˆ’1

𝑐

1 𝑑 lim sup ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 β„Ž (𝑠) 𝑑𝑠 < ∞. π‘‘β†’βˆž 𝑑 𝑑1

|𝐹 (𝑠)| 𝑑𝑠

𝑑

+ ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 [β„Ž (𝑠) π‘₯πœ† (𝑠) βˆ’ π‘š (𝑠) π‘₯ (𝑠)] 𝑑𝑠

(41)

𝑑1

Condition (39) is also fulfilled. Thus, all conditions of Theorem 8 are satisfied and hence every nonoscillatory solution π‘₯ of (37) satisfies lim supπ‘‘β†’βˆž (|π‘₯(𝑑)|/𝑑) < ∞.

𝑑

Finally, we consider the integral equation

+ ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠. 𝑑1

𝑑

π‘₯ (𝑑) = 𝑒 (𝑑) + ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘˜ (𝑑, 𝑠) 𝑓 (𝑠, π‘₯ (𝑠)) 𝑑𝑠,

Proceeding as in the proof of Theorem 3, we obtain

𝑐

𝑑1

𝑐

β‹…πœ†

∫ (𝑑 βˆ’ 𝑠)

π›Όβˆ’1 π›Ύβˆ’1

𝑠

𝑑1

1/(1βˆ’πœ†)

β‹…β„Ž

𝑑

πœ†/(πœ†βˆ’1)

π‘š

𝑑

(𝑠) 𝑑𝑠 + ∫ (𝑑 βˆ’ 𝑠)

π›Όβˆ’1 π›Ύβˆ’1

𝑠

𝑑1

(𝑠)

(42)

Now we give sufficient conditions for the boundedness of any nonoscillatory solution of (47). Theorem 10. Let 0 < πœ† < 1 and let condition (ii) hold and suppose that 𝑝 > 1, π‘ž = 𝑝/(𝑝 βˆ’ 1), 0 < 𝛼 < 1, and 𝛾 = 2 βˆ’ 𝛼 βˆ’ 1/𝑝, 𝑝(𝛼 βˆ’ 1) + 1 > 0, and 𝑝(𝛾 βˆ’ 1) + 1 > 0,

π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠.

Integrating inequality (42) from 𝑑1 to 𝑑 and interchanging the order of integration one can easily obtain

∞

∫ π‘šπ‘ž (𝑠) 𝑑𝑠 < ∞, 𝑑1

𝑑

π‘‘β†’βˆž

𝑑1

𝑒

𝑑1

𝑑1

𝑑

𝑑1

𝑑1

𝑐

π›Όβˆ’1 π›Ύβˆ’1

+ ∫ ∫ (𝑒 βˆ’ 𝑠)

𝑠

π›Όβˆ’1

+ ∫ ∫ (𝑑1 βˆ’ 𝑠)

π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠 𝑑𝑒

|𝐹 (𝑠)| 𝑑𝑠 𝑑𝑒.

𝑑

𝑑 𝑑 ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠 𝛼 𝑑1 𝑑1

𝑑1

𝑐

π‘‘β†’βˆž

Proof. Let π‘₯ be an eventually positive solution of (47). We may assume that π‘₯(𝑑) > 0 for 𝑑 β‰₯ 𝑑1 for some 𝑑1 β‰₯ 𝑐. We let 𝐹(𝑑) = 𝑓(𝑑, π‘₯(𝑑)). In view of (ii) we may then write π‘₯ (𝑑)

𝑑1

𝑑1

≀ ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 |𝐹 (𝑠)| 𝑑𝑠 + 𝑒 (𝑑)

(44)

𝑐

𝑑

π›Όβˆ’1

+ ∫ ∫ (𝑑1 βˆ’ 𝑠)

+ ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 [β„Ž (𝑠) π‘₯πœ† (𝑠) βˆ’ π‘š (𝑠) π‘₯ (𝑠)] 𝑑𝑠

|𝐹 (𝑠)| 𝑑𝑠 𝑑𝑒.

Example 9. Let 𝑝 > 1, 0 < 𝛼 = 1 βˆ’ 1/2𝑝 < 1, 𝛼 = 𝛾, and π‘ž = 𝑝/(𝑝 βˆ’ 1). Clearly, 𝑝 (𝛼 βˆ’ 1) + 1 = 𝑝 (𝛾 βˆ’ 1) + 1 = 𝑝 (1 βˆ’ 1 > 0, 2

πœƒ = 𝑝 (𝛼 + 𝛾 βˆ’ 2) + 1 = 0.

(50)

𝑑1 𝑑

+ ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠

The rest of the proof is similar to that of Theorem 3 and hence is omitted.

=

(49)

where 𝑔(𝑑) is defined as in (5) for any 𝑑1 β‰₯ 𝑐. If π‘₯ is a nonoscillatory solution of (47), then π‘₯ is bounded.

π‘₯ (𝑑) ≀ π‘₯ (𝑑1 ) + ∫ 𝑔+ (𝑠) 𝑑𝑠

𝑑

lim inf 𝑔+ (𝑑) > βˆ’βˆž,

(43)

Interchanging the order of integration in second integral we have

+

(48)

lim sup π‘”βˆ’ (𝑑) < ∞,

π‘₯ (𝑑) ≀ π‘₯ (𝑑1 ) + ∫ 𝑔+ (𝑠) 𝑑𝑠 𝑑

(47)

𝑐 > 1, 𝛼 ∈ (0, 1) .

π‘₯σΈ€  (𝑑) ≀ ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 |𝐹 (𝑠)| 𝑑𝑠 + 𝑒 (𝑑) + (1 βˆ’ πœ†) πœ†/(1βˆ’πœ†)

(46)

1 βˆ’ 1) + 1 2𝑝

𝑑1

or 𝑑

π‘₯ (𝑑) ≀ ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 |𝐹 (𝑠)| 𝑑𝑠 + 𝑔+ (𝑑) 𝑐

𝑑

(45)

+ ∫ (𝑑 βˆ’ 𝑠) 𝑑1

(51) π›Όβˆ’1 π›Ύβˆ’1

𝑠

π‘š (𝑠) π‘₯ (𝑠) 𝑑𝑠.

The rest of the proof is similar to that of Theorem 3 and hence is omitted.

6

Discrete Dynamics in Nature and Society

Example 11. Let 𝑝 > 1, 0 < 𝛼 = 1 βˆ’ 1/2𝑝 < 1, 𝛼 = 𝛾, and π‘ž = 𝑝/(𝑝 βˆ’ 1). Clearly, 𝑝 (𝛼 βˆ’ 1) + 1 = 𝑝 (𝛾 βˆ’ 1) + 1 = 𝑝 (1 βˆ’ =

1 βˆ’ 1) + 1 2𝑝

1 > 0, 2

(52)

πœƒ = 𝑝 (𝛼 + 𝛾 βˆ’ 2) + 1 = 0. Let the functions 𝑒(𝑑) = sin 𝑑 and 𝑓(𝑑, π‘₯) = π‘‘π›Ύβˆ’1 β„Ž(𝑑)π‘₯πœ† , where ∞ 0 < πœ† < 1, β„Ž ∈ 𝐢(R+ , R+ ) with β„Ž(𝑑) = π‘š(𝑑), ∫ β„Žπ‘ž (𝑠)𝑑𝑠 < ∞, and 𝑑

lim sup ∫ (𝑑 βˆ’ 𝑠)π›Όβˆ’1 π‘ π›Ύβˆ’1 β„Ž (𝑠) 𝑑𝑠 < ∞. π‘‘β†’βˆž

𝑑1

(53)

Condition (49) is also fulfilled. Thus, all conditions of Theorem 10 are satisfied and hence every nonoscillatory solution π‘₯ of (37) is bounded. Similar reasoning to that in the sublinear case guarantees the following theorems for the integrodifferential equations (37) and (47) when πœ† = 1. Theorem 12. Let πœ† = 1 and the hypotheses of Theorems 8 and 10 hold with π‘š(𝑑) = β„Ž(𝑑). Then the conclusion of Theorems 8 and 10 holds. We may note that results similar to Theorem 4 can be obtained for (37) and (47). The details are left to the reader.

3. General Remarks (i) The results of this paper are presented in a form which is essentially new and it can also be employed to investigate the asymptotic and oscillatory behavior of certain integrodifferential equations of higher order 𝛼 ∈ (𝑛 βˆ’ 1, 𝑛), 𝑛 β‰₯ 1. The details are left to the reader. (ii) It would be of interest to study (1) when 𝑓 satisfies condition (iii) with πœ† > 1.

Competing Interests The authors declare that they have no competing interests.

References [1] D. Bleanu, J. A. T. Machado, and A. C.-J. Luo, Fractional Dynamics and Control, Springer, New York, NY, USA, 2012. [2] V. Lakshmikantham, S. Leela, and J. Vaaundhara Dev, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009. [3] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 2006. [4] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.

[5] Q.-H. Ma, J. Pecaric, and J.-M. Zhang, β€œIntegral inequalities of systems andthe estimate for solutions of certain nonlinear two-dimensional fractional differential systems,” Computers & Mathematics with Applications, vol. 61, no. 11, pp. 3258–3267, 2011. [6] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. [7] A. P. Prudnikov, Z. A. Brychkov, and O. I. Marichev, β€œIntegral and series,” in Elementary Functions, vol. 1, Nauka, Moscow, Russia, 1981 (Russian). [8] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, New York, NY, USA, 1993. [9] M. Bohner, S. Grace, and N. Sultana, β€œAsymptotic behavior of nonoscillatory solutions of higher-order integro-dynamic equations,” Opuscula Mathematica, vol. 34, no. 1, pp. 5–14, 2014. [10] S. R. Grace and A. Zafer, β€œOscillatory behavior of integrodynamic and integral equations on time scales,” Applied Mathematics Letters, vol. 28, pp. 47–52, 2014. [11] S. R. Grace, J. R. Graef, and A. Zafer, β€œOscillation of integrodynamic equations on time scales,” Applied Mathematics Letters, vol. 26, no. 4, pp. 383–386, 2013. [12] S. R. Grace, J. R. Graef, S. Panigrahi, and E. Tunc, β€œOn the oscillatory behavior of Volterra integral equations on timescales,” Panamerican Mathematical Journal, vol. 23, no. 2, pp. 35–41, 2013. [13] S. R. Grace, R. P. Agarwal, P. J. Y. Wong, and A. Zafer, β€œOn the oscillation of fractional differential equations,” Fractional Calculus and Applied Analysis, vol. 15, no. 2, pp. 222–231, 2012. [14] G. H. Hardy, I. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, Cambridge, UK, 1959.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014