Results Discussion References Background Methods

2 downloads 0 Views 4MB Size Report
brain response to negaxve feedback (FRN) and brain-‐ heart associaxons following negaxve feedback (N300_4). We further show that both of these measures ...
NEUROVISCERAL  CONNECTIVITY  AND  BRAIN  ACTIVITY  FOLLOWING  NEGATIVE  FEEDBACK  –     TWO  COMT  VAL158MET  DEPENDENT  INTERMEDIATE  PHENOTYPES  FOR  TRAIT  ANXIETY   1 1 1 2 1 Erik  M.  Mueller ,  Isabella  Mayer ,  Gerhard  Stemmler ,  Jürgen  Hennig ,  &  Jan  Wacker   1  Marburg  University,  Germany        2  Giessen  University,  Germany        Contact:  erik.mueller@staff.uni-­‐marburg.de    

The  goal  of  the  present  study  was  to  test  whether  COMT  and  anxiety  are  associated  with  neurovisceral  coupling     (i.e.  N300_4)  and  feedback  processing  (i.e.  FRN).  

1

1

0

00

0

0

−4 −4 -­‐4   0

100 100

300 300

200 200

200  

400 400

500 500

400  

Discussion

 

COMT   Val158Met   has   previously   been   linked   to   neuroWcism   and   anxiety   disorders   [1,2].   Here   we   show   that   COMT   Val158Met   independently   modulates   the   brain   response   to   negaWve   feedback   (FRN)   and   brain-­‐ heart  associaWons  following  negaWve  feedback  (N300_4).   We   further   show   that   both   of   these   measures   are   (independently)  correlated  with  quesWonnaire  measures   of  trait  anxiety.  

−5 −5

Time  in  EEG  (ms)   4

3

COMT  modulates  N300_4  to   neg.  Feedback  (p  <  .05)2  

VAL/VAL

N300_4  to  neg.  Feedback   predicts  anxiety  (p  <  .05)2  

VAL/MET 2

MET/MET

-­‐0.2   -­‐0.15  

1

0 -125

0

125

250

-­‐0.1  

-­‐0.05  

375

0   VAL/VAL   VAL/MET   MET/MET  

0.2   0.1   0   -­‐0.1   -­‐0.2   -­‐0.3   -­‐0.4   -­‐0.5   -­‐0.6   -­‐3  

-­‐1   1   Anxiety-­‐Factor  score  

-3

Replica9on  in  re-­‐analysis  of  different  dataset  [6]    (p  <  .05,  one-­‐tailed)  

time rel. feedback (ms)

CECT  (Cz,  any  feedback)  

Feedback-­‐related  Nega9vity  predicts  anxiety       r(175)  =  .201;  p  <  .01)  

Time  in  HP  (ms)  

  4000 4000  

N300_4  

2000

2000  

0 0  

400   400

200 200  

0.2   0.1   0   -­‐0.1   -­‐0.2   -­‐0.3   -­‐0.4   -­‐0.5   -­‐0.6   1.5  

2.5   BIS  score  

Time  in  EEG  (ms)  

6

3.5  

FRN (uV)

How  the  Val-­‐allele  could  be  related  to  elevated  anxiety   0

Intermediate  Phenotype  

Genotype  

Phenotype  

VAL>MET   Noradrenaline?  

-6

COMT   Val158Met  

-12 -3

-2

-1

0

Anxiety-Factor Score

1  remains  significant  when  controlling  for  N300_4  (p  <  .05)  

1

2

3

VAL >

MET

Neurovisceral   ConnecWvity  awer   negaWve  Feedback  

+  

Dopamine?  

+  

NegaWve  Feedback   Processing   2  remains  significant  when  controlling  for  FRN  (p  <  .05)  

By   affecWng   DA   and   NE,   the   COMTVal158Met   Val   allele   may   potenWate   central   and   peripheral   responses   to   negaWve   events,   respecWvely,   and   thereby   increase   the   experience   of   negaWve   affect   and   anxiety   across   different  situaWons.    

3  

FRN

-2

•  N=199   healthy   male   parWcipants   (right   handed,   20-­‐35   years)   performed   an   adapWve   Wme-­‐esWmaWon   task   and   received  k  =  80  Wmes  posiWve,  negaWve  or  uninformaWve  feedback  at  the  end  of  each  trial  [8]   •  ECG  converted  to  heart  period  trace  (HP)  by  automated  r-­‐spike  detecWon  and  conversion  tool.   •  EEG  (32/64  channel  BioSemi  AcWveTwo  system)  sampled  at  128  Hz  and  band-­‐pass  filtered  (.1  –  40  Hz).  Visually   inspected   for   artefacts.   Eye   movement   artefacts   removed   via   ICA.   Exclusion   of   n   =   24   parWcipants   due   to   bad   EEG  or  ECG  recording.   •  Individual   CECTs   computed   using   Wme-­‐lagged   correlaWons   (correlaWng   over   trials)   of   single-­‐trial   HP   (10   lags   of   500  ms  each,  ranging  from  0  –  5000  ms  relaWve  to  feedback  sWmulus)  and  EEG  magnitude  at  channel  Cz  (100  lags   of  approximately  8  ms  each,  ranging  from  -­‐300  to  500  ms),  separately  for  all  feedback  types.   •  N300_4  was  measured  as  the  mean  intraindividual  correlaWon  between  EEG  magnitude  from  300-­‐350  ms  and  HP   from  3500-­‐4000  ms;  FRN  was  measured  as  the  peak  amplitude  between  200  and  300  ms  relaWve  to  the  feedback   sWmulus  at  channel  Fz.   •  Genotyping  by  real  Wme  PCR  using  fluorescence  melWng  curve  detecWon  analysis.  Final  sample  n=  33,  87,  55  for   Val/Val,  Val/Met  and  Met/Met,  respecWvely.     •  Phenotyping   by   factor   analysis   of   ANX   scales   from   several   personality   quesWonnaires   (NEO,   ZKPQ,   PSWQ,   BIS/ BAS).  First  factor  was  used  for  analyses.   •  Placebo  vs.  sulpiride  (200mg,  randomized,  double-­‐blind)  was  taken  orally  3  hours  prior  to  task.  Because  sulpiride   did  not  influence  N300_4  or  FRN  this  factor  will  not  be  further  reported  here.  

22

−3 −3

-78 -78

-1

Methods

2

−2 −2 -­‐2  

10001000

-156-156

3

−1 −1

2000   20002000

COMT  modulates  Feedback-­‐related  nega9vity  (p  <  .01)1   Feedback-locked event-related potential (Fz, negative feedback)

N300_4  

30003000

3

t-­‐value  (df  =  174)  

40004000 4000  

N300_4  (r)  

DA  has  been  linked  to  feedback  processing,  in  parWcular  to  the  feedback-­‐related  negaWvity  (FRN)  ERP-­‐component   [7].   Because  the  FRN   and   related   components   have   previously   been   linked   to   ANX,   the   FRN   may   serve  as   a   further   intermediate  phenotype  linking  COMT  Val158Met  to  ANX  [8,  9].  

No  direct  associaWon  between  COMT  Val158Met  and   quesWonnaire  measures  of  anxiety  (p  >  .2)  

N300_4  (r)  

NE   has   been   linked   to   neurovisceral   (brain-­‐body)   coupling   [3]   which   plays   an   important   role   in   the   psychophysiology   of   ANX   [4,5].   Cardio-­‐electroencephalographic   covariance   tracing   (CECT;   6),   which   reflects   the   systemaWc  computaWon  of  intraindividual  Wme-­‐lagged  correlaWons  between  EEG  magnitudes  and  heart  inter-­‐beat   intervals   at   varying   latencies   provides   a   method   to   study   neurovisceral   coupling.   The   previously   idenWfied   N300_4   component   is   an   indicator   for   the   magnitude   of   neurovisceral   coupling   in   the   P300   Wme-­‐range   [6],   presumably   linked  to  NE  [3],  and  may  therefore  serve  as  an  intermediate  phenotype  linking  COMT  Val158Met  to  ANX.  

CECT  (Cz,  any  feedback)  

Time  in  HP  (ms)  

The   Catechol-­‐O-­‐Methyltransferase   (COMT)   is   responsible   for   the   degradaWon   of   brain   norepinephrine   (NE)   and   dopamine  (DA).  The  link  between  the  Val  allele  of  the  COMT  Val158Met  polymorphism  (associated  with  elevated   DA  and  NE  metabolism)  and  neuroWcism/anxiety  (ANX)  has  been  heavily  studied  although  the  mechanisms  of  this   associaWon  are  not  known  [1,2].  

Results  

5

4 N300_4  indicates  9me-­‐lagged  EEG-­‐HP  covaria9on  4(p   <  .05)  

N300_4(r)  

 

Voltage (uV)

Background

5

NeuroWcism/   Anxiety  

References   [1]   Domschke,   K.,   J.   Deckert,   et   al.   (2007).   "Meta-­‐analysis   of   COMT   val158met   in   panic   disorder:   ethnic   heterogeneity   and   gender   specificity."  Am  J  Med  Genet  B  Neuropsychiatr  Genet  144B(5):  667-­‐73.   [2]   Hekema,   J.   M.,   S.   S.   An,   et   al.   (2008).   "Catechol-­‐O-­‐methyltransferase   contributes   to   geneWc   suscepWbility   shared   among   anxiety   spectrum   phenotypes."  Biol  Psychiatry  64(4):  302-­‐10.   [3]   Nieuwenhuis,   S.,   E.   J.   De   Geus,   et   al.   (2011).   "The   anatomical   and   funcWonal  relaWonship  between  the  P3  and  autonomic  components  of   the  orienWng  response."  Psychophysiology  48:  162-­‐175.   [4]   Thayer,   J.   F.,   B.   H.   Friedman,   et   al.   (2000).   "Phasic   heart   period   reacWons  to  cued  threat  and  nonthreat  sWmuli  in  generalized  anxiety   disorder."  Psychophysiology  37(3):  361-­‐8.     [5]   Berntson,   G.   G.,   M.   Sarter,   et   al.   (1998).   "Anxiety   and   cardiovascular   reacWvity:  the  basal  forebrain   cholinergic  link."   Behav  Brain  Res  94(2):   225-­‐48.   [6]   Mueller,   E.   M.,   G.   Stemmler,   et   al.   (2010).   "Single-­‐trial   electroencepha-­‐logram  predicts  cardiac  acceleraWon:  a  Wme-­‐lagged  P-­‐ correlaWon   approach   for   studying   neurovisceral   connecWvity."   Neuroscience  166(2):  491-­‐500.   [7]  Holroyd,  C.  B.  and  M.  G.  Coles  (2002).  "The  neural  basis  of  human  error   processing:   reinforcement   learning,   dopamine,   and   the   error-­‐related   negaWvity."  Psychol  Rev  109(4):  679-­‐709.   [8]   Hirsh,   J.   B.   and   M.   Inzlicht   (2008).   "The   devil   you   know:   neuroWcism   predicts  neural  response  to  uncertainty."  Psychol  Sci  19(10):  962-­‐7.   [9]  Olvet,  D.  M.  and  G.  Hajcak  (2008).  "The  error-­‐related  negaWvity  (ERN)   and   psychopathology:   toward   an   endophenotype."   Clin   Psychol   Rev   28(8):  1343-­‐54.