Robustness of Support Vector Machines: the ...

2 downloads 0 Views 493KB Size Report
If Gâteaux derivative ∇G(z;S,P) exists: ∇G = IF and IF is linear and continuous. Goal: Bounded IF. Vrije Universiteit Brussel. Robustness of SVMs: BIF.
Robustness of Support Vector Machines: the Bouligand Influence Function Arnout Van Messem

Andreas Christmann

8th German Open Conference on Probability and Statistics, Aachen, March 4-7, 2008

Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 1

SVM

Robustness

Conclusions

References

Notation Assumptions: X ⊆ Rd , Y ⊆ R, X 6= ∅, Y 6= ∅ D = ((x1 , y1 ), . . . , (xn , yn )), 1 ≤ i ≤ n (Xi , Yi ) i.i.d. ∼ P ∈ M1 , P (totally) unknown Aim: f (xi ) = quantity of interest of PYi |Xi =xi e.g. conditional median for robust regression Assumption: Loss function: L : Y × R → [0, ∞), L(yi , f (xi )), convex Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 2

SVM

Robustness

Conclusions

References

Lipschitz loss functions for regression 3 0

1

2

L

2 0

1

L

3

4

Huber, c=1

4

eps−insensitive, eps=0.5

−2

0

2

4

−4

−2

0

2

4

r

r

Logistic

Pinball, tau=0.10

0

0

1

2

L

2 1

L

3

3

4

−4

−4

−2

0

2

4

r

Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

−4

−2

0

2

4

r

Robustness of SVMs: BIF 3

SVM

Robustness

Conclusions

References

Kernel methods Kernel: k : X × X → R, if ∃ Hilbert space H and Φ : X → H such that k(x, x0 ) = hΦ(x), Φ(x0 )i,

∀x, x0 ∈ X

Reproducing Kernel Hilbert Space (RKHS) H a Hilbert space of functions f : X → R. A reproducing kernel for H is a kernel k with f (x) = hf, k(x, ·)i ∀ f ∈ H, ∀ x ∈ X. Canonical feature map: Φ(x) = k(x, ·), x ∈ X k  RKHS unique p Bounded: ||k||∞ := supx∈X k(x, x) < ∞ 0 2 Gaussian RBF: k(x, x0 ) = e−γ||x−x ||2 , γ > 0 Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 4

SVM

Robustness

Conclusions

References

Support Vector Machines Definition SVM operator  S(P) = fP,λ = arg min EP L Yi , f (Xi ) + λ kf k2H , f ∈H

where P ∈ M1 , H is a RKHS and λ > 0. SVM estimator n  1X S(Pn ) = arg min L Yi , f (Xi ) +λ kf k2H , f ∈H n i=1 P n 1 where Pn := n i=1 ∆(xi ,yi ) .

Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 5

SVM

Robustness

Conclusions

References

Robustness 1 2

What if (Xi , Yi ) i.i.d. ∼ P, P ∈ M1 unknown is invalid? What is the impact on S(P) = fP,λ ?

Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 6

SVM

Robustness

Conclusions

References

Roadmap

Hadamard

mm 2: mmm m m mm mmm Fr´echetPP PPP PPPP PPP $,

Bouligand

Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

+3

GˆateauxQQQ

+3

QQQ QQQQ QQQQ Q $,

BIF

n 2: nnn n n nn nnn nnn

IF

Robustness of SVMs: BIF 7

SVM

Robustness

Conclusions

References

Influence Function Definition (Hampel, ’68, Hampel et al. ’86) The influence function of S at P is given by  S (1 − ε)P + ε∆z − S(P) IF(z; S, P) := lim , ε↓0 ε in those z where this limit exists. If Gˆateaux derivative ∇G (z; S, P) exists: ∇G = IF and IF is linear and continuous Goal: Bounded IF Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 8

SVM

Robustness

Conclusions

References

Bouligand differentiability Bouligand-derivative f : X → Z is Bouligand-differentiable at x0 ∈ X, if ∃ a positive homogeneous function ∇B f (x0 ) : X → Z such that f (x0 + h) = f (x0 ) + ∇B f (x0 )(h) + o(h) , i.e.

f (x0 + h) − f (x0 ) − ∇B f (x0 )(h) Z lim = 0. h↓0 khkX

Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 9

SVM

Robustness

Conclusions

References

Strong approximation f : X → Z strongly approximates F : X × Y → Z in x at (x0 , y0 ) (notation: f ≈x F ) if ∀ε > 0 ∃ neighborhoods N (x0 ) of x0 and N (y0 ) of y0 such that ∀x, x0 ∈ N (x0 ), ∀y ∈ N (y0 )

 

F (x, y) − f (x) − F (x0 , y) − f (x0 ) ≤ ε kx − x0 k . X Z Strong Bouligand-derivative F : X × Y → Z has partial B-derivative ∇B 1 F (x0 , y0 ) w.r.t. x at (x0 , y0 ). Then ∇B F (x , y ) is strong if 0 0 1 F (x0 , y0 ) + ∇B 1 F (x0 , y0 )(x − x0 ) ≈x F at (x0 , y0 ). Robinson (1991) Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 10

SVM

Robustness

Conclusions

References

Bouligand Influence Function BIF (C&VM ’07) The Bouligand influence function (BIF) of a function S : M1 → H for a distribution P in the direction of a distribution Q 6= P is the special B-derivative (if it exists)



S (1 − ε)P + εQ − S(P) − BIF(Q; S, P) H lim = 0. εkQ−Pk↓0 ε kQ − Pk If BIF exists and Q = ∆z : IF exists and BIF = IF Goal: Bounded BIF Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 11

SVM

Robustness

Conclusions

References

Bouligand Influence Function BIF (C&VM ’07) The Bouligand influence function (BIF) of a function S : M1 → H for a distribution P in the direction of a distribution Q 6= P is the special B-derivative (if it exists)



S (1 − ε)P + εQ − S(P) − BIF(Q; S, P) H = 0. lim ε↓0 ε If BIF exists and Q = ∆z : IF exists and BIF = IF Goal: Bounded BIF Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 11

SVM

Robustness

Conclusions

References

Main result Assumptions X ⊂ Rd , Y ⊂ R closed sets, H is RKHS with bounded, measurable kernel k, fP,λ ∈ H, L : Y × R → [0, ∞) convex and Lipschitz continuous w.r.t. the 2nd argument with uniform Lipschitz constant |L|1 := supy∈Y |L(y, ·)|1 ∈ (0, ∞), nd L has measurable partial B-derivatives w.r.t.

B

the 2

∇2 L(y, ·) ∈ (0, ∞), argument with κ1 := supy∈Y ∞

L(y, ·) κ2 := supy∈Y ∇B < ∞ , 2,2 ∞ Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 12

SVM

Robustness

Conclusions

References

Assumptions δ1 > 0, δ2 > 0, Nδ1 (fP,λ ) := {f ∈ H; kf − fP,λ kH < δ1 }, λ > 12 κ2 kΦk3H , (Note: κ2 = 0 for L , Lτ )  P, Q probability measures on X × Y, B(X × Y ) with EP |Y | < ∞ and EQ |Y | < ∞. Define G : (−δ2 , δ2 ) × Nδ1 (f (P, λ)) → H, G(ε, f ) := 2λf + E(1−ε)P+εQ ∇B 2 L(Y, f (X))Φ(X) , G(0, fP,λ ) = 0 and ∇B 2 G(0, fP,λ ) is strong.

Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 13

SVM

Robustness

Conclusions

References

Theorem (C&VM ’07) Then BIF(Q; S, P) with S(P) := fP,λ 1 exists, 2 equals  T −1 EP ∇B 2 L(Y, fP,λ (X))Φ(X)  L(Y, f (X))Φ(X) , −EQ ∇B P,λ 2

3

where T : H → H with T = 2λ idH + EP ∇B 2,2 L(Y, fP,λ (X))hΦ(X), ·iH Φ(X), and is bounded.

Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 14

SVM

Robustness

Conclusions

References

Sketch of proof Existence fP,λ : convexity of L and penalizing term (Christmann & Steinwart, 2007) Define G(ε, f ) G(ε, f ) fulfills the conditions for an implicit function theorem on B-derivatives (Robinson, 1991)

G(ε, f ) =

∂Rreg L,(1−ε)P+εQ,λ ∂H

reg (f ) = ∇B 2 RL,(1−ε)P+εQ,λ (f ) , ε ∈ [0, 1]

Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 15

SVM

Robustness

Conclusions

References

Examples The assumptions of the theorem are valid and thus BIF(Q; S, P) exists and is bounded, if -insensitive loss L , pinball loss Lτ ∀δ > 0 ∃ positive constants ξP , ξQ , cP , and cQ such that ∀t ∈ R with |t − fP,λ (x)| ≤ δkkk∞ the following inequalities hold ∀a ∈ [0, 2δkkk∞ ] and ∀x ∈ X:  P Y ∈ [t, t + a] x ≤ cP a1+ξP  Q Y ∈ [t, t + a] x ≤ cQ a1+ξQ .

Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 16

SVM

Robustness

Conclusions

References

The assumptions of the theorem are valid and thus BIF(Q; S, P) exists and is bounded, if Huber loss LHuber ∀x ∈ X:   P Y ∈ fP,λ (x) − c, fP,λ (x) + c x  = Q Y ∈ fP,λ (x) − c, fP,λ (x) + c x = 0. ∃ BIF, Q = ∆z , z ∈ / {fP,λ (x) − c, fP,λ (x) + c} : BIF = IF Logistic loss Llog No special assumptions on the probabilities needed. ∃ BIF, Q = ∆z : BIF = IF Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 17

SVM

Robustness

Conclusions

References

Conclusions Bouligand Influence Function If BIF exists and Q = ∆z : BIF = IF B-derivative: pos. homog., chain rule, implicit funct. thm Support Vector Machines Non-parametric and flexible Able to learn Robust: BIF(Q; T, P) bounded for regression if ∇B 2 L and k bounded Applications: insurance tariffs, credit scoring in banks, fraud detection, data mining, genomics, . . . Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 18

SVM

Robustness

Conclusions

References

References • Christmann & Van Messem (2007). Bouligand derivatives and robustness of support vector machines for regression. Tent. accepted. • Christmann & Steinwart (2007). Consistency and robustness of kernel based regression. Bernoulli, 13, 799-819. • Hampel (1974). The influence curve and its role in robust estimation. J. Amer. Statist. Assoc., 69, 383-393. • Hampel, Ronchetti, Rousseeuw, Stahel (1986). Robust Statistics. Wiley. • Robinson (1991). An implicit-function theorem for a class of non-smooth functions. Mathematics of Operations Research, 16, 292-309. • Sch¨olkopf & Smola (2002). Learning with kernels. MIT Press. • Vapnik (1998). Statistical learning theory. Wiley. Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 19

SVM

Robustness

Conclusions

References

More on the theorem For the proof of the theorem we showed: i. For some χ and each f ∈ Nδ1 (fP,λ ), G(· , f ) is Lipschitz continuous on (−δ2 , δ2 ) with Lipschitz constant χ. ii. G has partial B-derivatives with respect to ε and f at (0, fP,λ ).  iii. ∇B 2 G(0, fP,λ ) Nδ1 (fP,λ ) − fP,λ is a neighborhood of 0 ∈ H.  iv. δ ∇B =: d0 > 0. 2 G(0, fP,λ ), Nδ1 (fP,λ ) − fP,λ

Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 20

SVM

Robustness

Conclusions

References

v. For each ξ > d−1 0 χ there exist δ3 , δ4 > 0, a neighborhood Nδ3 (fP,λ ) := {f ∈ H; kf − fP,λ kH < δ3 }, and a function f ∗ : (−δ4 , δ4 ) → Nδ3 (fP,λ ) satisfying v.1) f ∗ (0) = fP,λ . v.2) f ∗ (·) is Lipschitz continuous on (−δ4 , δ4 ) with Lipschitz constant |f ∗ |1 = ξ. v.3) For each ε ∈ (−δ4 , δ4 ) is f ∗ (ε) the unique solution of G(ε, f ) = 0 in (−δ4 , δ4 ). v.4) It holds −1  ∇B f ∗ (0)(u) = ∇B −∇B 2 G(0, fP,λ ) 1 G(0, fP,λ )(u) .

Vrije Universiteit Brussel Arnout Van Messem - homepages.vub.ac.be/∼avmessem

Robustness of SVMs: BIF 21