RUNNING HEAD

6 downloads 0 Views 466KB Size Report
Callicott, J.H., Mattay, V.S., Bertolino, A., Finn, K., Coppola, R., Frank, J.A., … & Weinberger,. D.R. (1999). Physiological characteristics of capacity constraints in ...
RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

SUPPLEMENTARY MATERIAL FOR:

N-back Working Memory Task: Meta-analyses of Normative fMRI Studies with Children Zachary Yaple1 Marie Arsalidou2,3, * 1

Centre for Cognition and Decision Making, National Research University Higher School of

Economics, Moscow, Russian Federation 2

Department of Psychology, National Research University Higher School of Economics, Moscow,

Russian Federation 3

Department of Psychology, York University, Toronto, Canada

Methods The key terms: ‘fMRI’ AND ‘n-back’, specifying language as English, and document type as article were searched (http://www.webofknowledge.com) on the 7th of August 2017. This search was set to look for articles published from January 1st, 2011 to August 7th, 2017; eligible articles published before 2011 were taken from previously published meta-analyses using the n-back (Rottschy et al., 2012). Our literature search yielded 328 articles, which underwent a series of selection criteria (Figure S1). Specifically, in order to be included in the analyses, articles had to (a) report healthy participants, (b) use fMRI, (c) report whole-brain, within-group results using randomeffects analysis, (d) report stereotaxic coordinates in Talairach or Montreal Neurological Institute

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

(MNI) space, and (e) include contrasts of the n-back task (e.g. 2 back > 1 back). Only those articles with adult participants (age range 18-65) were included in the analysis. Both examiners undertook this selection process separately, and then came to a final agreement. Data from 48 articles between 2012 and 2017 were included in the meta-analyses. Additional articles using the n-back task with adults were taken from a recent meta-analysis (Rottschy et al., 2012). Four articles, which included adults older than 65 years were not included (Wishart et al., 2006; Döhnel et al., 2008; Lim et al., 2008; McGeown et al., 2008), thus data from 46 articles from Rottschy et al. (2012) were included in our meta-analysis. The total number of articles was 94, with included data from 97 subject groups, 131 experiments (i.e., contrasts). Twenty-three articles reported more than one experiment (as indicated by a in Table S1) and three articles reported results for two separate subject groups (Goldstein et al., 2005; Schmidt et al., 2009; Yan et al., 2011 as indicated by b in Table S1). Table S1 shows article information, participant demographics and contrast included in the analysis. Activation likelihood Estimate (ALE) meta-analysis was computed using GingerALE 2.3.6 (http://brainmap.org/ale/; Eickhoff et al., 2017). All coordinates were transformed into the same space: MNI coordinates were converted to Talairach using the Lancaster et al., (2007) transformation algorithm. Resulting statistical maps were thresholded using a cluster level correction for multiple comparisons p = 0.05 at a cluster forming threshold set at p < 0.001 (Eickhoff et al., 2017). Single study and contrast study analyses were performed between adults and children. Contrast analyses are performed on images corrected for multiple comparisons, thus the threshold for contrasts between adults and children is set to p = 0.01 uncorrected, with 5000 permutations and minimum volume 50 mm3. Lastly, a Fisher-Freeman-Halton Exact Test was calculated to examine whether experiments were partial to task type (verbal, shape, visuospatial, etc.) or contrast type (e.g. 2-back minus baseline, 1-back minus baseline).

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Results N-back tasks for adults between 18 and 65 years, with an average age of 29.83 ±6.56 years (55.85% male; 85.45% right handed), yielded a total of 1648 foci. The Fisher-Freeman-Halton Exact Test (2x3) revealed no statistical significance in frequency across task modality (Verbal and Visuospatial n-back) and contrast type (2 back, 1-back, Linear Trend of load; p = 0.353, FisherFreeman-Halton Exact Test), indicating that the results were not biased towards a contrast type or task modality.

N-back: Adults N-back tasks in adults showed significant ALE scores mainly in large bilateral clusters in the prefrontal and parietal cortex (Table S2). Other regions included the insula, claustrum and cerebellum.

Contrast: Adults vs Children Table S3 shows a complete list of significant coordinates from the conjunction analysis and contrast between children and adults. A conjunction analysis shows significant ALE values in the superior and medial frontal gyri (Brodmann Area, BA 6) and in superior and parietal lobules (BA 7, 40). Other common regions include the insula and the cerebellum. Children did not have any suprathreshold clusters compared to adults. Compared to children, adults showed increased ALE values mainly in prefrontal regions (BA 9, 46, 10), the claustrum and parietal cortex (BA 7, 40).

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

  Keywords:  TOPIC:  fMRI  AND  “n  back”  AND  LANGUAGE:   (English)  AND  DOCUMENT  TYPES  (Article);  TIMESPAN:   2011-­‐Present;     n  =  328    

Identification  

       

Screening  

  No  healthy  contrasts       n  =  4  

  Age  <  18:  n  =  14  

 

No  fMRI  n  =  35   No  whole-­‐brain   coordinates  n  =  58  

  No  n  back  contrast  n  =  10  

 

No  control  group  or   within  group  contrast               n  =  65    

Age  >  65:  n  =  14  

   

Eligibility  

Removed                                                                                         n  =  200  

Eligible  articles  from    previous  meta-­‐analysis   (Rottschy   et  al.,  2012)                                             +  n  =  46    

Eligible  articles                                             n  =  128  

No  foci  reported  n  =  80  

Eligible  articles                                             n  =  48  

 

Included  

       

Adults  (18-­‐65  yrs)                                                       n  =  94;                                           experiments  =  131;     foci  =  1648  

  Figure S1. PRISMA flowchart for eligibility of articles included in the adult meta-analysis.

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Table S1. Information on source datasets included in the meta-analysis of adults Gender

Hand

Age range/ Mean,

Article

n

(M)

(R)

(STD)

Foci

Task Modality

Contrast

Allen et al., 2006

10

8

All

23-35

6

Verbal n-back

2-back > 0-back

Alonso-Lana et al., 2016 a

28

12

All

44.01(6.03)

1

Verbal n-back

2-back > 1-back

1

Verbal n-back

2-back > rest

3

Verbal n-back

1-back > rest

Beneventi et al., 2007

12

6

All

21-29

24

Face n-back

Linear trend of WM load

Binder & Urbanik, 2005 a c

12

7

All

20-29

19

Verbal n-back

2-back > 0-back

17

Shape n-back

2-back > 0-back

8

Verbal n-back

2-back and 1-back > 0-back

8

Verbal n-back

Linear trend of WM load

18

Visuospatial n-back

Linear trend of WM load

Cader et al., 2006 a

Callicott et al., 1999

16

9

6

6

All

NA

23-51

18-39

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Campanella et al., 2013

32

14

All

21.2 (~2.2)

6

Digit n-back

2-back > 0-back

Caseras et al., 2006

12

4

All

24-45

10

Verbal n-back

Linear trend of WM load

Cerasa et al., 2008

30

30

All

18-43

16

Visuospatial n-back

2-back > 0-back

Choo et al., 2005

14

9

All

21.8 (0.8)

8

Verbal n-back

Linear trend of WM load

Ciesielski et al., 2006

10

5

All

20.4-27.6

15

Categorical n-back

2-back > 0-back

Cohen et al., 1997

10

5

NA

18-34

9

Verbal n-back

Linear trend of WM load

D’Aiuto et al., 2015 a

17

10

NA

26.38 (6.78)

3

Verbal n-back

2-back > 0-back

1

Verbal n-back

1-back > 0-back

Deckersbach et al., 2008

17

17

All

25.6 (5.9)

12

Verbal n-back

2-back > rest

Dima et al., 2014 a

40

20

All

31.5 (10.4)

10

Verbal n-back

3-back > 0-back

8

Verbal n-back

2-back > 0-back

5

Verbal n-back

1-back > 0-back

Dores et al., 2014

10

6

All

27.1 (2.27)

20

Visuospatial n-back

2-back > rest

Drapier et al., 2008 a

20

10

NA

26-63

4

Verbal n-back

1-back > rest

6

Verbal n-back

2-back > rest

7

Verbal n-back

3-back > rest

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Druzgal & D’Esposito, 2001

9

5

All

21-27

12

Face n-back

Linear trend of WM load

Duggirala et al., 2016 a c

50

28

All

23.62 (3.17)

13

Categorical n-back

2-back > 0-back

15

Face n-back

2-back > 0-back

18

Verbal n-back

2-back > 0-back

El-Hage et al., 2011

90

45

All

19-56

5

Verbal n-back

Linear trend of WM load

Elzinga et al., 2007

14

14

NA

34.6 (10.9)

21

Verbal n-back

3, 2, 1-back > rest

Falkenberg et al., 2015

15

10

All

19-35

9

Verbal n-back

2, 1-back > 0 back

2013

41

24

All

40.27 (9.8)

2

Verbal n-back

2-back > rest

Forn et al., 2007

10

5

NA

NA

10

Verbal n-back

2-back > 0-back

Frangou et al., 2008 a

7

2

All

39 (5.88)

11

Verbal n-back

2-back > 0-back

5

Verbal n-back

Linear trend of WM load

Fernández-Corcuera et al.,

Fusar-Poli et al., 2011

15

9

All

25.18 (5.07)

8

Verbal n-back

Linear trend of WM load

Garrett et al., 2011

19

13

17

34.85 (12.54)

12

Verbal n-back

1-back > 0-back

Gillis et al., 2016

15

15

All

18-36

34

Categorical n-back

2-back > 0-back

Göbel et al., 2016

21

21

All

21-49

65

Verbal n-back

Linear trend of WM load

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Goldstein et al., 2005 b

7

7

All

32.1 (6.6)

9

Verbal n-back

3-back > 1-back

Goldstein et al., 2005 b

7

0

All

34.1 (12.2)

16

Verbal n-back

3-back > 1-back

Gropman et al., 2011

21

7

17

31.8 (2.7)

43

Verbal n-back

Linear trend of WM load

Harvey et al., 2005

10

5

All

18-42

10

Verbal n-back

3, 2, 1-back > rest

Honey et al., 2000

20

20

All

19-64

10

Verbal n-back

Linear trend of WM load

Honey et al., 2003

27

21

All

35.1 (9.9)

11

Verbal n-back

2-back > 0-back

Huang et al., 2015 a

18

6

All

36-55

10

Visuospatial n-back

2-back > 1-back

5

Visuospatial n-back

1-back > 0-back

Jogia et al., 2012

37

21

NA

18-63

5

Verbal n-back

3, 2, 1-back > rest

Johannsen et al., 2013

12

4

All

21.7-37.8

14

Verbal n-back

2-back > 0-back

Kasahara et al., 2011

9

4

All

19-53

9

Verbal n-back

Linear trend of WM load

Kim et al., 2006

12

9

11

21-46

8

Verbal n-back

2-back > rest

Koppelstaetter et al., 2008

15

15

All

25-47

16

Verbal n-back

2-back > 0-back

Korsnes et al., 2013

11

0

NA

18-45

9

Digit n-back

2-back > 1-back

Koshino et al., 2008

11

10

10

28.7 (10.9)

15

Face n-back

2, 1, 0-back > rest

Kumari et al., 2003

12

12

All

20-40

8

Digit n-back

2, 1-back > 0-back

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Kumari et al., 2006 a

13

13

All

18-55

16

Visuospatial n-back

0-back > rest

22

Visuospatial n-back

1-back > 0-back

18

Visuospatial n-back

2-back > 0-back

Lamp et al., 2016

16

5

All

18-27

17

Shape n-back

1-back > rest

Leung & Alain, 2011 a c

16

5

All

18-30

13

Categorical n-back

2-back > 1-back

13

Visuospatial n-back

2-back > 1-back

18

Verbal n-back

2-back > rest

10

Verbal n-back

1-back > rest

7

Verbal n-back

0-back > rest

Li et al., 2014 a

15

0

All

19-22

Loughead et al., 2009

33

18

All

33 (10.55)

13

Shape n-back

Linear trend of WM load

Luo et al., 2014

25

25

All

20-28

12

Face n-back

2-back > 0-back

Lythe et al., 2012

20

20

26.7 (6.7)

2

Verbal n-back

Linear trend of WM load

Manelis & Reder, 2014

16

5

All

24

18

Verbal n-back

Linear trend of WM load

Manktelow et al., 2014

21

13

All

18-60

22

Verbal n-back

2-back > 0-back

Marquand et al., 2008

20

7

All

43.7 (8.6)

19

Verbal n-back

2-back > 0-back

Matsuo et al., 2007 a

15

6

12

37.7 (12.1)

2

Visuospatial n-back

2-back > 0-back

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

4

Visuospatial n-back

1-back > 0-back

Mattfeld et al., 2016

17

11

NA

28.7 (4.0)

6

Verbal n-back

Linear trend of WM load

McAllister et al., 1999 a

11

4

All

30.6 (11.2)

2

Verbal n-back

2-back > 0-back

5

Verbal n-back

1-back > 0-back

Monks et al., 2004

12

12

All

45.6 (3.52)

14

Verbal n-back

2-back > 0-back

Nebel et al., 2005 a

19

12

All

26-37

30

Verbal n-back

2-back > rest

10

Verbal n-back

1-back > rest

Nichols et al., 2017

41

88

All

30.8 (7.9)

7

Verbal n-back

3-back > 0-back

Norbury et al., 2014

15

10

All

23-61

6

Verbal n-back

3, 2, 1-back > 0-back

Oren et al., 2017

24

16

All

22-35

5

Digit n-back

Linear trend of WM load

Park et al., 2016

45

22

All

22.87 (~2.205)

41

Shape n-back

2-back > 0-back

Pomarol-Clortet et al., 2012

46

27

All

20-62

2

Verbal n-back

2-back > rest

Qin et al., 2009

27

27

All

18-25

14

Digit n-back

2-back > 0-back

Ragland et al., 2002 a c

11

6

All

21-53

10

Verbal n-back

2-back > 1-back

7

Verbal n-back

2-back > 0-back

6

Verbal n-back

1-back > 0-back

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Rama et al., 2001 a

8

0

All

21-25

6

Shape n-back

2-back > 1-back

9

Shape n-back

2-back > 0-back

5

Shape n-back

1-back > 0-back

32

Verbal n-back

2-back > 0-back

24

Verbal n-back

1-back > 0-back

Richter et al., 2013

34

26

NA

23.8 (~2.15)

25

Face n-back

2-back > 0-back

Reynolds et al., 2009

18

7

All

19-29

5

Verbal n-back

3-back > 1-back

Riccaiardi et al., 2006 a c

6

6

All

28 (1)

36

Tactile n-back

1-back > 0-back

28

Visuospatial n-back

1-back > 0-back

Rocca et al., 2014

52

24

All

22-52

16

Verbal n-back

Linear trend of WM load

Sabri et al., 2014

20

10

All

25 (5)

16

Verbal n-back

2-back > 1-back

Sánchez-Carrión et al., 2008 a

14

NA

All

24.2 (4.7)

18

Digit n-back

3-back > 0-back

16

Digit n-back

2-back > 0-back

Savini et al., 2012

12

12

All

19-32

9

Shape n-back

Linear trend of WM load

Scheuerecker et al., 2008 a

23

19

All

32.6 (9.9)

8

Verbal n-back

2-back > 0-back

15

Verbal n-back

2-back deg. > 0-back deg.

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

18-58/34.36 Schmidt et al., 2009 b

25

25

All

(13.24)

8

Verbal n-back

Linear trend of WM load

18-58/33.13 Schmidt et al., 2009 b

25

0

All

(12.31)

6

Verbal n-back

Linear trend of WM load

Schmidt et al., 2012 a

32

NA

NA

24.6 (~3.6)

1

Verbal n-back

3-back > 2-back

16

Verbal n-back

3-back > 0-back

12

Verbal n-back

2-back > 0-back

Schneiders et al., 2011

48

22

All

19-31

22

Shape n-back

2-back > 0-back

Seo et al., 2011

22

0

All

38.27 (8.48)

18

Verbal n-back

2-back > 0-back

Shen et al., 1999

9

6

All

20-40

24

Visuospatial n-back

2-back > rest

Spreng et al., 2014

36

17

NA

22.3 (3.8)

18

Face n-back

2-back > rest

Stretton et al., 2012 a

15

4

11

19-58

5

Visuospatial n-back

2-back > 0-back

4

Visuospatial n-back

1-back > 0-back

Takeuchi et al., 2012

248 126

All

21.1 (1.8)

11

Verbal n-back

2-back > 0-back

Thomas et al., 2005

16

5

NA

21-50

9

Verbal n-back

2-back > 0-back

Thornton & Conway, 2013

16

6

All

22 (2.3)

16

Face n-back

Linear trend of WM load

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Veltman et al., 2003

21

7

NA

22.7 (3.6)

11

Verbal n-back

Linear trend of WM load

Veltman et al., 2005

10

3

All

22.9 (1.27)

20

Verbal n-back

Linear trend of WM load

Wesley et al., 2016

11

4

NA

28.8 (7.8)

3

Verbal n-back

1-back > 0-back

Winston et al., 2013

28

11

25

19-64

3

Visuospatial n-back

Linear trend of WM load

Wu et al., 2017

45

24

All

24.07 (4.83)

4

Digit n-back

2-back > 0-back

Yan et al., 2011 b

28

12

All

20.4 (1.4)

6

Visuospatial n-back

2-back > 0-back

Yan et al., 2011 b

28

12

All

20.9 (1.5)

8

Visuospatial n-back

2-back > 0-back

Verbal Yoo et al., 2004 a c

14

9

All

21-34

16

n-back

(visual) Verbal

2-back > 1-back n-back

23

(auditory)

2-back > 1-back

Yoo & Choi, 2005

10

8

All

20-30

22

Face n-back

2-back > rest

Zhou et al., 2014

18

9

All

24.94 (7.29)

5

Verbal n-back

2-back > 0-back

Ziemus et al., 2007

9

6

All

35-63

15

Verbal n-back

2-back > 0-back

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Note: n = sample size; M = Male; R = Right handed; STD = Standard deviation; NA = not available; a = for each experiment with within-group contrasts, foci was compiled into one experiment; b = experiment contained more than one group with a different set of foci; c = study includes multiple task modalities  

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Table S2: Concordant brain regions related to the n-back task in adults

Cluster # Volume mm3 ALE Value x 1

2

3

4

27152

14560

13856

12824

y

z

Label

0.143 -30

20

4 L Insula BA 13

0.114 -42

2

0.084 -44

20

32 L Middle Frontal Gyrus BA 9

0.082 -30

-6

54 L Middle Frontal Gyrus BA 6

0.072 -34

46

18 L Middle Frontal Gyrus BA 10

0.036 -44

12

34 L Precentral Gyrus BA 6

8 L Precentral Gyrus BA 44

0.123 -34 -54

40 L Inferior Parietal Lobule BA 40

0.055 -12 -70

48 L Precuneus BA 7

0.133

38 -48

40 R Inferior Parietal Lobule BA 40

0.082

30 -58

42 R Superior Parietal Lobule BA 7

0.057

14 -70

50 R Precuneus BA 7

0.031

48 -38

50 R Inferior Parietal Lobule BA 40

0.103

40

34

30 R Superior Frontal Gyrus BA 9

0.042

48

10

36 R Middle Frontal Gyrus BA 9

0.041

48

14

24 R Inferior Frontal Gyrus BA 9 48 L Superior Frontal Gyrus BA 6

5

11488

0.129

0

12

6

6808

0.114

26

0

7

5416

0.153

30

20

8

3256

0.062

32 -58 -30 R Cerebellum Tuber

0.048

32 -62 -20 R Cerebellum Declive

56 R Sub-Gyral BA 6 4 R Claustrum

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

9

3240

0.075 -30 -56 -32 L Cerebellar Tonsil

10

2848

0.068 -16

11

1136

0.042

10

2 -4

14 L Caudate Body 8 R Thalamus Ventral Anterior Nucleus

Note: L = Left; R = Right; BA = Brodmann area; Coordinates are reported in Talairach and all results are thresholded with cluster-level threshold was set to p = 0.05 whereas the cluster-forming threshold was set to p < 0.001.

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Table S3: Concordant brain regions related to the n-back task in adults versus children Conjunction: Adults AND Children Cluster # Volume mm3 1

2

4088

1488

ALE Value

x

y

z

Label

0.027

-2

14

48 L Superior Frontal Gyrus BA 6

0.023

-8

6

0.018

24

-62

42 R Superior Parietal Lobule BA 7

0.015

48

-44

48 R Inferior Parietal Lobule BA 40

0.014

32

-50

38 R Inferior Parietal Lobule BA 40

0.013

36

-52

44 R Inferior Parietal Lobule BA 40

0.012

42

-48

48 R Inferior Parietal Lobule BA 40 40 L Superior Parietal Lobule BA 7

50 L Medial Frontal Gyrus BA 6

3

1320

0.022

-30

-54

4

936

0.021

-24

-2

5

856

0.023

-38

0

6

648

0.021

30

18

7

520

0.016

-34

-60

-34 L Cerebellar Tonsil

0.014

-28

-64

-26 L Cerebellum Uvula

56 L Sub-Gyral BA 6 38 L Precentral Gyrus BA 6 10 R Insula BA 13

Adults > Children Cluster # Volume mm3

ALE Value

x

y

3.719 43.2

z

Label

1

4928

34.4 27.2 R Middle Frontal Gyrus BA 46

2

480

2.848

-28

14

3

368

2.948

-50

14

28 L Middle Frontal Gyrus BA 9

2.794

-44

12

34 L Middle Frontal Gyrus BA 9

2 L Claustrum

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

4

272

2.605

-33

42

11 L Middle Frontal Gyrus BA 10

5

208

2.576

34

-4

52 R Middle Frontal Gyrus BA 6

6

136

2.652

38

-46

7

120

2.687

34

8

8

72

2.478

34

-66

38 R Inferior Parietal Lobule BA 40 48 R Middle Frontal Gyrus BA 6 48 R Superior Parietal Lobule BA 7

Children > Adults No suprathreshold cluster Note: L = Left; R = Right; BA = Brodmann area; Coordinates are reported in Talairach and all results are thresholded with cluster-level threshold was set to p = 0.05 whereas the cluster-forming threshold was set to p < 0.001.

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

References Allen, P.P., Cleare, A.J., Lee, F., Fusar-Poli, P., Tunstall, N., Fu, C.H., … & McGuire, P.K. (2006). Effect of acute tryptophan depletion on pre-frontal engagement. Psychopharmacology (Berl). 187, 486-497. doi 10.1007/s00213-006-0444-x Alonso-Lana, S., Goikolea, J.M., Bonnin, C.M., Sarró, S., Segura, B., Amann, B.L., ... & Salvador, R. (2016). Structural and functional brain correlates of cognitive impairment in euthymic patients with bipolar disorder. PloS one, 11(7), p.e0158867.   doi:10.1371/journal.pone.0158867 Beneventi, H., Barndon, R., Ersland, L., & Hugdahl, K. (2007). An fMRI study of working memory for schematic facial expressions. Scand J Psychol, 48, 81-86.  10.1111/j.14679450.2007.00536.x Binder, M., & Urbanik, A.S. (2006). Material-dependent activation in prefrontal cortex: working memory for verbals and texture patterns--initial observations. Radiology. 238, 256-263.   https://doi.org/10.1148/radiol.2381041622 Cader, S., Cifelli, A., bu-Omar, Y., Palace, J., & Matthews, P.M. (2006). Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain, 129, 527-537.  doi:10.1093/brain/awh670 Callicott, J.H., Mattay, V.S., Bertolino, A., Finn, K., Coppola, R., Frank, J.A., … & Weinberger, D.R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb Cortex, 9, 20-26.

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Campanella, S., Peigneux, P., Petit, G., Lallemand, F., Saeremans, M., Noël, X., … & Ward, R., (2013). Increased cortical activity in binge drinkers during working memory task: a preliminary assessment through a functional magnetic resonance imaging study. PLoS One, 8(4), p.e62260.  doi:10.1371/journal.pone.0062260 Caseras, X., Mataix-Cols, D., Giampietro, V., Rimes, K.A., Brammer, M., Zelaya, F., … & Godfrey, E.L. (2006). Probing the working memory system in chronic fatigue syndrome: a functional magnetic resonance imaging study using the n-back task. Psychosom Med, 68, 947-955. doi 10.1097/01.psy.0000242770.50979.5f Cerasa, A., Gioia, M.C., Fera, F., Passamonti, L., Liguori, M., Lanza, P., … & Quattrone, A. (2008). Ventro-lateral prefrontal activity during working memory is modulated by MAO A genetic variation. Brain Research, 1201, 114-21. doi:10.1016/j.brainres.2008.01.048 Choo, W.C., Lee, W.W., Venkatraman, V., Sheu, F.S., & Chee, M.W. (2005). Dissociation of cortical regions modulated by both working memory load and sleep deprivation and by sleep deprivation alone. Neuroimage, 25, 579-587.  doi:10.1016/j.neuroimage.2004.11.029 Ciesielski, K.T., Lesnik, P.G., Savoy, R.L., Grant, E.P., & Ahlfors, S.P. (2006). Developmental neural networks in children performing a Categorical N-Back Task. Neuroimage, 33, 980990.  doi:10.1016/j.neuroimage.2006.07.028 Cohen, J.D., Perlstein, W.M., Braver, T.S., Nystrom, L.E., Noll, D.C., Jonides, J., Smith, E.E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604-608. D’Aiuto, L., Prasad, K.M., Upton, C.H., Viggiano, L., Milosevic, J., Raimondi, G., … & Moore, J.C. (2014). Persistent infection by HSV-1 is associated with changes in functional

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

architecture of iPSC-derived neurons and brain activation patterns underlying working memory performance. Schizophrenia bulletin, 41, pp.123-132.  doi:10.1093/schbul/sbu032 Deckersbach, T., Rauch, S.L., Buhlmann, U., Ostacher, M.J., Beucke, J.C., Nierenberg, A.A., … & Dougherty, D.D. (2008). An fMRI investigation of working memory and sadness in females with bipolar disorder: a brief report. Bipolar Disord, 10, 928-942.  doi: 10.1111/j.13995618.2008.00633.x Dima, D., Jogia, J. & Frangou, S. (2014). Dynamic causal modeling of load-­‐dependent modulation of effective connectivity within the verbal working memory network. Hum Brain Mapp, 35, 3025-35.  doi: 10.1002/hbm.22382 Döhnel, K., Sommer, M., Ibach, B., Rothmayr, C., Meinhardt, J. & Hajak, G. (2008). Neural correlates of emotional working memory in patients with mild cognitive impairment. Neuropsychologia, 46, 37-48. Dores, A.R., Barbosa, F., Carvalho, I.P., Almeida, I., Guerreiro, S., Rocha, B.M., … & Castro-­‐ Caldas, A. (2017). Study of behavioural and neural bases of visuo-­‐spatial working memory with an fMRI paradigm based on an n-­‐back task. J Neuropsychology, 11, 122-134. doi:10.1111/jnp.12076 Drapier, D., Surguladze, S., Marshall, N., Schulze, K., Fern, A., Hall, M.H., … & McDonald, C. (2008). Genetic liability for bipolar disorder is characterized by excess frontal activation in response to a working memory task. Biol Psychiatry, 64, 513-520.   doi:10.1016/j.biopsych.2008.04.038 Druzgal, T.J., & D'Esposito, M. (2001). Activity in fusiform face area modulated as a function of working memory load. Brain Res Cogn Brain Res, 10, 355-364.

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Duggirala, S.X., Saharan, S., Raghunathan, P. & Mandal, P.K. (2016). Stimulus-dependent modulation of working memory for identity monitoring: A functional MRI study. Brain Cogn, 102, 55-64.  http://dx.doi.org/10.1016/j.bandc.2015.12.006 Eickhoff, S. B., Laird, A. R., Fox, P. M., Lancaster, J. L., & Fox, P. T. (2017). Implementation errors in the GingerALE Software: Description and recommendations. Hum Brain Mapp, 38, 7-11. doi: 10.1002/hbm.23342 El-Hage, W., Phillips, M.L., Radua, J., Gohier, B., Zelaya, F.O., Collier, D.A. & Surguladze, S.A. (2013). Genetic modulation of neural response during working memory in healthy individuals: interaction of glucocorticoid receptor and dopaminergic genes. Mol Psychiatry, 18, 174-182.  doi: 10.1038/mp.2011.145 Elzinga, B.M., Ardon, A.M., Heijnis, M.K., De Ruiter, M.B., Van, D.R., Veltman, D.J. (2007). Neural correlates of enhanced working-memory performance in dissociative disorder: a functional MRI study. Psychol Med, 37, 235-245.  doi:10.1017/S0033291706008932 Falkenberg, I., Chaddock, C., Murray, R.M., McDonald, C., Modinos, G., Bramon, E., … & Allen, P. (2015). Failure to deactivate medial prefrontal cortex in people at high risk for psychosis. Eur Psychiatry, 30, 633-640.  http://dx.doi.org/10.1016/j.eurpsy.2015.03.003 Fernández-Corcuera, P., Salvador, R., Monté, G.C., Sarró, S.S., Goikolea, J.M., Amann, B., … & Maristany, T. (2013). Bipolar depressed patients show both failure to activate and failure to de-activate during performance of a working memory task. J Affect Disord, 148,170-178.   http://dx.doi.org/10.1016/j.jad.2012.04.009 Forn, C., Barros-Loscertales, A., Escudero, J., Benlloch, V., Campos, S., Antonia, P.M., Avila, C., 2007. Compensatory activations in patients with multiple sclerosis during preserved

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

performance on the auditory N-back task. Human Brain Mapping 28, 424-430.  doi: 10.1002/hbm.20284 Frangou, S., Kington, J., Raymont, V., & Shergill, S.S. (2008). Examining ventral and dorsal prefrontal function in bipolar disorder: a functional magnetic resonance imaging study. Eur Psychiatry, 23, 300-308.  doi:10.1016/j.eurpsy.2007.05.002 Fusar-Poli, P., Broome, M.R., Woolley, J.B., Johns, L.C., Tabraham, P., Bramon, E., … & McGuire, P. (2011). Altered brain function directly related to structural abnormalities in people at ultra-high risk of psychosis: longitudinal VBM-fMRI study. J Psychiatr Res, 45, 190-198.  doi:10.1016/j.jpsychires.2010.05.012 Garrett, A., Kelly, R., Gomez, R., Keller, J., Schatzberg, A.F. & Reiss, A.L. (2011). Aberrant brain activation during a working memory task in psychotic major depression. Am J Psychiatry, 168,173-182.  doi: 10.1176/appi.ajp.2010.09121718 Gillis, M.M., Garcia, S. & Hampstead, B.M. (2016). Working memory contributes to the encoding of object location associations: Support for a 3-part model of object location memory. Behav Brain Res, 311, 192-200.  http://dx.doi.org/doi:10.1016/j.bbr.2016.05.037 Göbel, A., Heldmann, M., Göttlich, M., Dirk, A.L., Brabant, G. & Münte, T.F. (2016). Effect of mild thyrotoxicosis on performance and brain activations in a working memory task. PloS one, 11, p.e0161552.  doi:10.1371/journal.pone.0161552 Goldstein, J.M., Jerram, M., Poldrack, R., Anagnoson, R., Breiter, H.C., Makris, N., ... & Seidman, L.J. (2005). Sex differences in prefrontal cortical brain activity during fMRI of auditory verbal working memory. Neuropsychology, 19, 509-519.  doi: 10.1037/0894-4105.19.4.509 Gropman, A.L., Shattuck, K., Prust, M.J., Seltzer, R.R., Breeden, A.L., Hailu, A., … &

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

VanMeter, J. (2013). Altered neural activation in ornithine transcarbamylase deficiency during executive cognition: an fMRI study. Hum Brain Mapp, 34,753-761.  doi: 10.1002/hbm.21470 Harvey, P.O., Fossati, P., Pochon, J.B., Levy, R., Lebastard, G., Lehericy, S., Allilaire, J.F., Dubois, B. (2005). Cognitive control and brain resources in major depression: an fMRI study using the n-back task. Neuroimage. 26, 860-869.  doi:10.1016/j.neuroimage.2005.02.048 Honey, G.D., Bullmore, E.T., & Sharma, T. (2000). Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation. Neuroimage, 12, 495-503.  doi:10.1006/nimg.2000.0624 Honey, G.D., Sharma, T., Suckling, J., Giampietro, V., Soni, W., Williams, S.C., & Bullmore, E.T. (2003). The functional neuroanatomy of schizophrenic subsyndromes. Psychol Med, 33, 1007-1018.  doi: 10.1017/S0033291703007864 Huang, R.R., Jia, B.H., Xie, L., Ma, S.H., Yin, J.J., Sun, Z.B., … & Luo, D.X. (2016). Spatial working memory impairment in primary onset middle-­‐age type 2 diabetes mellitus: An ethology and BOLD-­‐fMRI study. J Magn Reson Imaging, 43, 75-87.  doi: 10.1002/jmri.24967 Jogia, J., Dima, D., Kumari, V. & Frangou, S. (2012). Frontopolar cortical inefficiency may underpin reward and working memory dysfunction in bipolar disorder. World J Biol Psychiatry, 13, 605-615.  doi: 10.3109/15622975.2011.585662 Johannsen, L., Li, K.Z., Chechlacz, M., Bibi, A., Kourtzi, Z. & Wing, A.M. (2013). Functional neuroimaging of the interference between working memory and the control of periodic ankle

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

movement timing. Neuropsychologia, 51, 2142-2153.  doi: 10.1016/j.neuropsychologia.2013.07.009 Kasahara, M., Menon, D.K., Salmond, C.H., Outtrim, J.G., Tavares, J.V.T., Carpenter, T.A., … & Stamatakis, E.A. (2011). Traumatic brain injury alters the functional brain network mediating working memory. Brain Inj, 25, 1170-1187.  doi: 10.3109/02699052.2011.608210 Kim, J., Whyte, J., Wang, J., Rao, H., Tang, K.Z., & Detre, J.A. (2006). Continuous ASL perfusion fMRI investigation of higher cognition: quantification of tonic CBF changes during sustained attention and working memory tasks. Neuroimage, 31, 376-385.   doi:10.1016/j.neuroimage.2005.11.035 Koppelstaetter, F., Poeppel, T.D., Siedentopf, C.M., Ischebeck, A., Verius, M., Haala, I., ... & Krause, B.J. (2008). Does caffeine modulate verbal working memory processes? An fMRI study. Neuroimage, 39, 492-499.  doi:10.1016/j.neuroimage.2007.08.037 Korsnes, M.S., Lövdahl, H., Andersson, S., Björnerud, A., Due-Tönnesen, P., Endestad, T. & Malt, U.F. (2013). Working memory in recurrent brief depression: An fMRI pilot study. J Affect Disord, 149, 383-392.  http://dx.doi.org/10.1016/j.jad.2013.02.017 Koshino, H., Kana, R.K., Keller, T.A., Cherkassky, V.L., Minshew, N.J., & Just, M.A. (2008). fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cereb Cortex, 18, 289-300.  doi:10.1093/cercor/bhm054 Kumari, V., Aasen, I., Taylor, P., ffytche, D.H., Das, M., Barkataki, I., ... & Sharma, T. (2006). Neural dysfunction and violence in schizophrenia: an fMRI investigation. Schizophr Res, 84, 144-164.  doi:10.1016/j.schres.2006.02.017

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Kumari, V., Gray, J.A., Ffytche, D.H., Mitterschiffthaler, M.T., Das, M., Zachariah, E., ... & Sharma, T. (2003). Cognitive effects of nicotine in humans: an fMRI study. Neuroimage, 19, 1002-1013.  doi:10.1016/S1053-8119(03)00110-1 Lamp, G., Alexander, B., Laycock, R., Crewther, D.P. & Crewther, S.G. (2016). Mapping of the underlying neural mechanisms of maintenance and manipulation in visuo-spatial working memory using an n-back mental rotation task: a functional magnetic resonance imaging study. Front Behav Neurosci, 10.  doi: 10.3389/fnbeh.2016.00087 Lancaster, J. L., Tordesillas-­‐Gutiérrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., ... & Fox, P. T. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-­‐152 brain template. Hum Brain Mapp, 28, 1194-1205. doi: 10.1002/hbm.20345 Leung, A.W. & Alain, C. (2011). Working memory load modulates the auditory “What” and “Where” neural networks. Neuroimage, 55,1260-1269.   doi:10.1016/j.neuroimage.2010.12.055 Li, L., Men, W.W., Chang, Y.K., Fan, M.X., Ji, L. & Wei, G.X. (2014). Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students. PloS one, 9, p.e99222.  doi:10.1371/journal.pone.0099222 Lim, H.K., Juh, R., Pae, C.U., Lee, B.T., Yoo, S.S., Ryu, S.H., … & Lee, C.U. (2008). Altered verbal working memory process in patients with Alzheimer’s disease. Neuropsychobiology, 57, 181-187.  doi: 10.1159/000147471 Loughead, J., Wileyto, E.P., Valdez, J.N., Sanborn, P., Tang, K., Strasser, A.A., & Lerman, C. (2009). Effect of abstinence challenge on brain function and cognition in smokers differs by COMT genotype. Mol Psychiatry. 14, 820-826.  doi: 10.1038/mp.2008.132

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Luo, Y., Qin, S., Fernandez, G., Zhang, Y., Klumpers, F. & Li, H. (2014). Emotion perception and executive control interact in the salience network during emotionally charged working memory processing. Hum Brain Mapp, 35, 5606-5616.  doi: 10.1002/hbm.22573 Lythe, K.E., Williams, S.C., Anderson, C., Libri, V. & Mehta, M.A. (2012). Frontal and parietal activity after sleep deprivation is dependent on task difficulty and can be predicted by the fMRI response after normal sleep. Behav Brain Res, 233, 62-70.  doi: 10.1016/j.bbr.2012.04.050 Manelis, A. & Reder, L.M. (2014). Effective connectivity among the working memory regions during preparation for and during performance of the n-back task. Front Hum Neurosci, 8.   doi: 10.3389/fnhum.2014.00593 Manktelow, A.E., Menon, D.K., Sahakian, B.J. & Stamatakis, E.A. (2017). Working Memory after Traumatic Brain Injury: The Neural Basis of Improved Performance with Methylphenidate. Front Behav Neurosci, 11.  doi: 10.3389/fnbeh.2017.00058 Marquand, A.F., Mourao-Miranda, J., Brammer, M.J., Cleare, A.J., & Fu, C.H. (2008). Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. Neuroreport, 19, 1507-1511.  doi: 10.1097/WNR.0b013e328310425e Mattfeld, A.T., Whitfield-Gabrieli, S., Biederman, J., Spencer, T., Brown, A., Fried, R. & Gabrieli, J.D. (2016). Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain. NeuroImage: Clinical, 10, 274-282. doi: 10.1016/j.nicl.2015.12.003 Matsuo, K., Glahn, D.C., Peluso, M.A., Hatch, J.P., Monkul, E.S., Najt, P., … & Soares, J.C. (2007). Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Mol Psychiatry, 12, 158-166.  doi:10.1038/sj.mp.4001894

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

McAllister, T.W., Saykin, A.J., Flashman, L.A., Sparling, M.B., Johnson, S.C., Guerin, S.J., … & Yanofsky, N. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53, 1300-1308. McGeown, W.J., Shanks, M.F. & Venneri, A. (2008). Prolonged cholinergic enrichment influences regional cortical activation in early Alzheimer’s disease. Neuropsychiatr Dis Treat, 4, 465476. Monks, P.J., Thompson, J.M., Bullmore, E.T., Suckling, J., Brammer, M.J., Williams, S.C., … & Curtis, V.A. (2004). A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction. Bipolar Disord, 6, 550-564. Nebel, K., Wiese, H., Stude, P., de, G.A., Diener, H.C., & Keidel, M. (2005). On the neural basis of focused and divided attention. Brain Res Cogn Brain Res, 25, 760-776.   doi:10.1016/j.cogbrainres.2005.09.011 Nichols, T.T., Gates, K.M., Molenaar, P. & Wilson, S.J. (2014). Greater BOLD activity but more efficient connectivity is associated with better cognitive performance within a sample of nicotine-­‐deprived smokers. Addict Biol, 19, 931-940.  doi:10.1111/adb.12060 Norbury, R., Godlewska, B. & Cowen, P.J. (2014). When less is more: a functional magnetic resonance imaging study of verbal working memory in remitted depressed patients. Psychol Med, 44, 1197-1203.  doi:10.1017/S0033291713001682 Oren, N., Ash, E.L., Tarrasch, R., Hendler, T., Giladi, N. & Shapira-Lichter, I. (2017). Neural patterns underlying the effect of negative distractors on working memory in older adults. Neurobiol Aging, 53, 93-102.  http://dx.doi.org/10.1016/j.neurobiolaging.2017.01.020

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Park, J.W., Kim, Y.T., Yun, B.J., Jin, S.U., Lee, S.H., Ahn, S.H., … & Chang, Y. (2016). Stereoscopic 3D objects evoke stronger saliency for nonverbal working memory: An fMRI study. Int J Imag Syst Tech, 26, 76-84.  doi: 10.1002/ima.22159 Pomarol-Clotet, E., Moro, N., Sarró, S., Goikolea, J.M., Vieta, E., Amann, B., … & Mckenna, P.J. (2012). Failure of de-activation in the medial frontal cortex in mania: evidence for default mode network dysfunction in the disorder. World J Biol Psychiatry, 13, 616-626.  doi: 10.3109/15622975.2011.573808 Qin, S., Hermans, E.J., van Marle, H.J., Luo, J., & Fernandez, G. (2009). Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol Psychiatry, 66, 25-32.  doi:10.1016/j.biopsych.2009.03.006 Ragland, J.D., Turetsky, B.I., Gur, R.C., Gunning-Dixon, F., Turner, T., Schroeder, L., … & Gur, R.E. (2002). Working memory for complex figures: an fMRI comparison of verbal and fractal n-back tasks. Neuropsychology, 16, 370-379. Rama, P., Martinkauppi, S., Linnankoski, I., Koivisto, J., Aronen, H.J., & Carlson, S. (2001). Working memory of identification of emotional vocal expressions: an fMRI study. Neuroimage, 13, 1090-1101.  doi:10.1006/nimg.2001.0777 Reynolds, J.R., West, R., & Braver, T. (2009). Distinct neural circuits support transient and sustained processes in prospective memory and working memory. Cereb Cortex, 19, 120821.  doi:10.1093/cercor/bhn164 Ricciardi, E., Bonino, D., Gentili, C., Sani, L., Pietrini, P., & Vecchi, T. (2006). Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

comparing visual and tactile processes. Neuroscience, 139, 339-349.   doi:10.1016/j.neuroscience.2005.08.045 Richter, S., Gorny, X., Machts, J., Behnisch, G., Wüstenberg, T., Herbort, M.C., Münte, T.F., Seidenbecher, C.I. & Schott, B.H. (2013). Effects of AKAP5 Pro100Leu genotype on working memory for emotional stimuli. PloS one, 8, p.e55613.   doi:10.1371/journal.pone.0055613 Rocca, M.A., Valsasina, P., Hulst, H.E., Abdel-­‐Aziz, K., Enzinger, C., Gallo, A., … & Barkhof, F. (2014). Functional correlates of cognitive dysfunction in multiple sclerosis: a multicenter fMRI Study. Hum Brain Mapp, 35, 5799-5814. doi: 10.1002/hbm.22586 Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., ... & Eickhoff, S. B. (2012). Modelling neural correlates of working memory: a coordinate-based meta-analysis. Neuroimage, 60, 830-846. doi: 10.1016/j.neuroimage.2011.11.050 Sabri, M., Humphries, C., Verber, M., Liebenthal, E., Binder, J.R., Mangalathu, J. & Desai, A. (2014). Neural effects of cognitive control load on auditory selective attention. Neuropsychologia, 61, pp.269-279.  doi: 10.1016/j.neuropsychologia.2014.06.009 Sanchez-Carrion, R., Gomez, P.V., Junque, C., Fernandez-Espejo, D., Falcon, C., Bargallo, N., … & Bernabeu, M. (2008). Frontal hypoactivation on functional magnetic resonance imaging in working memory after severe diffuse traumatic brain injury. J Neurotrauma, 25, 479-494.   doi: 10.1089/neu.2007.0417 Savini, N., Brunetti, M., Babiloni, C. & Ferretti, A. (2012). Working memory of somatosensory stimuli: an fMRI study. Int J Psychophysiol, 86, 220-228. doi: 10.1016/j.ijpsycho.2012.09.007

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Scheuerecker, J., Ufer, S., Zipse, M., Frodl, T., Koutsouleris, N., Zetzsche, T., ... & Meisenzahl, E.M. (2008). Cerebral changes and cognitive dysfunctions in medication-free schizophrenia an fMRI study. J Psychiatr Res, 42, 469-476.  doi:10.1016/j.jpsychires.2007.04.001 Schmidt, C., Collette, F., Reichert, C.F., Maire, M., Vandewalle, G., Peigneux, P. & Cajochen, C. (2015). Pushing the limits: chronotype and time of day modulate working memorydependent cerebral activity. Front Neurol, 6.  doi: 10.3389/fneur.2015.00199 Schmidt, H., Jogia, J., Fast, K., Christodoulou, T., Haldane, M., Kumari, V., & Frangou, S. (2009). No gender differences in brain activation during the N-back task: an fMRI study in healthy individuals. Hum Brain Mapp, 30, 3609-15. doi: 10.1002/hbm.20783 Schneiders, J.A., Opitz, B., Krick, C.M. & Mecklinger, A. (2011). Separating intra-modal and across-modal training effects in visual working memory: an fMRI investigation. Cereb Cortex, 21, 2555-64.  doi:10.1093/cercor/bhr037 Seo, J., Kim, S.H., Kim, Y.T., Song, H.J., Lee, J.J., Kim, S.H., … & Lee, S.J. (2012). Working memory impairment in fibromyalgia patients associated with altered frontoparietal memory network. PloS one, 7, p.e37808.  doi:10.1371/journal.pone.0037808 Shen, L., Hu, X., Yacoub, E., & Ugurbil, K. (1999). Neural correlates of visual form and visual spatial processing. Hum Brain Mapp, 8, 60-71. Spreng, R.N., DuPre, E., Selarka, D., Garcia, J., Gojkovic, S., Mildner, J., … & Turner, G.R. (2014). Goal-congruent default network activity facilitates cognitive control. J Neurosci, 34, 1410814.  https://doi.org/10.1523/JNEUROSCI.2815-14.2014

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Stretton, J., Winston, G., Sidhu, M., Centeno, M., Vollmar, C., Bonelli, S., … &Thompson, P.J. (2012). Neural correlates of working memory in temporal lobe epilepsy—an fMRI study. Neuroimage, 60, 1696-1703.  doi:10.1016/j.neuroimage.2012.01.126 Takeuchi, H., Taki, Y., Nouchi, R., Hashizume, H., Sassa, Y., Sekuguchi, A., … & Kawashima, R. (2014). Associations among imaging measures (2): The association between gray matter concentration and task-­‐induced activation changes. Hum Brain Mapp, 35, 185-198.doi: 10.1002/hbm.22167 Thomas, R.J., Rosen, B.R., Stern, C.E., Weiss, J.W., & Kwong, K.K. (2005). Functional imaging of working memory in obstructive sleep-disordered breathing. J Appl Physiol, 98, 2226-34.   doi:10.1152/japplphysiol.01225.2004 Thornton, M.A. & Conway, A.R. (2013). Working memory for social information: Chunking or domain-specific buffer? Neuroimage, 70, 233-239.  doi: 10.1016/j.neuroimage.2012.12.063 Veltman, D.J., De Ruiter, M.B., Rombouts, S.A., Lazeron, R.H., Barkhof, F., Van, D.R., … & Phaf, R.H. (2005). Neurophysiological correlates of increased verbal working memory in highdissociative participants: a functional MRI study. Psychol Med, 35, 175-185. doi: 10.1017/S0033291704002971 Veltman, D.J., Rombouts, S.A., & Dolan, R.J. (2003). Maintenance versus manipulation in verbal working memory revisited: an fMRI study. Neuroimage, 18, 247-256.  doi:10.1016/S10538119(02)00049-6 Wesley, M.J., Lile, J.A., Fillmore, M.T. & Porrino, L.J. (2017). Neurophysiological capacity in a working memory task differentiates dependent from nondependent heavy drinkers and controls. Drug Alcohol Depend, 175, 24-35.  doi: 10.1016/j.drugalcdep.2017.01.029

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Winston, G.P., Stretton, J., Sidhu, M.K., Symms, M.R., Thompson, P.J. & Duncan, J.S. (2013). Structural correlates of impaired working memory in hippocampal sclerosis. Epilepsia, 54, 1143-53.  doi: 10.1111/epi.12193 Wishart, H.A., Saykin, A.J., Rabin, L.A., Santulli, R.B., Flashman, L.A., Guerin, S.J., … & McAllister, T.W. (2006). Increased brain activation during working memory in cognitively intact adults with the APOE ε4 allele. Am J Geriatr Psychiatry, 163, 1603-10.  doi: 10.1176/ajp.2006.163.9.1603 Wu, S., Wang, H., Chen, C., Zou, J., Huang, H., Li, P., … & Pandit, S. (2017). Task performance modulates functional connectivity involving the dorsolateral prefrontal cortex in patients with schizophrenia. Front Psychol, 8.  doi: 10.3389/fpsyg.2017.00056 Yan, X., Zhang, J., Gong, Q. & Weng, X. (2011). Adaptive influence of long term high altitude residence on spatial working memory: an fMRI study. Brain Cogn, 77, 53-59.   doi:10.1016/j.bandc.2011.06.002 Yoo, S.S., Choi, B.G., Juh, R.H., Park, J.M., Pae, C.U., Kim, J.J., … & Lee, C.U. (2005). Working memory processing of facial images in schizophrenia: fMRI investigation. Int J Neurosci, 115, 351-366.  doi: 10.1080/00207450590520957 Yoo, S.S., Paralkar, G., & Panych, L.P. (2004). Neural substrates associated with the concurrent performance of dual working memory tasks. Int J Neurosci, 114, 613-631.  doi: 10.1080/00207450490430561 Zhou, Y., Wang, Z., Zuo, X.N., Zhang, H., Wang, Y., Jiang, T. & Liu, Z. (2014). Hyper-coupling between working memory task-evoked activations and amplitude of spontaneous fluctuations in first-episode schizophrenia. Schizophr Res, 159, 80-89.  doi: 10.1016/j.schres.2014.07.023

RUNNING HEAD: N-BACK. META-ANALYSIS OF fMRI STUDIES IN CHILDREN  

Ziemus, B., Baumann, O., Luerding, R., Schlosser, R., Schuierer, G., Bogdahn, U., & Greenlee, M.W. (2007). Impaired working-memory after cerebellar infarcts paralleled by changes in BOLD signal of a cortico-cerebellar circuit. Neuropsychologia, 45, 2016-24.   doi:10.1016/j.neuropsychologia.2007.02.012