s

10 downloads 41415 Views 268KB Size Report
Images removed due to copyright restrictions. Please see: Fig. 5.2 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
Goals for today •





Block diagrams revisited – Block diagram components – Block diagram cascade – Summing and pick-off junctions – Feedback topology – Negative vs positive feedback Example of a system with feedback – Derivation of the closed-loop transfer function – Specification of the transient response by selecting the feedback gain The op-amp in feedback configuration

2.004 Fall ’07

Lecture 11 – Monday, Oct. 1

Block diagram components Transfer Function C(s) = G(s). R(s)

Images removed due to copyright restrictions. Please see: Fig. 5.2 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

2.004 Fall ’07

Lecture 11 – Monday, Oct. 1

Cascading subsystems

Images removed due to copyright restrictions. Please see: Fig. 5.3 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

Note: to cascade two subsystems, we must ensure that the second subsystem does not load the first subsystem

2.004 Fall ’07

Lecture 11 – Monday, Oct. 1

Loading and cascade

Images removed due to copyright restrictions. Please see: Fig. 5.4 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

2.004 Fall ’07

Lecture 11 – Monday, Oct. 1

Cascading with an op-amp R4

I3 R1

+ Vi(s) _

I1

R3

V3

C1

I3

IC

_ V=0

1

R2

V4

+

I2 C2

+ -

V2(s)

Figure by MIT OpenCourseWare.

We can show that 1 1 ¶ µ R1 C 1 R2 C2 V2 R4 × = × − . Vi R3 1 1 1 s+ + s+ R1 C1 R 3 C1 R2 C2



1 R1 C1 s+

2.004 Fall ’07

1 R1 C1

µ ¶ R4 × − × R3

1 R2 C 2 s+

1 R2 C 2

Lecture 11 – Monday, Oct. 1

if

R3 À R1 .

Parallel subsystems

Images removed due to copyright restrictions. Please see: Fig. 5.5 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

2.004 Fall ’07

Lecture 11 – Monday, Oct. 1

Negative feedback E(s) = R(s) − H(s)C(s) Plant and controller R(s) Input

E(s)

+ -

Actuating signal (error)

C(s)

G(s)

Output

Feedback

Input



G(s) 1 + G(s)H(s)

C(s) Output

equivalent system

Figure by MIT OpenCourseWare.

Figure 5.6

2.004 Fall ’07

C(s) R(s)

C(s) R(s) G(s)H(s)

H(s)

R(s)

C(s) = E(s)G(s) h i ⇒ C(s) = R(s) − H(s)C(s) G(s)

Lecture 11 – Monday, Oct. 1

=

G(s) . 1 + G(s)H(s)

:

Closed—loop TF

:

Open—loop TF.

Positive feedback E(s) = R(s) + H(s)C(s)

Plant and controller R(s) Input

E(s)

+ +

Actuating signal (error)

C(s)

G(s)

Output

Feedback

Input



C(s) R(s)

C(s) R(s) G(s)H(s)

H(s)

R(s)

C(s) = E(s)G(s) h i ⇒ C(s) = R(s) + H(s)C(s) G(s)

G(s) _ 1 G(s)H(s)

=

G(s) . 1 − G(s)H(s)

:

Closed—loop TF

:

Open—loop TF.

C(s) Output

equivalent system

Figure by MIT OpenCourseWare.

Figure 5.6

Generally, positive feedback is dangerous: it may lead to unstable response (i.e. exponentially increasing) if not used with care 2.004 Fall ’07

Lecture 11 – Monday, Oct. 1

A more general feedback system

Images removed due to copyright restrictions. Please see: Fig. 5.6 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

Plant: the system we want to control (e.g., elevator plant: input=voltage, output=elevator position) Controller: apparatus that produces input to plant (i.e. voltage to elevator’s motor) Transducers: converting physical quantities so the system can use them (e.g., input transducer: floor button pushed→voltage; output transducer: current elevator position →voltage) Feedback: apparatus that contributes current system state to error signal (e.g., in elevator system, error=voltage representing desired position – voltage representing current position 2.004 Fall ’07

Lecture 11 – Monday, Oct. 1

Transient response of a feedback system

R(s) +

C(s)

25 s(s + 5)

Figure 5.15

Figure by MIT OpenCourseWare.

Plant & Controller

G(s)

Gain Feedback

K H(s)

2.004 Fall ’07

Open loop TF

G(s)H(s)

Closed loop TF

G(s) 1 + G(s)H(s)

Lecture 11 – Monday, Oct. 1

25 , s(s + 5) = 25, = 1. 25 = ; s(s + 5) 25 = 2 . s + 5s + 25 =

Transient response of a feedback system R(s) +

C(s)

25 s(s + 5)

Figure 5.15

Figure by MIT OpenCourseWare.

T (s) =

G(s) 1 + G(s)H(s)

Recall ⇒ ωn =



25 = 5

=

25 . s2 + 5s + 25

ωn2 s2 + 2ζωn s + ωn2

rad/sec;

2ζωn = 5 ⇒ ζ = 0.5;

⇒ The feedback system is underdamped.

2.004 Fall ’07

Lecture 11 – Monday, Oct. 1

Transient response of a feedback system R(s) +

C(s)

25 s(s + 5)

Figure 5.15

Figure by MIT OpenCourseWare.

T (s) =

Peak time

G(s) 1 + G(s)H(s)

Tp %OS

Settling time 2.004 Fall ’07

Ts

=

25 . s2 + 5s + 25

π p = = 0.726 sec, 2 ωn 1 − ζ ! Ã ζπ × 100 = 16.3, = exp − p 2 1−ζ 4 = = 1.6 sec. ζωn

Lecture 11 – Monday, Oct. 1

Adjusting the transient by feedback R(s) +

C(s)

K s(s + 5)

Figure 5.16

Figure by MIT OpenCourseWare.

T (s) =

G(s) 1 + G(s)H(s)

=

K . s2 + 5s + K

We wish to reduce overshoot to %OS=10% or less. ωn =



K;

2ζωn = 5

5 ⇒ζ= √ . 2 K

For 10% overshoot or less, we need ζ = 0.591 or more. Therefore, K = 17.9 2.004 Fall ’07

or less.

Lecture 11 – Monday, Oct. 1

The op-amp as a feedback system 1 Z2 (s)

Z2(s)

Vi(s)

Z1(s)

I1(s)

I2(s)

V1(s) Ia(s)

-

vo(s)

+

Vi (s)

I1

1 Z1 (s)

+

Figure by MIT OpenCourseWare.

Figure 2.10(c)

I1 =

V i − V1 Z1



Vi Z1

if

V1 ≈ 0

I2 =

Vo − V1 Z2



Vo Z2

if

V1 ≈ 0

Vo = −AV1

⇒ Vo

= −AIa Za

µ

AZa 1+ Z2

2.004 Fall ’07



= (I1 + I2 ) Za ¶ µ Vi Vo Za . ≈ −A + Z1 Z2 = −AVi

Za . Z1

Vo Vi

I2 +

=

=



Lecture 11 – Monday, Oct. 1

Ia

Za

V1

−A

AZa − Z1 − AZa 1− Z2 1 − Z1 − 1 1 + AZa Z2 Z2 − Z1

if

A → ∞.

Vo (s)