Sewage Sludge Management Concept for ...

0 downloads 0 Views 2MB Size Report
Oct 19, 2015 - using Multi Criteria Decision Analysis (MCDA): A Case Study of Mysore Campus (cluster of office buildings) of Infosys Limited, India. Prepared ...
Evaluation of Sewage Sludge Treatment Techniques using Multi Criteria Decision Analysis (MCDA): A Case Study of Mysore Campus (cluster of office buildings) of Infosys Limited, India Prepared by: Moni Mohan Mondal, M.Sc. Institute of Sanitary Engineering and Waste Management (ISAH) Leibniz Universität Hannover, Germany. Supervised by: PD Dr.-Ing. habil. Dirk Weichgrebe Head, Division of Waste Management Institute of Sanitary Engineering and Waste Management (ISAH) Leibniz Universität Hannover, Germany. Awarded for (Second Position): German Water Partnership (GWP) - Award India 2015 for Young Water Professionals

3rd Indian-GWP Day 2015, Kochi, Kerala, India

19 October, 2015

Contents of the Presentation  Study background and problem identification  Material and methods  Investigation of sewage sludge management alternatives  Solar sludge drying greenhouse  Anaerobic sludge digestion  Sludge composting with green waste

 Evaluation of sludge management alternatives  Application of MCDA tools o ELECTRE; and o Compromise Programming

 Evaluation of results

 Alternative recommendation

Study Background and Problem Identification  Infosys Limited: A leading IT industry in India  Services: IT, business consulting and outsourcing 11 campuses (cluster of commercial office buildings) Water use by its employee for all potable & non-potable needs (total 160,000 Employees)

 Study Focus: Mysore campus, Infosys  110 commercial office buildings  3 STPs (Activated sludge) - (30,000 PE) Sludge generation: 4 ton per day

 Problems with sludge handling  Open bed drying (odor, emission, aesthetic)  Reuse or disposal (after unregulated treatment)

Materials and Methods Specification of Value System  Climatic variables (Temp., Rainfall, Solar rad., Humidity, Air density, Wind velocity)  State variables (sludge amount, water content, VS, C/N ratio, density, pH, COD, BOD5)  Control variables (ventilation rate, air mixing rate)

Process Indicators and Analytics for Design  Solar sludge drying greenhouse  Anaerobic sludge digestion  Sludge composting with green waste

MCDA Evaluation Tools  ELECTRE  Compromise Programming

Assessment of the Status Quo Diagnosis

Sludge Management Alternatives Evaluation and Ranking of Sludge Management Alternatives

Preferable Sludge Management Technique for Mysore Campus, Infosys

Design

Evaluation

Recomme ndation

Sludge characteristics data for Mysore Campus SL 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Parameters Water Content Dry solid contents (DSC) Organic content (% of DSC) Inorganic (Ash) content (% of DSC) BOD5 COD pH-Value Density Carbon Nitrogen Phosphorous (as P2O5) Potassium (as K2O) Magnesium (as MgO) Calcium (as CaO)

Test results 80 20 79 21 15873 76190 7.03 1005 24 38.4 36.5 4.2 9.7 73.7

Unit (%) (%) (%) (%) mg/l mg/l Kg/m3 % g/kg DS g/kg DS g/kg DS g/kg DS g/kg DS

Investigation and Design of Sludge Management Alternatives for the Context of Mysore Campus    

Alternative 1: Solar Sludge Drying Greenhouse Alternative 2: Anaerobic Sludge Digestion Alternative 3: Sludge Composting With Green Waste Alternative 4: Existing Open Bed Sludge Drying

Alternative 1: Solar Sludge Drying Greenhouse Exhaust Ventilator Air Mixing Fans Controlled Air Inlet

Sludge Turner

Source: Huber Technology, 2012

Key Design Requirements - Evaporation rate - Area needed - Energy consumption With respect to sludge state and local climatic conditions

Evaporation Rate: Solar Sludge Drying Greenhouse Months

Qv 3 (m /m2h)

Qm 3 (m /m2h)

To (°C)

Ro (W/m2)

40 40 40 40 40

DSC (kg solids/ kg sludge) 0.2 0.2 0.2 0.2 0.2

January February March April May

80 80 80 80 80

June July August September October November December

189.21 195.39 234.14 230.09 211.61

Air density, ρ (kg/m3) 1.19 1.14 1.05 1.04 1.05

Evaporation rate , E(kg/m2d) 8.27 8.60 8.89 9.09 8.54

22.48 24.50 25.90 26.91 25.70

80

40

0.2

24.36

201.39

1.09

8.29

80 80 80 80 80 80

40 40 40 40 40 40

0.2 0.2 0.2 0.2 0.2 0.2

22.66 23.37 23.04 23.27 22.96 22.02

161.20 172.75 183.89 171.17 195.21 195.83

1.18 1.18 1.18 1.18 1.18 1.19

7.86 8.22 8.30 8.18 8.48 8.23

Qv = The ventilation rate (m3 [air]/m2h), Qm = Air mixing rate (m3 [air]/(m2h), To = Outdoor temperature (°C), Ro = Outdoor solar radiation (W/m2), σ = DSC, Dry solid content, (kg[solids]/ kg[sludge]), ρ = Air density (kg/m3)

Example calculation for May: Solar Sludge Drying Greenhouse Changes of moisture contents and occurring drying rates sludge drying rate

0,90

9,0

0,80

8,0

0,70

7,0

0,60

6,0 Sludge Dry Solid content 80% Drying time -8.2 days

0,50 0,40

5,0 4,0

0,30

3,0

0,20

2,0

0,10

Warming-up period

0,00 0

1

2

Constant drying period

3

4

1,0

Falling drying period

5

Drying time (Days)

6

7

0,0 8

9

10

Drying rate (kg water/m2d)

Moisture content (kg water/kg sludge)

sludge moisture content

Drying performances: Solar Sludge Drying Greenhouse Months

January February March April May June July August September October November December Total

Sludge Average Input sludge drying (ton) rate (kg/m2.d) 124 5.08 112 6.52 124 6.85 120 6.85 124 5.72 120 5.19 124 4.20 124 5.19 120 4.59 124 4.59 120 5.20 124 5.08 1460

Water DS removed Stabilization (ton) (ton) 93.08 2.98 84.08 2.46 93.08 2.48 90.08 2.40 93.08 3.22 90.08 3.36 93.08 3.72 93.08 3.47 90.08 3.48 93.08 3.60 90.08 3.12 93.08 2.98 1096 37

Sludge output (ton) 28 25 28 28 28 27 27 27 26 27 27 28 327

Mass reduction (%) 77 77 77 77 78 78 78 78 78 78 78 77 78

Alternative 2: Anaerobic Sludge Digestion Estimation of Anaerobic Digester Design Parameters Sl

Parameters

1 Organic loading rate (OLR)

Design Unit

Unit

Amount

(Assumed)

Kg VS/m3.d

2

2 Digester volume (DV)

= VS Load/OLR = 632(kg VS/d)/2 (kg VS/m3.d)

m3

316

3 Solids retention time (SRT)

= Digester volume/sludge flow = 316 m3/ 19.61 (m3/d)

day

16

%

57

4 Volatile solids destroyed (VSd) = 13.7*ln (SRT) + 18.9

5 Biogas production (Biogas yield= 1.1 m3/kg VSd)

= OLR*Biogas yield* DV* VSd = 2 (kg VS/m3.d)*1.1 m3/kg VS*316 m3* 0.57

m3/day

417

6 Methane production

= 417 m3/d * 65% of biogas

m3/day

271

7 Heat energy recovery

= biogas yield * heating value = 417 (m3/d)/22.4 (MJ/m3)

GJ/year

3409.4

8 Heating requirement

= heating raw sludge+heat loss = 218.4 MJ/d + 152 MJ/d

GJ/year

135.2

9 Biosolids production

= sludge input (m3/d)* 25kg/m3

Ton/year

179

(heating value biogas=22.4 MJ/m3)

Sludge production: 4000 kg/d, Sludge flow: 19.61m3/d, Sludge DSC: 20% (800kg/d), Volatile Solids (% DSC): 79 % (632kg/d)

Mass Balance: Anaerobic Sludge Digestion Process After Digestion CH4, CO2, H2O

Before Digestion 800 kg/d Raw sludge (Dry Weight) Digestion converts volatiles to CH4, CO2, and H2O

380 kg/d 79% Volatile

21% Fixed

632 kg/d

168 kg/d

Remaining Digested sludge 252 kg/d

57% Volatile

168 kg/d

43% Fixed

Alternative 3: Sludge Composting with Green Waste Estimation of Sludge Composting Parameters 1

2

Sludge characteristics Amount Unit Sludge production 4 ton/day Solids concentration 20 % Nitrogen content 2.5 % Carbon content 24 % Bulking agent (green waste) characteristics Solids concentration 65 % Nitrogen content 1 % Carbon content 55 %

Parameters Weight, Input for IR Weight, Input for IR Water content C/N ratio DM oDM mDM

Unit Ton/d ton/a % ton/a ton/a ton/a

Typical C/N ratio for composting = 26-31 Assume ‘1’ part sludge with ‘Y’ part bulking agent

If Mixture C/N ratio is 30 = Y = 2.04 Required Bulking Materials = 4 t/d * 2.04 = 8 t/d

Sewage sludge 4 1,460 80 9.6 292 230.68 61.32

Bio-waste 8 2,920 35 55 1,898 1,328.6 569.4

total 12 4,380 50 30 2,190 1,559.28 654.08

Results – all Alternatives: Cost-Benefit Analysis  The capital costs are annualized using the capital recovery factor CFACR (i,n) = (annuity factor) CFACR, considering project life (n) and interest rate (i) Alternatives Alternative 1

Alternative 2

Alternative 3

Components Annualized capital costs Operating or running costs Revenues from dried biosolids Net costs Annualized capital costs Operating or running costs Revenues from biosolids and biogas Net costs Annualized capital costs Operating or running costs Revenues from composts Net costs

(+) (+) (-) (+) (+) (-) (+) (+) (-)

Euro/a 20,516 45,831 8,175 58,173 127,713 286,160 38,569 375,304 25,543 657,000 61,320 621,223

INR/a 1,600,248 3,574,818 637,650 4,537,494 9,961,614 22,320,480 3,008,382 29,273,712 1,992,354 51,246,000 4,782,960 48,455,394

Summary : Costing, Space Requirements and Bio-solids Production Alternatives Alternative-1 Alternative-2 Alternative-3 Alternative-4 (existing)

Cost (€1000/a) 58 375 621 42

Land area requirement (100 m2) 5.7 1.5 18 8.5

Reuse of end products (100 ton/a) 3.3 1.8 22 0.5

Evaluation of Sludge Management Alternatives using MCDA Tools:  ELECTRE; and  Compromise Programming

Methods applied: Multi‐Criteria Decision Analysis (MCDA) I. ELECTRE (Elemination Et Choix Traduisant la Realité) ELECTRE is an outranking method, Uses the dominance principle to compare project alternatives:  Concordance principle

 Discordance principle

Where, k-decision variables; αk -weights of the decision variables k; nik -performance value of criterion k for alternative i; njk -performance value of criterion k for alternative j.

Methods applied: Multi‐Criteria Decision Analysis (MCDA) II. Compromise Programming  Compromise Programming - distance based method  Determines a distance of the alternatives to an ideal point.  The smaller the distance, the better the alternative is rated.

Where, di -distance of alternative i to the ideal point; α -weights of the decision variables k; nik -performance value of criterion k for alternative i, and p -compensation factor.

List of Alternatives and Decision Variables Alternatives investigated

Decision variables considered

A-1 Solar sludge drying greenhouse

k-1 Cost

A-2 Anaerobic sludge digestion

k-2 Land area requirement

A-3 Sludge composting with green waste

k-3 User friendliness

A-4 Sludge drying in open bed (existing)

k-4 Environmental Impacts

k-5 Reuse of end products

Results - all alternatives: Numerical values of the decision variables Alternatives

Cost, k1, (€1000/a)

Land area requirement , k2 (100 m2)

User friendly , k3, (0-10)

Environmental Impacts, k4, (0-10)

Reuse of end products, k5, (100 ton/a)

A- 1 A- 2 A -3 A -4

58 375 621 42

5.7 1.5 18 8.5

7 4 5 8

2 5 8 10

3.3 1.8 22 0.5

k-1, k-2 & k-5 : Design calculation results; k-3 & k-4 : Assumption of the consequences

Normalization of the Variables and Weight Assignment k- 1 (€1000)

k- 2 (100 m2)

k- 3 (0-10)

k- 4 (0-10)

k-5 (100 ton/a)

0

0

10

0

25

Critical value

700

20

0

10

0

Alternative-1

Performance values (0-1) of decision variables 0.9 0.7 0.7 0.8

0.2

Alternative-2

0.5

0.9

0.4

0.5

0.1

Alternative-3

0.1

0.1

0.5

0.2

0.9

Alternative-4

0.9

0.5

0.8

0.0

0.02

Weights

0.4

0.2

0.15

0.15

0.1

Ideal value

Explanation: for example, Alternative-1 against k-1 (cost) = (critical - numerical value)/(critical –ideal value) = (700-58)/(700-0) = 0.9

Evaluation Result: with ELECTRE (from performance values) Concordance Matrix Alternative-1 Alternative-2 Alternative-3 Alternative-4

Discordance Matrix Alternative-1 Alternative-2 Alternative-3 Alternative-4

Alternative-1

Alternative-2

Alternative-3

Alternative-4

x 0.2 0.1 0.35

0.8 x 0.25 0.55

0.9 0.75 x 0.75

0.65 0.45 0.25 x

Alternative-1 x 0.4 0.8 0.8

Alternative-2 0.2 x 0.8 0.5

Alternative-3 0.7 0.8 x 0.88

Alternative-4 0.1 0.4 0.8 x

i > j if Cij ≥ Cthreshold and dij ≤ dthreshold

Cthreshold = 0.5;

dthreshold = 0.6

Results: Alternative-1 > Alternative-2; Alternative-1 > Alternative-4 Alternative-4 > Alternative-2;

Ranking of alternatives,

Alternative-1 > Alternative-4 > Alternative-2 > Alternative-3

Evaluation Result: with Compromise Programming (calculated from performance values table) Alternatives Alternative-1 Alternative-2 Alternative-3 Alternative-4 Weight

K-1 0.9 0.5 0.1 0.9 0.4

K-2 0.7 0.9 0.1 0.5 0.2

K-3 0.7 0.4 0.5 0.8 0.15

K-4 0.8 0.5 0.2 0.0 0.15

K-5 0.2 0.1 0.9 0.02 0.1

dci (p=3) dci (p=6) 0.3963 0.5459 0.5585 0.6400 0.8108 0.8436 0.6469 0.7893

Compensation factor, p: usually between 2 and 10 (here chosen as 3 and 6) The larger the p, the more a very bad performance value influences the result.

The best alternative is the one with the smallest distance dc to the ideal point

Ranking, Alternative 1 > Alternative 2 > Alternative 4 > Alternative 3 Most Preferable alternative  Alternative 1 (Solar Sludge Drying Greenhouse) is the best solution (ELECTRE and Compromise Programming, with chosen boundary values).

Alternative Recommendation: Sludge Drying Greenhouse Selection Incentives:  Tropical climate in India (less fluctuation of temperature and solar radiation)  Less expensive compare to other techniques (around 95% of total energy from Solar radiation)  Dried biosolids constitute potential organic fertilizer  Environment friendly (only 24 kg CO2/ton of evaporated water, from thermal drying-170 kg CO2/t) Water removed through evaporation: 1096 t/a STP: Mysore Campus, Infosys

Sewage sludge input Raw sludge : 4 t/d Raw sludge : 1460 t/a Sludge DSC : 20% Sludge DSC : 292 t/a

Solar drying halls: 1 Drying area : 554

m2

Length

: 46 m

Width

: 12 m

Max evaporation : 3070.65 kg/m2a Average drying rate: 1978.3 kg/m2a

Average drying period/batch: 9 d

Sludge Input: 1460 t/a Water evaporated: 1096 t/a Dry solid Stabilization: 37 t/a

Sludge output: 327 t/a

Sewage sludge output Sludge output: 327 t/a Output DSC: 80% Output DSC: 262 t/a

Thank You All

Objectives of the Study Overall objective  To Identify an appropriate sewage sludge management concept for the STPs of Infosys. Specific targets  To investigate and design sewage sludge management alternatives;  To evaluate sludge management techniques using analytical tool (MCDA); and  To recommend the appropriate technique.

General Overview of the STP Location (Mysore Campus, Infosys) Study Area: Infosys Ltd., Mysore Campus Karnataka, India

Boundary Conditions

 New sewage treatment works are built- sludge production is increasing  Environmental quality standards become more stringent.  Still, sludge are disposed off on agricultural lands for irrigation or manure purposes without treatment.  Current sludge management in Infosys: drying with unsafe and unregulated open bed.

Infosys identifies disruption of sludge management as a key operational risk.

Working Principles: Solar Sludge Drying Greenhouse  Driving force: difference of partial vapor pressure between sludge and ambient air  Naturally: water vapor is lighter than dry air

 The warmer the air more water vapor can be transported Source: IST, 2010

Monthly outdoor temperature and solar radiation in Mysore Max

Avg

Min

30 25 20 15 10

solar radiation (W/m2)

Temperature (0C)

35

240 220 200 180 160 140 120 100

Estimation of evaporation rate: Multiplicative Model [Developed by Seginer and Bux, 2006]

Multiplicative model for the prediction of evaporation rate[kg/m2h] is based on vapor balance equation:

Where, the humidity ratio difference (Δw) is modeled as a product of power factors, one for each of five predictors (Ro, To, Qv, Qm, σ), as follows:

Qv = The ventilation rate (m3 [air]/m2h), Qm = Air mixing rate (m3 [air]/(m2h), To = Outdoor temperature (°C), Ro = Outdoor solar radiation (W/m2),, σ = DSC, Dry solid content, (kg[solids]/ kg[sludge]), ρ = Air density (kg/m3)

Effect of Ventilation Rate and Air Mixing Rate on DSC  Different values of Qv (10, 50, 80, 100 and 150 m3/m2h) and Qm (0, 40, 90 and 150 m3/m2h) are substituted into the equation.  The values for other parameters of the model were set up as constants.  The higher evaporation rate E is obtained for higher value for Qv & Qm 0,50

0,50 0,45 0,40

Evaporation Rate (kg water/m2.h)

Qv=10 (m3/m2.h) Qv=50 (m3/m2.h) Qv=80 (m3/m2.h) Qv=100 (m3/m2.h) Qv=150 (m3/m2.h)

0,55

0,35

0,30 0,25 0,20 0,15 0,10

0,45

Qm=0 (m3/m2.h) 0,40

Qm=40 (m3/m2.h) Qm=90 (m3/m2.h) Qm=150 (m3/m2.h)

0,35

0,30 0,25

0,05 0,00

Sludge DSC (Kg solids/Kg sludge)

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00

0,85

0,80

0,75

0,70

0,65

0,60

0,55

0,50

0,45

0,40

0,35

0,30

0,25

0,20

0,15

0,10

0,05

0,20 0,00

Evaporation Rate (kg water/m2.h)

0,60

Sludge Soild Content (Kg solids/Kg sludge)

 Air drying principle: drying rate of porous materials is not linear or constant.  Stages of drying rate:  warming-up period,  constant rate, and  falling rate of drying.

Drying rate, (kg/m2d)

Air Drying Rates and Period: Batch Drying System

Constant drying rate Falling rate

Time (d)

Estimation of monthly drying period: Batch drying Months

January February March April May June July August September October November December Average

Evaporation Warming up Constant drying Falling drying rate period period (days) period (days) (kg water/ m2d) (days) 8.27 8.60 8.89 9.09 8.54 8.29 7.86 8.22 8.30 8.18 8.48 8.23 8.41

0.4 0.3 0.2 0.2 0.4 0.6 0.8 0.6 0.7 0.7 0.6 0.5 0.5

4.65 4.47 4.33 4.23 4.51 4.64 4.90 4.68 4.64 4.71 4.54 4.68 4.58

2.54 2.36 1.90 1.58 4.00 4.82 5.61 4.35 5.26 5.50 3.85 2.94 3.73

Drying time per batch (days) 8 7 6.5 6.5 8.5 9.5 11 10 10.5 10.5 9 8 9

Monthly Drying Period (one complete drying cycle) Warm-up period Falling drying period

Constant drying period Full drying period

12,0

11 9,5

Drying period (day)

10,0 8,0 6,0 4,0 2,0 0,0

8,5

8 7

6,5

6,5

10

10,5

10,5 9 8

Sludge Drying Within Greenhouse: Results 140 Input 120

Amount (ton)

100 80 60 40 20 0

Stabilized

Evaporated

Output

Calculation of the area required for Greenhouse

Required Area, A = Drying area, m2 E = Evaporation rate in (kg[water]/ (m2[ground]a)) Mwet= the amount of (wet) sludge production, (kg/a) Ϭin= % of the DSC of the wet sludge at the beginning of the drying period Ϭout= % of the DSC of the wet sludge at the end of drying period

= 554 m2

Degradation of DM and oDM during composting (Initial oDMintense,o = 1,559.28 ton/a) Rotting period

Time

weeks

(t)

Exp(-kt)

oDMt

DMt

mDMt

(ton)

(ton)

(ton)

oDM DM degradation degradation

ILt

(%)

(%)

(%)

Intensive rotting 0

0.00

1.00

1559.28

2190

654.08

16.43

16.67

71

1

0.02

0.86

1335.13 1989.21

654.08

28.44

24.31

67

2

0.04

0.73

1143.21 1797.29

654.08

38.73

31.61

64

3

0.06

0.63

978.87 1632.95

654.08

47.54

37.86

60

4

0.08

0.54

838.16 1492.24

654.08

55.08

43.22

56

Secondary rotting 5

0.10

0.48

755.78 1409.86

654.08

59.49

46.35

54

6

0.12

0.42

647.14 1301.22

654.08

65.32

50.49

50

7

0.13

0.36

554.11 1208.19

654.08

70.30

54.03

46

8

0.15

0.30

474.46 1128.54

654.08

74.57

57.06

42

9

0.17

0.26

406.25 1060.33

654.08

78.23

59.65

38

Degradation of dry matter and organic dry matter during composting Time-dependent degradation of the organic substance is often described with First Order degradation kinetics. oDMEnd = oDMBegin * exp(-k*t) kIntens = 8.07 (d-1) Ksecondary = 5.38 (d-1) – (measured)

Degradation during rotting period 90

oDM Degradation

80

After Intensive rotting oDM degraded : 55.08% DM degraded : 43.22%

70 Degradation in %

DM Degradation

60 50 40

After Secondary rotting oDM degraded : 81.36% DM degraded : 61.87%

30 20

Intensive rotting

10

Secondary rotting

0 0

1

2

3

4 5 6 7 Rotting Period in Weeks

8

9

10