Should central venous catheter be systematically

0 downloads 0 Views 337KB Size Report
The rate of confirmed catheter-related bloodstream infection (CRBSI) was higher in survivors than in non-survivors ... processes (such as pancreatitis, pulmonary infarction or acute respiratory ... ample, pace-maker, prosthetic heart valve), haemodynamic instability ... pressure of arterial oxygen/fraction inspired of oxygen.
Lorente et al. Critical Care 2014, 18:564 http://ccforum.com/content/18/5/564

RESEARCH

Open Access

Should central venous catheter be systematically removed in patients with suspected catheter related infection? Leonardo Lorente1*, María M Martín2, Pablo Vidal3, Sergio Rebollo4, María I Ostabal5, Jordi Solé-Violán6 and Working Group on Catheter Related Infection Suspicion Management of GTEIS/SEMICYUC

Abstract Introduction: Best clinical practice for patients with suspected catheter-related infection (CRI) remains unclear according to the latest Infectious Diseases Society of America (IDSA) guidelines. Thus, the objective of this study was to analyze clinical practice concerning the central venous catheter (CVC) and its impact on prognosis in patients with suspected CRI. Methods: We performed a prospective, multicenter, observational study in 18 Spanish Intensive Care Units (ICUs). Inclusion criteria were patients with CVC and suspected CRI. The following exclusion criteria were used: age less than 18 years; pregnancy; lactation; human immunodeficiency virus; neutropenia; solid or haematological tumor; immunosuppressive or radiation therapy; transplanted organ; intravascular foreign body; haemodynamic instability; suppuration or frank erythema/induration at the insertion site of the CVC, and patients with bacteremia or fungemia. The end-point of the study was mortality at 30 days of CRI suspicion. Results: The study included 384 patients. In 214 (55.8%) patients, CVC was removed at the moment of CRI suspicion, in 114 (29.7%) CVC was removed later and in 56 (14.6%) CVC was not removed. We did not find significant differences between survivors (n =311) and non-survivors (n =73) at 30 days according to CVC decision (P =0.26). The rate of confirmed catheter-related bloodstream infection (CRBSI) was higher in survivors than in non-survivors (14.5% versus 4.1%; P =0.02). Mortality rate was lower in patients with CRBSI than in the group of patients whose clinical symptoms were due to other causes (3/48 (6.25%) versus 70/336 (20.8%); P =0.02). We did not find significant differences in mortality in patients with confirmed CRBSI according to CVC removal at the moment of CRI suspicion (n =38) or later (n =10) (7.9% versus 0; P =0.99). Conclusion: In patients with suspected CRI, immediate CVC removal may be not necessary in all patients. Other aspects should be taken into account in the decision-making, such as vascular accessibility, the risk of mechanical complications during new cannulation that may be life-threatening, and the possibility that the CVC may not be the origin of the suspected CRI.

Introduction Clinical practice guidelines for the management of intravascular catheter-related infection (CRI) by the Infectious Diseases Society of America (IDSA) are unclear on what strategy to adopt in patients with central venous catheter (CVC) and suspected CRI [1]. There are arguments in favour of and against immediate CVC removal on suspicion * Correspondence: [email protected] 1 Intensive Care Unit, Hospital Universitario de Canarias, Ofra s/n, La Laguna, Santa Cruz de Tenerife 38320, Spain Full list of author information is available at the end of the article

of CRI. On the one hand, catheter-related bloodstream infection (CRBSI) has been associated with increased mortality [2] and delayed CVC removal could lead to worse prognosis if the focus of infection is the CVC itself [3]. On the other hand, there are arguments against immediate CVC removal when CRI is suspected. First, one reason to suspect CRI is the presence of fever, but critically ill patients frequently develop fever and the cause is not always CRBSI; there are many other causes of fever, including non-infectious processes (such as pancreatitis, pulmonary infarction or acute respiratory

© 2014 Lorente et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Lorente et al. Critical Care 2014, 18:564 http://ccforum.com/content/18/5/564

distress syndrome, et cetera) and infectious processes (pneumonia, urinary tract infection and central nervous system infection) [4]. Second, the incidence of CRBSI has decreased due to the implementation of evidencebased clinical practice during CVC insertion and maintenance [5,6]. Third, in a randomized clinical trial involving 64 patients with suspected CRI, there were no differences in outcome between groups with early CVC removal and those with watchful waiting; however, in the watchfulwaiting group, only 38% underwent catheter removal [7]. Fourth, vascular catheterization by new puncture entails the risk of serious and even life-threatening mechanical complications such as vascular lesion, haematoma, haemothorax, pneumothorax, nerve injury and gas embolism [8]. The objective of this study was to analyze clinical practice for CVC management in critically ill patients with suspected CRI, and its impact on patient prognosis.

Methods Design and subjects

We performed a prospective, observational, multicentre study in 18 Spanish ICUs. The study was approved by the Institutional Ethic Review Boards of the 18 participating hospitals (Review Boards are listed in Acknowledgements). Written informed consent from the patients or from their family members was obtained. Inclusion criteria were ICU patients with CVC and suspected CRI. CRI was suspected when a patient developed a new episode of fever or sepsis. Fever was considered as temperature ≥38°C. Sepsis was defined according to the International Sepsis Definitions Conference criteria [9]. Exclusion criteria were: age 15 colonyforming units per plate) was isolated in cultures of skin and/or catheter hubs and in peripheral blood. Quantitative blood cultures were defined as positive when the number of colony-forming units of microorganisms isolated per milliliter of catheter-drawn blood was at least three times greater than that of blood obtained from a peripheral vein. Differential time to positivity was defined as positive when the blood through any of the CVC hubs yielded positive results at least 120 minutes earlier than the positivity of a blood sample drawn simultaneously from a peripheral vein. Primary bacteraemia (PB) was defined as a positive blood culture obtained from a peripheral vein, no apparent source of bacteraemia and disappearance of symptoms within 48 hours after removal of the venous catheter. CRBSI included the presence of CVCB or PB. Statistical analysis

Continuous variables are reported as means and standard deviations, and categorical variables as frequencies and percentages. We used the Mann-Whitney t-test to compare continuous variables between groups. Comparison of categorical variables between groups was performed using the chi-square test. We carried out a propensity analysis with logistic regression to control for the effect of sex, admission diagnosis, COPD, SOFA score and CRBSI as the cause of clinical symptoms at the moment of CVC removal. The dependent variable was moment of CVC removal, and the independent variables were sex, admission diagnosis, COPD, SOFA score and CRBSI as the cause of the symptoms. To control for the confounding impact of propensity scores in mortality, we included propensity

Lorente et al. Critical Care 2014, 18:564 http://ccforum.com/content/18/5/564

scores jointly with moment of CVC removal in a binomial regression model. Risk ratio and 95% confidence intervals were calculated as measures of the clinical impact of the predictor variables. P-values