SOME APPLICATIONS OF AN INEQUALITY OF ...

2 downloads 0 Views 130KB Size Report
inequality of Ky Fan [2]. Theorem 1.1. Let f : [0,2s] → R be a function that with a non- negative third derivative in (0,2s). If ak ∈ (0,s],(1 ≤ k ≤ n), and pk > 0,(1 ≤ k ...
SOME APPLICATIONS OF AN INEQUALITY OF NORMAN LEVINSON ´ J. GIBERGANS-BAGUENA, J. J. EGOZCUE AND J. L. D´IAZ-BARRERO Abstract. Applying the inequality of N. Levinson several multivariate inequalities involving arithmetics progressions, random variables and binomial coefficients are obtained.

1. Introduction In [1] Norman Levinson presented the following generalization of an inequality of Ky Fan [2] Theorem 1.1. Let f : [0, 2s] → R be a function that with a nonnegative third derivative in (0, 2s). If ak ∈ (0, s], (1 ≤ k ≤ n), and pk > 0, (1 ≤ k ≤ n), then ! n n 1 X 1 X pk f (xk ) − f pk xk Pn k=1 Pn k=1 ! n n 1 X 1 X (1.1) ≤ pk f (2s − xk ) − f pk (2s − xk ) Pn k=1 Pn k=1 Pj 000 where Pj = k=1 pk for 1 ≤ j ≤ n. If f (t) > 0 in (0, 2s) then equality holds if and only if x1 = x2 = . . . = xn . An immediate consequence of the preceding result is the above mentioned inequality of Ky Fan. Namely, Corollary 1.2. Let 0 < xk ≤ 1/2 for k = 1, 2, · · · , n. Then !, n !n !, n !n n n Y X Y X (1.2) xk xk ≤ (1 − xk ) (1 − xk ) k=1

k=1

k=1

k=1

Proof. Indeed inequality (1.2) immediately follows setting s = 1/2 and f (t) = log(t) into (1.1).  2000 Mathematics Subject Classification. 26D15, 30A10. Key words and phrases. Multivariate Inequalities, Levinson’s inequality.

1

2

´ J. GIBERGANS-BAGUENA, J. J. EGOZCUE AND J. L. D´IAZ-BARRERO

2. The Inequalities In the sequel some applications of the preceding inequality are given and several inequalities similar to the ones presented in ([3], [4]) are obtained. We begin with Theorem 2.1. Let x1 , x2 , . . . , xn be positive numbers such that x1 + x2 + · · · + xn = s and let pk > 0, (1 ≤ k ≤ n) and q ∈ N∗ . Then holds !q n n 1 X 1 X pk (2s − xk ) + pk xqk Pn k=1 Pn k=1 ≤

n 1 X pk xk Pn k=1

!q +

n 1 X pk (2s − xk )q Pn k=1

Proof. Since the function f : (0, +∞) → R defined by f (t) = tq , q ∈ N∗ , has third derivative f 000 (t) ≥ 0, then applying (1.1) the statement immediately follows after rearranging terms and this completes the proof.  Applying the preceding result the following corollaries are obtained. Corollary 2.2. Let x1 , x2 , . . . , xn be positive numbers in arithmetic progression and let pk > 0, (1 ≤ k ≤ n) such that p1 +p2 +· · ·+pn = 1. Then, for all q ∈ N∗ , holds !q n n   X X x k q xk  − pk x1 + xn − pk x1 + xn − n n k=1 k=1 1 ≤ q n

"

n X

!q pk xk



k=1

n X

# pk xqk

k=1

Corollary 2.3. Let X be a Binomial random variable. That is, X ∼ B(n, p). Then, for all q ∈ N∗ , holds !q n n X X pk (n(n + 1) − k) pk k q + 1 − (1 − p)n 1 − (1 − p)n k=1 k=1  ≤ where pk =

n k



np 1 − (1 − p)n

q

n X pk n(n + 1) − k + 1 − (1 − p)n k=1

pk (1 − p)n−k , 0 ≤ k ≤ n.

q

APPLICATIONS OF LEVINSON’S INEQUALITY

Proof. Setting xk = k, 1 ≤ k ≤ n and noting that and

n X

n X

3

pk = 1 − (1 − p)n

k=1

pk xk = E(X) = np, then the statement immediately follows

k=1

from Theorem 2.1.  Another application of Levinson’s inequality is the following result. Theorem 2.4. Let x1 , x2 , . . . , xn be positive numbers such that x1 + x2 +· · ·+xn = s and let pk > 0, (1 ≤ k ≤ n) such that p1 +p2 +· · ·+pn = 1. Then holds n X

(2.1)

! pk xk

k=1

n  Y 2s

xk

k=1

pk X n −1 ≥ pk (2s − xk ) k=1

Proof. To proof the preceding statement we will consider the function f (t) = log(t) and applying (1.1), we have n X

pk log(xk ) − log

k=1

n X

! pk xk

k=1

! n 1 X pk (2s − xk ) ≤ pk log(2s − xk ) − log P n k=1 k=1 ! n n X Y Taking into account that log(xk )pk = log xk pk we have n X

k=1

log

n Y

xk pk −log

k=1

n X

! pk xk

≤ log

k=1 n Y

(2s−xk )pk −log

k=1

k=1

n X k=1

or equivalently, 

n Y

 pk



n Y

 pk

xk  (2s − xk )     k=1   k=1   ≤ log   log  n n X  X      pk xk pk (2s − xk ) k=1

k=1

! pk (2s − xk )

4

´ J. GIBERGANS-BAGUENA, J. J. EGOZCUE AND J. L. D´IAZ-BARRERO

Since f (x) = log(x) is injective, we obtain n X pk (2s − xk ) p n  Y 2s − xk k k=1 ≤ n X xk k=1 pk xk k=1

and the proof is complete.



Finally, we present two new multivariate inequalities involving binomial coefficients. Corollary 2.5. Let x0 , x1 , · · · , xn be positive numbers such that x0 + x1 + · · · + xn = s. Then holds #2n " n   #2n n  " n   n X n X n Y 2s − xk  (k ) (2s − xk ) ≤ xk k k xk k=0 k=0 k=0   1 n Proof. Setting pk = n , 0 ≤ k ≤ n into the preceding result and 2 k n   X n taking into account the well known identity = 2n , we have k k=0 n    X n n 1 (2s − x ) k k  n  2n k=0 k Y 2s − xk 2n ≤ n   xk 1 X n k=1 x k 2n k=0 k or equivalently,  n   2n X n (2s − xk )    (nk) n  Y  k=0 k  2s − x k   ≤ n     X xk n   k=0 xk k k=0 from which the statement immediately follows and this completes the proof.  Corollary 2.6. If 0 ≤ xk ≤ 12 , 0 ≤ k ≤ n and x0 + x1 + · · · + xn = s. Then !2n  n n   n  Y 1 X n 2s − xk (k ) (2s − xk ) ≤ 2n−1 k=0 k xk k=0

APPLICATIONS OF LEVINSON’S INEQUALITY

5

holds. Proof. We have

n   X n

n   1X n xk ≤ = 2n−1 and applying (2.1) 2 k=0 k k

k=0

yields 

n   X n

  k=0   

2n

(2s − xk )     2n−1 

n

k



 n  Y 2s − xk (k ) k=0

and the statement follows.

xk 

References 1. N. Levinson. “Generalization of an inequality of Ky Fan,” Journal of Mathematical Analysis and Applications, Vol. 8 (1964) 133–134. 2. E. F. Beckencback and R. Bellman, Inequalities, Cambridge, 1961. 3. J. Gibergans-B´ aguena and J. L. D´ıaz-Barrero. “Some Elementary Inequalities Involving Convex Functions”. Octogon Mathematics Magazine, Vol. 13, No. 2, (2005) 984–988. 4. J. L. D´ıaz-Barrero and P. G. Popescu, “Some Elemntary Inequalities for Convex Functions”, J. Ineq. Pure and Appl. Math., (2006) (Submitted). `cnica de Catalunya, Applied Mathematics III, Universitat Polite Jordi Girona 1-3, C2, 08034 Barcelona. Spain E-mail address: [email protected] E-mail address: [email protected] E-mail address: [email protected]