Some Inverse Relations Determined by Catalan Matrices

0 downloads 0 Views 2MB Size Report
Aug 21, 2013 - In addition, a unified form of Catalan matrices is introduced. 1. Introduction .... (14). Example 3. (a) It is well known that the Pascal matrix =.
Hindawi Publishing Corporation International Journal of Combinatorics Volume 2013, Article ID 528584, 6 pages http://dx.doi.org/10.1155/2013/528584

Research Article Some Inverse Relations Determined by Catalan Matrices Sheng-liang Yang Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China Correspondence should be addressed to Sheng-liang Yang; [email protected] Received 24 June 2013; Revised 21 August 2013; Accepted 21 August 2013 Academic Editor: Laszlo A. Szekely Copyright Β© 2013 Sheng-liang Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We use the A-sequence and Z-sequence of Riordan array to characterize the inverse relation associated with the Riordan array. We apply this result to prove some combinatorial identities involving Catalan matrices and binomial coefficients. Some matrix identities obtained by Shapiro and Radoux are all special cases of our identity. In addition, a unified form of Catalan matrices is introduced.

1. Introduction The Catalan numbers 𝐢𝑛 have been widely encountered and investigated [1, 2]. They can be defined through binomial coefficients 1 2𝑛 ( ) , for 𝑛 β‰₯ 0, 𝐢𝑛 = (1) 𝑛+1 𝑛 or by the generating function 𝐢(𝑑) =

βˆ‘βˆž 𝑛=0

𝑛

𝐢𝑛 𝑑 being

1 βˆ’ √1 βˆ’ 4𝑑 𝐢 (𝑑) = , 2𝑑

(2)

which satisfies the functional equation 𝐢(𝑑) = 1 + 𝑑𝐢(𝑑)2 . In [2], Stanley listed 66 enumerative problems which are counted by the Catalan numbers. Many number triangles related to the Catalan sequence have been introduced in the literature. In [3–5], Shapiro et al. introduced a Catalan triangle 𝐡 with the entries given by 𝐡𝑛,π‘˜ =

π‘˜ + 1 2𝑛 + 2 ( ), 𝑛+1 π‘›βˆ’π‘˜

where 𝑛 β‰₯ π‘˜ β‰₯ 0.

(3)

The following identity is obtained in [6] in connection with the moment of the Catalan triangle: 1 2 (5 (14 42 .. (.

0 1 4 14 48 .. .

0 0 1 6 27 .. .

0 0 0 1 8 .. .

0 0 0 0 1 .. .

1 β‹…β‹…β‹… 1 4 β‹…β‹…β‹… 2 4 β‹… β‹… β‹…) (3) ( 2 ) β‹… β‹… β‹…) (4) = (43 ) . β‹…β‹…β‹… 5 44 . . d) ( .. ) ( .. )

Another proof of the above identity is given by Woan et al. [7] while computing the areas of parallelo-polyominoes via generating functions. In [8], a combinatorial interpretation of the matrix identity (4) is also obtained. In [9], Radoux introduced a triangle of numbers 𝑐𝑛,π‘˜ =

2π‘˜ + 1 2𝑛 ( ), 𝑛+π‘˜+1 π‘›βˆ’π‘˜

(5)

and he presents the identity βˆ‘π‘›π‘˜=0 (2π‘˜ + 1)𝑐𝑛,π‘˜ = 22𝑛 with 𝑛 β‰₯ π‘˜ β‰₯ 0, which is equivalent to following matrix equation: 1 1 (2 (5 14 .. (.

0 1 3 9 28 .. .

0 0 1 5 20 .. .

0 0 0 1 7 .. .

0 0 0 0 1 .. .

1 β‹…β‹…β‹… 1 4 β‹…β‹…β‹… 3 β‹… β‹… β‹…) (5) (42 ) β‹… β‹… β‹…) (7) = (43 ) . β‹…β‹…β‹… 9 44 . . d) ( .. ) ( .. )

(6)

Deng and Yan [10] proved this identity by using the Riordan array method. Aigner [11] introduced a number triangle with the entries given by π‘Žπ‘›,π‘˜ =

(4)

where 𝑛 β‰₯ π‘˜ β‰₯ 0,

π‘˜ + 1 2𝑛 βˆ’ π‘˜ ( ), 𝑛+1 π‘›βˆ’π‘˜

where 𝑛 β‰₯ π‘˜ β‰₯ 0.

(7)

This array is also discussed in [12–14]. We use the 𝐴-sequence and 𝑍-sequence of Riordan array to characterize the inverse relation associated with the

2

International Journal of Combinatorics

Riordan array. We apply this result to prove some combinatorial identities involving Catalan matrices and binomial coefficients, which are generalizations of (4) and (6). In addition, a unified form of Catalan matrices is introduced.

Lemma 2 (see [22, 23]). Let 𝐷 = (𝑔(𝑑), 𝑓(𝑑)) be a Riordan array, and let 𝐴(𝑑) and 𝑍(𝑑) be the generating functions for the corresponding 𝐴- and 𝑍-sequences, respectively. Then we have 𝑔 (𝑑) =

2. Riordan Arrays In the recent literature, one may find that Riordan arrays have attracted the attention of various authors from many points of view, and many examples and applications can be found (see, e.g., [13, 15–21]). An infinite lower triangular matrix 𝐷 = (𝑑𝑛,π‘˜ )𝑛,π‘˜β‰₯0 is called a Riordan array if its column π‘˜ has generating function 𝑔(𝑑)𝑓(𝑑)π‘˜ , where 𝑔(𝑑) and 𝑓(𝑑) are formal power series with 𝑔0 = 1, 𝑓0 = 0, and 𝑓1 =ΜΈ 0. The Riordan array is denoted by 𝐷 = (𝑔(𝑑), 𝑓(𝑑)). Thus, the general term of Riordan array 𝐷 = (𝑔(𝑑), 𝑓(𝑑)) is given by 𝑑𝑛,π‘˜ = [𝑑𝑛 ] 𝑔 (𝑑) 𝑓(𝑑)π‘˜ ,

(8)

where [𝑑𝑛 ]β„Ž(𝑑) denotes the coefficient of 𝑑𝑛 in power series β„Ž(𝑑). Suppose we multiply the array 𝐷 = (𝑔(𝑑), 𝑓(𝑑)) by a column vector (𝑏0 , 𝑏1 , 𝑏2 , . . . )𝑇 and get a column vector (π‘Ž0 , π‘Ž1 , π‘Ž2 , . . . )𝑇 . Let 𝑏(𝑑) be the ordinary generating function for the sequence (𝑏0 , 𝑏1 , 𝑏2 , . . . )𝑇 . Then it follows that the ordinary generating function for the sequence (π‘Ž0 , π‘Ž1 , π‘Ž2 , . . . )𝑇 is 𝑔(𝑑)𝑏(𝑓(𝑑)). If we identify a sequence with its ordinary generating function, the composition rule can be rewritten as (𝑔 (𝑑) , 𝑓 (𝑑)) 𝑏 (𝑑) = 𝑔 (𝑑) 𝑏 (𝑓 (𝑑)) .

(9)

This is called the fundamental theorem for Riordan arrays, and this leads to the multiplication rule for the Riordan arrays: (𝑔 (𝑑) , 𝑓 (𝑑)) (β„Ž (𝑑) , 𝑙 (𝑑)) = (𝑔 (𝑑) β„Ž (𝑓 (𝑑)) , 𝑙 (𝑓 (𝑑))) . (10) The set of all Riordan arrays forms a group under ordinary multiplication. The identity is (1, 𝑑). The inverse of (𝑔(𝑑), 𝑓(𝑑)) is βˆ’1

(𝑔 (𝑑) , 𝑓 (𝑑))

=(

1 𝑔 (𝑓 (𝑑))

, 𝑓 (𝑑)) ,

(11)

where 𝑓(𝑑) is compositional inverse of 𝑓(𝑑). Lemma 1 (see [22, 23]). Let 𝐷 = (𝑑𝑛,π‘˜ ) be an infinite lower triangular matrix. Then 𝐷 is a Riordan array if and only if 𝑑0,0 = 1 and there exist two sequences 𝐴 = (π‘Žπ‘– )𝑖β‰₯0 and 𝑍 = (𝑧𝑖 )𝑖β‰₯0 with π‘Ž0 =ΜΈ 0 and 𝑧0 =ΜΈ 0 such that 𝑑𝑛+1,π‘˜+1 = π‘Ž0 𝑑𝑛,π‘˜ + π‘Ž1 𝑑𝑛,π‘˜+1 + π‘Ž2 𝑑𝑛,π‘˜+2 + . . . ,

𝑛, π‘˜ = 0, 1, . . . ,

𝑑𝑛+1,0 = 𝑧0 𝑑𝑛,0 + 𝑧1 𝑑𝑛,1 + 𝑧2 𝑑𝑛,2 + . . . ,

𝑛 = 0, 1, . . . . (12)

Such sequences are called the 𝐴-sequence and the 𝑍-sequence of the Riordan array 𝐷 = (𝑔(𝑑), 𝑓(𝑑)), respectively.

1 , 1 βˆ’ 𝑑𝑍 (𝑓 (𝑑))

𝑓 (𝑑) = 𝑑𝐴 (𝑓 (𝑑)) .

(13)

If the inverse of 𝐷 = (𝑔(𝑑), 𝑓(𝑑)) is π·βˆ’1 = (𝑑(𝑑), β„Ž(𝑑)). Then 𝐴 (𝑑) =

𝑑 , β„Ž (𝑑)

𝑍 (𝑑) =

1 βˆ’ 𝑑 (𝑑) . β„Ž (𝑑)

(14)

Example 3. (a) It is well known that the Pascal matrix 𝑃 = (( 𝑗𝑖 ))𝑖,𝑗β‰₯0 can be expressed as the Riordan array (1/(1 βˆ’ 𝑑), 𝑑/(1 βˆ’ 𝑑)), and the generating functions of its 𝐴- and 𝑍-sequences are 𝐴(𝑑) = 1 + 𝑑, 𝑍(𝑑) = 1. More generally, it is easy to show that the generalized Pascal array 𝑃[π‘₯] = (π‘₯π‘–βˆ’π‘— ( 𝑗𝑖 ))𝑖,𝑗β‰₯0 can be expressed as the Riordan matrix (1/(1 βˆ’ π‘₯𝑑), 𝑑/(1 βˆ’ π‘₯𝑑)) and the generating functions of its 𝐴- and 𝑍-sequences are 𝐴(𝑑) = 1 + π‘₯𝑑, and 𝑍(𝑑) = π‘₯. (b) For nonnegative integer 𝑠, the Pascal functional 𝑠-eliminated matrix 𝑃𝑠 was introduced in [24] by 𝑃𝑠 = 𝑖+𝑠 ))𝑖,𝑗β‰₯0 . We have 𝑃𝑠 = (1/(1 βˆ’ π‘₯𝑑)𝑠+1 , 𝑑/(1 βˆ’ π‘₯𝑑)), (π‘₯π‘–βˆ’π‘— ( 𝑗+𝑠 and the generating functions of its 𝐴- and 𝑍-sequences are 𝐴(𝑑) = 1+π‘₯𝑑, 𝑍(𝑑) = ((1+π‘₯𝑑)𝑠+1 βˆ’1)/(𝑑(1+π‘₯𝑑)𝑠 ). We also have βˆ’1 π‘ƒπ‘ βˆ’1 = (1/(1 βˆ’ π‘₯𝑑)𝑠+1 , 𝑑/(1 βˆ’ π‘₯𝑑)) = (1/(1+π‘₯𝑑)𝑠+1 , 𝑑/(1+π‘₯𝑑)). Definition 4. Let (π‘Ÿπ‘› (π‘₯))𝑛β‰₯0 be a sequence of polynomials, where π‘Ÿπ‘› (π‘₯) is of degree 𝑛 and π‘Ÿπ‘› (π‘₯) = βˆ‘π‘›π‘˜=0 π‘Ÿπ‘›,π‘˜ π‘₯π‘˜ . We say that (π‘Ÿπ‘› (π‘₯))𝑛β‰₯0 is a polynomial sequence of Riordan type if the coefficient matrix (π‘Ÿπ‘›,π‘˜ )𝑛,π‘˜β‰₯0 is an element of the Riordan group; that is, there exists a Riordan array (𝑔(𝑑), 𝑓(𝑑)) such that (π‘Ÿπ‘›,π‘˜ )𝑛,π‘˜β‰₯0 = (𝑔(𝑑), 𝑓(𝑑)). In this case, we say that (π‘Ÿπ‘› (π‘₯))𝑛β‰₯0 is the polynomial sequence associated to the Riordan array (𝑔(𝑑), 𝑓(𝑑)). If (π‘Ÿπ‘› (π‘₯))𝑛β‰₯0 is the polynomial sequence associated to a 𝑛 Riordan array (𝑔(𝑑), 𝑓(𝑑)), and let π‘Ÿ(𝑑, π‘₯) = βˆ‘βˆž 𝑛=0 π‘Ÿπ‘› (π‘₯)𝑑 be its generating function, then by (9), we have (𝑔 (𝑑) , 𝑓 (𝑑))

1 = π‘Ÿ (𝑑, π‘₯) . 1 βˆ’ π‘₯𝑑

(15)

Thus, π‘Ÿ(𝑑, π‘₯) = 𝑔(𝑑)/(1 βˆ’ π‘₯𝑓(𝑑)). The notion of the polynomial sequence of Riordan type was introduced in [25], and it has been studied by [26]. In this paper, by studying the polynomial sequence of Riordan type related to some Catalan type matrices, we obtain some interesting identities and inverse relations. Theorem 5. Let 𝐷 = (𝑔(𝑑), 𝑓(𝑑)) be a Riordan array, and let 𝐴(𝑑) and 𝑍(𝑑) be the generating functions of its 𝐴-sequence and 𝑍-sequence. If 𝐡(𝑑) = (𝐴(𝑑) βˆ’ 𝑑𝑍(𝑑))/(𝐴(𝑑) βˆ’ π‘₯𝑑), then (𝑔 (𝑑) , 𝑓 (𝑑)) 𝐡 (𝑑) = where π‘₯ is any real number.

1 , 1 βˆ’ π‘₯𝑑

(16)

International Journal of Combinatorics

3

Proof. Let 𝐡(𝑑) = (𝐴(𝑑) βˆ’ 𝑑𝑍(𝑑))/(𝐴(𝑑) βˆ’ π‘₯𝑑); then (𝑔(𝑑), 𝑓(𝑑))𝐡(𝑑) = 𝑔(𝑑)𝐡(𝑓(𝑑)) = (1/(1 βˆ’ 𝑑𝑍(𝑓(𝑑))))((𝐴(𝑓(𝑑)) βˆ’ 𝑓(𝑑)𝑍(𝑓(𝑑)))/(𝐴(𝑓(𝑑)) βˆ’ π‘₯𝑓(𝑑))) = (1/(1 βˆ’ 𝑑𝑍(𝑓(𝑑))))((𝑓(𝑑) βˆ’ 𝑑𝑓(𝑑)𝑍(𝑓(𝑑)))/(𝑓(𝑑) βˆ’ π‘₯𝑓(𝑑))) = 1/(1 βˆ’ π‘₯𝑑). Corollary 6. Let 𝐷 = (𝑔(𝑑), 𝑓(𝑑)) be a Riordan array. If 𝐴(𝑑) and 𝑍(𝑑) are the generating functions of its 𝐴sequence and 𝑍-sequence, respectively, and if (πœ‘π‘› (π‘₯))𝑛β‰₯0 is the polynomial sequence associated to the Riordan array π·βˆ’1 = (1/𝑔(𝑓(𝑑)), 𝑓(𝑑)), then ∞

βˆ‘ πœ‘π‘› (π‘₯) 𝑑𝑛 =

𝑛=0

𝐴 (𝑑) βˆ’ 𝑑𝑍 (𝑑) . 𝐴 (𝑑) βˆ’ π‘₯𝑑

(17)

The generating functions of its 𝐴- and 𝑍-sequence are 𝐴(𝑑) = 1 + 2𝑑 + 𝑑2 , 𝑍(𝑑) = 2 + 𝑑. Because (𝐴(𝑑) βˆ’ 𝑑𝑍(𝑑))/(𝐴(𝑑) βˆ’ 4𝑑) = 𝑛 1/(1 βˆ’ 𝑑)2 = βˆ‘βˆž 𝑛=0 (𝑛 + 1)𝑑 , from Theorem 5, we have (𝐢(𝑑)2 , 𝑑𝐢(𝑑)2 )

1 𝐴 (𝑑) βˆ’ 𝑑𝑍 (𝑑) = . 𝐴 (𝑑) βˆ’ π‘₯𝑑 1 βˆ’ π‘₯𝑑

(18)

Hence, (𝑔 (𝑑) , 𝑓 (𝑑))

βˆ’1

1 𝐴 (𝑑) βˆ’ 𝑑𝑍 (𝑑) = . 1 βˆ’ π‘₯𝑑 𝐴 (𝑑) βˆ’ π‘₯𝑑

(19)

Example 9. The lower triangular matrix in (6) can be written as (𝐢 (𝑑) , 𝑑𝐢(𝑑)2 ) = (

𝑛

βˆ‘ 𝑑𝑛,π‘˜ πœ‘π‘˜ (π‘₯) = π‘₯𝑛 ,

π‘˜=0 𝑛

(20) π‘˜

1 βˆ’ √1 βˆ’ 4𝑑 1 βˆ’ 2𝑑 βˆ’ √1 βˆ’ 4𝑑 , ). 2𝑑 2𝑑 (24)

The generating functions of its 𝐴- and 𝑍-sequence are 𝐴(𝑑) = (1 + 𝑑)2 , 𝑍(𝑑) = 1 + 𝑑. Since (𝐴(𝑑) βˆ’ 𝑑𝑍(𝑑))/(𝐴(𝑑) βˆ’ 4𝑑) = 𝑛 (1 + 𝑑)/(1 βˆ’ 𝑑)2 = βˆ‘βˆž 𝑛=0 (2𝑛 + 1)𝑑 , from Theorem 5, we have (𝐢 (𝑑) , 𝑑𝐢(𝑑)2 )

The result then follows from identity (15). Corollary 7. Let 𝐷 = (𝑑𝑛,π‘˜ ) be a Riordan array. If 𝐴(𝑑) and 𝑍(𝑑) are the generating functions of its 𝐴-sequence and 𝑍-sequence, respectively, and if (πœ‘π‘› (π‘₯))𝑛β‰₯0 is the polynomial sequence associated to the Riordan array π·βˆ’1 , then

(23)

This is exactly the matrix identity (4).

Proof. By the theorem, we have (𝑔 (𝑑) , 𝑓 (𝑑))

1 1 . = 2 1 βˆ’ 4𝑑 (1 βˆ’ 𝑑)

1+𝑑 1 = . (1 βˆ’ 𝑑)2 1 βˆ’ 4𝑑

(25)

This is exactly the matrix identity (6).

3. Inverse Relations Determined by Catalan Matrices Let π‘Ž, 𝑏 be integer numbers, and let π‘Ÿ be arbitrary parameter. We define the generalized Catalan matrix 𝐢[π‘Ž, 𝑏; π‘Ÿ] to be the Riordan array

βˆ‘ 𝑑𝑛,π‘˜ π‘₯ = πœ‘π‘› (π‘₯) ,

𝐢 [π‘Ž, 𝑏; π‘Ÿ] = (𝐢(π‘Ÿπ‘‘)π‘Ž , 𝑑𝐢(π‘Ÿπ‘‘)𝑏 ) ,

where 𝑑𝑛,π‘˜ is the (𝑛, π‘˜)-element of π·βˆ’1 . In matrix form, we have

where 𝐢(𝑑) is the generating function of Catalan sequence defined in (2). From [27], we have 𝐢(𝑑)π‘Ž = βˆ‘βˆž 𝑛=0 𝑛 (π‘Ž/(2𝑛 + π‘Ž)) ( 2𝑛+π‘Ž 𝑛 ) 𝑑 for any integer number π‘Ž. Hence [𝑑𝑛 ]𝐢(π‘Ÿπ‘‘)π‘Ž (𝑑𝐢(π‘Ÿπ‘‘)𝑏 )π‘˜ = [π‘‘π‘›βˆ’π‘˜ ]𝐢(π‘Ÿπ‘‘)π‘Ž+π‘π‘˜ = ((π‘Ž + π‘π‘˜)/(2𝑛 βˆ’ ) π‘Ÿπ‘›βˆ’π‘˜ . Therefore, by (8), the generic 2π‘˜ + π‘Ž + π‘π‘˜)) ( 2π‘›βˆ’2π‘˜+π‘Ž+π‘π‘˜ π‘›βˆ’π‘˜ element of the generalized Catalan matrix 𝐢[π‘Ž, 𝑏; π‘Ÿ] is given by

π‘˜=0

𝑑0,0 𝑑1,0 (𝑑2,0 (𝑑3,0 𝑑4,0 .. ( .

0 0 0 0 𝑑1,1 0 0 0 𝑑2,1 𝑑2,2 0 0 𝑑3,1 𝑑3,2 𝑑3,3 0 𝑑4,1 𝑑4,2 𝑑4,3 𝑑4,4 .. .. .. .. . . . . 1 π‘₯ 2 (π‘₯ ) = (π‘₯ 3 ) . π‘₯4 .. (.)

β‹…β‹…β‹… πœ‘0 (π‘₯) πœ‘1 (π‘₯) β‹…β‹…β‹… β‹… β‹… β‹…) (πœ‘2 (π‘₯)) β‹… β‹… β‹…) (πœ‘3 (π‘₯)) πœ‘4 (π‘₯) β‹…β‹…β‹… . d) ( .. )

(21)

Example 8. The lower triangular matrix in (4) may be represented as (𝐢(𝑑)2 , 𝑑𝐢(𝑑)2 ) = (

1 βˆ’ 2𝑑 βˆ’ √1 βˆ’ 4𝑑 1 βˆ’ 2𝑑 βˆ’ √1 βˆ’ 4𝑑 , ). 2𝑑2 2𝑑 (22)

𝐢[π‘Ž, 𝑏; π‘Ÿ]𝑛,π‘˜ =

(26)

π‘Ž + π‘π‘˜ 2𝑛 βˆ’ 2π‘˜ + π‘Ž + π‘π‘˜ π‘›βˆ’π‘˜ ( )π‘Ÿ . π‘›βˆ’π‘˜ 2𝑛 βˆ’ 2π‘˜ + π‘Ž + π‘π‘˜ (27)

Denote 𝐢[π‘Ž, 𝑏] = 𝐢[π‘Ž, 𝑏; 1] = (𝐢(𝑑)π‘Ž , 𝑑𝐢(𝑑)𝑏 ). For 0 ≀ π‘Ž, 𝑏 ≀ 2, the corresponding matrices 𝐢[π‘Ž, 𝑏] are widely studied by many authors [5, 12, 14, 15, 28, 29]. For example, 𝐢[1, 0] = (𝐢(𝑑), 𝑑) = ((1 βˆ’ √1 βˆ’ 4𝑑)/2𝑑, 𝑑), 𝐢[0, 1] = (1, 𝑑𝐢(𝑑)), 𝐢[2, 0] = (𝐢(𝑑)2 , 𝑑), and 𝐢[0, 2] = (1, 𝑑𝐢(𝑑)2 ) = (1, 𝐢(𝑑) βˆ’ 1). The matrix 𝐢[1, 1] = (𝐢(𝑑), 𝑑𝐢(𝑑)) is the Catalan triangle introduced by Aigner [11] and studied in [6, 12, 13]. The matrix 𝐢[2, 2] = (𝐢(𝑑)2 , 𝑑𝐢(𝑑)2 ) is the Catalan triangle defined by Shapiro [5]; see also (4). The matrix 𝐢[1, 2] = (𝐢(𝑑), 𝑑𝐢(𝑑)2 ) is the Catalan matrix defined by Radoux [9]; see also (6).

4

International Journal of Combinatorics

Theorem 10. Let {𝐹𝑛 (π‘₯, π‘Ÿ)} be the polynomial sequence associated to the Riordan array 𝐢[1, 1; π‘Ÿ]βˆ’1 = (𝐢(π‘Ÿπ‘‘), 𝑑𝐢(π‘Ÿπ‘‘))βˆ’1 . Then, the identities 𝑛

π‘˜ + 1 2𝑛 βˆ’ π‘˜ π‘›βˆ’π‘˜ ( ) π‘Ÿ πΉπ‘˜ (π‘₯, π‘Ÿ) = π‘₯𝑛 , π‘›βˆ’π‘˜ 𝑛 + 1 π‘˜=0 βˆ‘

𝑛

π‘˜+1 π‘˜ ) π‘₯ (βˆ’π‘Ÿ)π‘›βˆ’π‘˜ = 𝐹𝑛 (π‘₯, π‘Ÿ) , βˆ‘( π‘›βˆ’π‘˜

π‘˜

(28)

π‘˜=0

hold for every 𝑛 ∈ N. Proof. From generic term given in (27) with π‘Ž = 1 and 𝑏 = 1, we have the generic term of Catalan matrix 𝐢[1, 1; π‘Ÿ] = (𝐢(π‘Ÿπ‘‘), 𝑑𝐢(π‘Ÿπ‘‘)) which is 𝐢[1, 1; π‘Ÿ]𝑛,π‘˜ = ((1 + π‘˜)/(2𝑛 βˆ’ 2π‘˜ + 1 + π‘˜)) ( 2π‘›βˆ’2π‘˜+1+π‘˜ ) π‘Ÿπ‘›βˆ’π‘˜ , and by simplifying we obtain π‘›βˆ’π‘˜ π‘›βˆ’π‘˜ 𝐢[1, 1; π‘Ÿ]𝑛,π‘˜ = ((π‘˜ + 1)/(𝑛 + 1)) ( 2π‘›βˆ’π‘˜ . Using (11) and (14), π‘›βˆ’π‘˜ ) π‘Ÿ βˆ’1 we get 𝐢[1, 1; π‘Ÿ] = (1 βˆ’ π‘Ÿπ‘‘, 𝑑(1 βˆ’ π‘Ÿπ‘‘)), and the generating functions of its 𝐴- and 𝑍-sequences are 𝐴(𝑑) = 1/(1 βˆ’ π‘Ÿπ‘‘) 𝑛 = and 𝑍(𝑑) = π‘Ÿ/(1 βˆ’ π‘Ÿπ‘‘). By Corollary 6, βˆ‘βˆž 𝑛=0 𝐹𝑛 (π‘₯, π‘Ÿ)𝑑 2 (𝐴(𝑑) βˆ’ 𝑑𝑍(𝑑))/(𝐴(𝑑) βˆ’ π‘₯𝑑) = (1 βˆ’ π‘Ÿπ‘‘)/(1 βˆ’ π‘₯𝑑 + π‘₯π‘Ÿπ‘‘ ). Therefore, 𝐹0 (π‘₯, π‘Ÿ) = 1, 𝐹1 (π‘₯, π‘Ÿ) = π‘₯ βˆ’ π‘Ÿ, and 𝐹𝑛 (π‘₯, π‘Ÿ) = π‘₯πΉπ‘›βˆ’1 (π‘₯, π‘Ÿ) βˆ’ π‘₯π‘ŸπΉπ‘›βˆ’2 (π‘₯, π‘Ÿ), for 𝑛 β‰₯ 2. Solving this recurrence relation, we π‘˜+1 ) π‘₯π‘˜ (βˆ’π‘Ÿ)π‘›βˆ’π‘˜ . From Corollary 7, we have 𝐹𝑛 (π‘₯, π‘Ÿ) = βˆ‘π‘›π‘˜=0 ( π‘›βˆ’π‘˜ get the results. 𝑛 For the case π‘Ÿ = 1, π‘₯ = 4, we have βˆ‘βˆž 𝑛=0 𝐹𝑛 (4, 1)𝑑 = (1 βˆ’ ∞ 2 2 π‘›βˆ’1 𝑑)/(1 βˆ’ 4𝑑 + 4𝑑 ) = (1 βˆ’ 𝑑)/(1 βˆ’ 2𝑑) = βˆ‘π‘›=0 2 (𝑛 + 2)𝑑𝑛 . Thus, 𝐹𝑛 (4, 1) = 2π‘›βˆ’1 (𝑛 + 2). By Theorem 10, we obtain 𝑛

𝑛

π‘˜ + 1 2𝑛 βˆ’ π‘˜ π‘˜βˆ’1 ( ) 2 (π‘˜ + 2) = 4𝑛 . βˆ‘ 𝑛 𝑛 + 1 π‘˜=0

0 1 2 5 14 42 .. .

0 0 1 3 9 28 .. .

0 0 0 1 4 14 .. .

0 0 0 0 1 5 .. .

0 0 0 0 0 1 .. .

(29)

Theorem 11. Let {𝑒𝑛 (π‘₯, π‘Ÿ)} be the polynomial sequence associated to the Riordan array 𝐢[1, 2; π‘Ÿ]βˆ’1 = (𝐢(π‘Ÿπ‘‘), 𝑑𝐢(π‘Ÿπ‘‘)2 )βˆ’1 . Then, for any nonnegative integer 𝑛, one has 𝑛

βˆ‘

𝑛

𝑛+π‘˜ π‘˜ ) π‘₯ (βˆ’π‘Ÿ)π‘›βˆ’π‘˜ = 𝑒𝑛 (π‘₯, π‘Ÿ) . βˆ‘( π‘›βˆ’π‘˜

π‘˜=0

𝑛

𝑛+π‘˜ π‘˜ ) 4 = 2𝑛 + 1, βˆ‘ (βˆ’1)π‘›βˆ’π‘˜ ( π‘›βˆ’π‘˜

π‘˜=0

(32)

𝑛

2π‘˜ + 1 2𝑛 + 1 ( ) (2π‘˜ + 1) = 4𝑛 . βˆ‘ π‘›βˆ’π‘˜ 2𝑛 + 1 π‘˜=0

The last identity is equivalent to identity (6). For the case π‘Ÿ = βˆ’1 and π‘₯ = 1, we have βˆ‘π‘›π‘˜=0 𝑒𝑛 (1, βˆ’1)𝑑𝑛 = (1βˆ’π‘‘)/(1βˆ’3𝑑+𝑑2 ) = βˆ‘π‘›π‘˜=0 𝐹2𝑛+1 𝑑𝑛 , and 𝑒𝑛 (1, βˆ’1) = 𝐹2𝑛+1 , where 𝑛 {𝐹𝑛 }𝑛β‰₯0 is Fibonacci sequence with generating βˆ‘βˆž π‘˜=0 𝐹𝑛 𝑑 = 2 𝑑/(1 βˆ’ 𝑑 βˆ’ 𝑑 ). By Theorem 11, we have

π‘˜=0

2π‘˜ + 1 2𝑛 + 1 ( ) 𝐹2π‘˜+1 = 1, 2𝑛 + 1 𝑛 βˆ’ π‘˜ (33)

𝑛

𝑛+π‘˜ π‘˜ ) 4 = 𝐹2𝑛+1 . βˆ‘( π‘›βˆ’π‘˜

π‘˜=0

1 β‹…β‹…β‹… 1 4 β‹…β‹…β‹… 3 2 β‹… β‹… β‹…) ( 8 ) (4 ) ( ) ( 3) β‹… β‹… β‹…) ) ( 20 ) = (44 ) . β‹… β‹… β‹…) ( 48 ) (4 ) β‹…β‹…β‹… 112 45 .. . d) ( . ) ( .. ) (30)

2π‘˜ + 1 2𝑛 + 1 π‘›βˆ’π‘˜ ( ) π‘Ÿ π‘’π‘˜ (π‘₯, π‘Ÿ) = π‘₯𝑛 , π‘›βˆ’π‘˜ 2𝑛 + 1 π‘˜=0

Since 𝐢[1, 2; π‘Ÿ]βˆ’1 = (1/(1+π‘Ÿπ‘‘), 𝑑/(1+π‘Ÿπ‘‘)2 ), from Lemma 2, the generating functions of 𝐴- and 𝑍-sequences of 𝐢[1, 2; π‘Ÿ] are 𝐴(𝑑) = (1+π‘Ÿπ‘‘)2 and 𝑍(𝑑) = π‘Ÿ+π‘Ÿ2 𝑑. Hence, βˆ‘π‘›π‘˜=0 𝑒𝑛 (π‘₯, π‘Ÿ)𝑑𝑛 = (𝐴(𝑑) βˆ’ 𝑑𝑍(𝑑))/(𝐴(𝑑) βˆ’ π‘₯𝑑) = (1 + π‘Ÿπ‘‘)/(1 βˆ’ (π‘₯ βˆ’ 2π‘Ÿ)𝑑 + π‘Ÿ2 𝑑2 ). For the case π‘Ÿ = 1 and π‘₯ = 4, we have βˆ‘π‘›π‘˜=0 𝑒𝑛 (4, 1)𝑑𝑛 = (1+𝑑)/(1βˆ’ 2𝑑+𝑑2 ) = (1+𝑑)/(1βˆ’π‘‘)2 = βˆ‘π‘›π‘˜=0 (2𝑛+1)𝑑𝑛 , and 𝑒𝑛 (4, 1) = 2𝑛+1. By Theorem 11, we have

βˆ‘ (βˆ’1)π‘›βˆ’π‘˜

The last identity is equivalent to the following matrix identity: 1 1 (2 (5 ( (14 42 .. (.

[𝑑𝑛 ](1/(1 + π‘Ÿπ‘‘))(𝑑/(1 + π‘Ÿπ‘‘)2 ) = [π‘‘π‘›βˆ’π‘˜ ](1/(1 + π‘Ÿπ‘‘))2π‘˜+1 = (βˆ’π‘Ÿ)π‘›βˆ’π‘˜ ( 𝑛+π‘˜ π‘›βˆ’π‘˜ ). By Corollary 7, we obtain the desired results.

𝑛

π‘˜+1 π‘˜ ) 4 (βˆ’1)π‘›βˆ’π‘˜ = 2π‘›βˆ’1 (𝑛 + 2) , βˆ‘( π‘›βˆ’π‘˜

π‘˜=0

Proof. From generic term given in (27) with π‘Ž = 1 and 𝑏 = 2, we have the generic term of Catalan matrix 𝐢[1, 2; π‘Ÿ] = (𝐢(π‘Ÿπ‘‘), 𝑑𝐢(π‘Ÿπ‘‘)2 ) which is 𝐢[1, 2; π‘Ÿ]𝑛,π‘˜ = ((2π‘˜ + 1)/(2𝑛 + π‘›βˆ’π‘˜ 1)) ( 2𝑛+1 . Using (11), we obtain 𝐢[1, 2; π‘Ÿ]βˆ’1 = (1/(1 + π‘›βˆ’π‘˜ ) π‘Ÿ 2 π‘Ÿπ‘‘), 𝑑/(1 + π‘Ÿπ‘‘) ). Hence, the generic term of 𝐢[1, 2; π‘Ÿ]βˆ’1 is

(31)

Theorem 12. Let {V𝑛 (π‘₯, π‘Ÿ)} be the polynomial sequence associated to the Riordan array 𝐢[2, 2; π‘Ÿ]βˆ’1 = (𝐢(π‘Ÿπ‘‘)2 , 𝑑𝐢(π‘Ÿπ‘‘)2 )βˆ’1 . Then, one has 𝑛

π‘˜ + 1 2𝑛 + 2 π‘›βˆ’π‘˜ ( ) π‘Ÿ Vπ‘˜ (π‘₯, π‘Ÿ) = π‘₯𝑛 , π‘›βˆ’π‘˜ 𝑛 + 1 π‘˜=0 βˆ‘

(34)

𝑛

𝑛+π‘˜+1 π‘˜ ) π‘₯ (βˆ’π‘Ÿ)π‘›βˆ’π‘˜ = V𝑛 (π‘₯, π‘Ÿ) , βˆ‘( π‘›βˆ’π‘˜

π‘˜=0

for every 𝑛 ∈ N. Proof. From generic term given in (27) with π‘Ž = 2 and 𝑏 = 2, we have the generic term of Catalan matrix 𝐢[2, 2; π‘Ÿ] = (𝐢(π‘Ÿπ‘‘)2 , 𝑑𝐢(π‘Ÿπ‘‘)2 ) which is 𝐢[2, 2; π‘Ÿ]𝑛,π‘˜ = ((π‘˜ + 1)/ π‘›βˆ’π‘˜ . Using (11), we obtain 𝐢[2, 2; π‘Ÿ]βˆ’1 (𝑛 + 1)) ( 2𝑛+2 π‘›βˆ’π‘˜ ) π‘Ÿ 2 = (1/(1 + π‘Ÿπ‘‘) , 𝑑/(1 + π‘Ÿπ‘‘)2 ). Hence, the generic term π‘˜

of 𝐢[2, 2; π‘Ÿ]βˆ’1 is [𝑑𝑛 ](1/(1 + π‘Ÿπ‘‘)2 )(𝑑/(1 + π‘Ÿπ‘‘)2 ) = ). By Corollary 7, [π‘‘π‘›βˆ’π‘˜ ](1/(1 + π‘Ÿπ‘‘))2π‘˜+2 = (βˆ’π‘Ÿ)π‘›βˆ’π‘˜ ( 𝑛+π‘˜+1 π‘›βˆ’π‘˜ we obtain the desired results.

International Journal of Combinatorics

5

The generating functions of 𝐴- and 𝑍-sequences of 𝐢[2, 2; π‘Ÿ] are 𝐴(𝑑) = 1 + 2π‘Ÿπ‘‘ + π‘Ÿ2 𝑑2 and 𝑍(𝑑) = 2π‘Ÿ + π‘Ÿ2 𝑑. Thus 𝑛 βˆ‘βˆž 𝑛=0 V𝑛 (π‘₯, π‘Ÿ)𝑑 = (𝐴(𝑑)βˆ’π‘‘π‘(𝑑))/(𝐴(𝑑)βˆ’π‘₯𝑑) = 1/(1βˆ’(π‘₯βˆ’2π‘Ÿ)𝑑+ 2 2 π‘Ÿ 𝑑 ). For the case π‘Ÿ = 1 and π‘₯ = 2𝑦 + 2, we have βˆ‘βˆž 𝑛=0 V𝑛 (2𝑦 + 𝑛 π‘ˆ (𝑦)𝑑 , where π‘ˆπ‘› (𝑦) are 2, 1)𝑑𝑛 = 1/(1 βˆ’ 2𝑦𝑑 + 𝑑2 ) = βˆ‘βˆž 𝑛=0 𝑛 Chebyshev polynomials of the second kind (see [1]). Hence, by Theorem 13, we have 𝑛

𝑛+π‘˜+1 π‘˜ ) (2𝑦 + 2) (βˆ’1)π‘›βˆ’π‘˜ = π‘ˆπ‘› (𝑦) , βˆ‘( π‘›βˆ’π‘˜

π‘˜=0

𝑛

π‘˜ + 1 2𝑛 + 2 𝑛 ( ) π‘ˆπ‘˜ (𝑦) = (2𝑦 + 2) . βˆ‘ 𝑛 βˆ’ π‘˜ 𝑛+1 π‘˜=0

(35)

𝑛

βˆ‘

π‘˜+2 π‘˜ ) π‘₯ (βˆ’π‘Ÿ)π‘›βˆ’π‘˜ = 𝑀𝑛 (π‘₯, π‘Ÿ) . βˆ‘( π‘›βˆ’π‘˜

(36)

π‘˜=0

Proof. Using (11), we obtain 𝐢[2, 1; π‘Ÿ]βˆ’1 = (𝐢(π‘Ÿπ‘‘)2 , 𝑑𝐢(π‘Ÿπ‘‘))βˆ’1 = ((1 βˆ’ π‘Ÿπ‘‘)2 , 𝑑 βˆ’ π‘Ÿπ‘‘2 ). Hence, the generic term of 𝐢[2, 2; π‘Ÿ]βˆ’1 π‘˜ π‘˜+2 ). is [𝑑𝑛 ](1 βˆ’ π‘Ÿπ‘‘)2 (𝑑 βˆ’ π‘Ÿπ‘‘2 ) = [π‘‘π‘›βˆ’π‘˜ ](1 βˆ’ π‘Ÿπ‘‘)π‘˜+2 = (βˆ’π‘Ÿ)π‘›βˆ’π‘˜ ( π‘›βˆ’π‘˜ From generic term given in (27) with π‘Ž = 2 and 𝑏 = 1, we have the generic term of Catalan matrix 𝐢[2, 1; π‘Ÿ] = (𝐢(π‘Ÿπ‘‘)2 , 𝑑𝐢(π‘Ÿπ‘‘)) which is 𝐢[2, 1; π‘Ÿ]𝑛,π‘˜ = ((2 + π‘˜)/(2𝑛 βˆ’ 2π‘˜ + 2 + π‘˜)) ( 2π‘›βˆ’2π‘˜+2+π‘˜ ) π‘Ÿπ‘›βˆ’π‘˜ , and by simplifying we obtain π‘›βˆ’π‘˜ π‘›βˆ’π‘˜ 𝐢[1, 1; π‘Ÿ]𝑛,π‘˜ = ((π‘˜+2)/(𝑛+2)) ( 2π‘›βˆ’π‘˜+1 . From Corollary 7, π‘›βˆ’π‘˜ ) π‘Ÿ we obtain the desired results.

The generating functions for the 𝐴- and 𝑍-sequences of 𝐢[2, 1; π‘Ÿ] are 𝐴(𝑑) = 1/(1 βˆ’ π‘Ÿπ‘‘), 𝑍(𝑑) = (2π‘Ÿ βˆ’ π‘Ÿ2 𝑑)/(1 βˆ’ π‘Ÿπ‘‘), and 2 𝑛 βˆ‘βˆž 𝑛=0 𝑀𝑛 (π‘₯, π‘Ÿ)𝑑 = (𝐴(𝑑)βˆ’π‘‘π‘(𝑑))/(𝐴(𝑑)βˆ’π‘₯𝑑) = (1βˆ’π‘Ÿπ‘‘) /(1βˆ’π‘₯𝑑+ ∞ 2 π‘₯π‘Ÿπ‘‘ ). For the case π‘Ÿ = 1 and π‘₯ = 4, we have βˆ‘π‘›=0 𝑀𝑛 (4, 1)𝑑𝑛 = π‘›βˆ’2 𝑛 𝑑 . (1βˆ’π‘‘)2 /(1βˆ’4𝑑+4𝑑2 ) = (1βˆ’π‘‘)2 /(1βˆ’2𝑑)2 = 1+βˆ‘βˆž 𝑛=1 (𝑛+3)2 By Theorem 13, we have 𝑛

π‘˜+2 π‘˜ ) 4 = (𝑛 + 3) 2π‘›βˆ’2 , βˆ‘ (βˆ’1)π‘›βˆ’π‘˜ ( π‘›βˆ’π‘˜

𝑛 β‰₯ 1,

(37)

π‘˜=0

𝑛 π‘˜ + 2 2𝑛 βˆ’ π‘˜ + 1 2 2𝑛 + 1 ( ( )+βˆ‘ ) (π‘˜ + 3) 2π‘˜βˆ’2 𝑛+1 𝑛+2 𝑛+1 𝑛 + 2 π‘˜=1 (38)

= 4𝑛 ,

𝑛 β‰₯ 0.

0 1 3 9 28 .. .

0 0 1 4 14 .. .

0 0 0 1 5 .. .

0 0 0 0 1 .. .

1 β‹…β‹…β‹… 1 4 β‹…β‹…β‹… 2 β‹… β‹… β‹… ) ( 5 ) ( 42 ) β‹… β‹… β‹…) (12) = (43 ) . (39) β‹…β‹…β‹… 28 44 . . d) ( .. ) ( .. )

The author would like to thank the referees for their helpful suggestions. This work was supported by the National Natural Science Foundation of China (11261032).

References

Theorem 13. Let {𝑀𝑛 (π‘₯, π‘Ÿ)} be the polynomial sequence associated to the Riordan array 𝐢[2, 1; π‘Ÿ]βˆ’1 = (𝐢(π‘Ÿπ‘‘)2 , 𝑑𝐢(π‘Ÿπ‘‘))βˆ’1 . Then, one has identities

𝑛

1 2 (5 (14 42 .. (.

Acknowledgments

Substituting 𝑦 = 1 in the last identity, we get (4) again.

π‘˜ + 2 2𝑛 βˆ’ π‘˜ + 1 π‘›βˆ’π‘˜ ( ) π‘Ÿ π‘€π‘˜ (π‘₯, π‘Ÿ) = π‘₯𝑛 , π‘›βˆ’π‘˜ 𝑛 + 2 π‘˜=0

The matrix form of the last identity is

[1] L. Comtet, Advanced Combinatorics, D. Reidel Publishing, Dordrecht, The Netherlands, 1974. [2] R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, UK, 1999. [3] D. G. Rogers, β€œPascal triangles, Catalan numbers and renewal arrays,” Discrete Mathematics, vol. 22, no. 3, pp. 301–310, 1978. [4] C. L. Mallows and L. Shapiro, β€œBalls on the lawn,” Journal of Integer Sequences, vol. 2, article 99.1.5, 1999. [5] L. W. Shapiro, β€œA Catalan triangle,” Discrete Mathematics, vol. 14, no. 1, pp. 83–90, 1976. [6] L. W. Shapiro, W.-J. Woan, and S. Getu, β€œRuns, slides and moments,” SIAM Journal on Algebraic Discrete Methods, vol. 4, no. 4, pp. 459–466, 1983. [7] W.-J. Woan, L. Shapiro, and D. G. Rogers, β€œThe Catalan numbers, the Lebesgue integral, and 4π‘›βˆ’2 ,” The American Mathematical Monthly, vol. 104, no. 10, pp. 926–931, 1997. [8] Y. C. Chen, Y. Li, L. W. Shapiro, and H. F. Yan, β€œMatrix identities on weighted partial Motzkin paths,” European Journal of Combinatorics, vol. 28, no. 4, pp. 1196–1207, 2007. [9] C. Radoux, β€œAdditional formulas for polynomials built on classical combinatorial sequences,” Journal of Computational and Applied Mathematics, vol. 115, no. 1-2, pp. 471–477, 2000. [10] E. Deng and W. J. Yan, β€œSome identities on the Catalan, Motzkin and SchrΒ¨oder numbers,” Discrete Applied Mathematics, vol. 156, no. 14, pp. 2781–2789, 2008. [11] M. Aigner, β€œEnumeration via ballot numbers,” Discrete Mathematics, vol. 308, no. 12, pp. 2544–2563, 2008. [12] T. X. He, β€œParametric Catalan numbers and Catalan triangles,” Linear Algebra and Its Applications, vol. 438, no. 3, pp. 1467– 1484, 2013. [13] G. S. Cheon, H. Kim, and L. W. Shapiro, β€œCombinatorics of Riordan arrays with identical 𝐴 and 𝑍 sequences,” Discrete Mathematics, vol. 312, no. 12-13, pp. 2040–2049, 2012. [14] S. StanimiroviΒ΄c, P. StanimiroviΒ΄c, and A. IliΒ΄c, β€œBallot matrix as Catalan matrix power and related identities,” Discrete Applied Mathematics, vol. 160, no. 3, pp. 344–351, 2012. [15] L. W. Shapiro, S. Getu, W.-J. Woan, and L. Woodson, β€œThe Riordan group,” Discrete Applied Mathematics, vol. 34, no. 1–3, pp. 229–239, 1991. [16] R. Sprugnoli, β€œRiordan arrays and combinatorial sums,” Discrete Mathematics, vol. 132, no. 1–3, pp. 267–290, 1994.

6 [17] P. Peart and L. Woodson, β€œTriple factorization of some Riordan matrices,” The Fibonacci Quarterly, vol. 31, no. 2, pp. 121–128, 1993. [18] P. Peart and W. Woan, β€œA divisibility property for a subgroup of Riordan matrices,” Discrete Applied Mathematics, vol. 98, no. 3, pp. 255–263, 2000. [19] P. Barry, β€œA note on a one-parameter family of Catalan-like numbers,” Journal of Integer Sequences, vol. 12, no. 5, article 09.5.4, 2009. [20] N. T. Cameron and A. Nkwanta, β€œOn some (pseudo) involutions in the Riordan group,” Journal of Integer Sequences, vol. 8, no. 3, article 05.3.7, 2005. [21] A. LuzΒ΄on, D. Merlini, M. MorΒ΄on, and R. Sprugnoli, β€œIdentities induced by Riordan arrays,” Linear Algebra and Its Applications, vol. 436, no. 3, pp. 631–647, 2012. [22] T. X. He and R. Sprugnoli, β€œSequence characterization of Riordan arrays,” Discrete Mathematics, vol. 309, no. 12, pp. 3962– 3974, 2009. [23] D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri, β€œOn some alternative characterizations of Riordan arrays,” Canadian Journal of Mathematics, vol. 49, no. 2, pp. 301–320, 1997. [24] M. Bayat and H. Teimoori, β€œPascal π‘˜-eliminated functional matrix and its property,” Linear Algebra and Its Applications, vol. 308, no. 1–3, pp. 65–75, 2000. [25] S.-L Yang and S.-N. Zheng, β€œDeterminant representations of polynomial sequences of Riordan type,” Journal of Discrete Mathematics, vol. 2013, Article ID 734836, 6 pages, 2013. [26] A. LuzΒ΄on and M. A. MorΒ΄on, β€œRecurrence relations for polynomial sequences via Riordan matrices,” Linear Algebra and Its Applications, vol. 433, no. 7, pp. 1422–1446, 2010. [27] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, New York, NY, USA, 1989. [28] A. Nkwanta and E. Barnes, β€œTwo Catalan-type Riordan arrays and their connections to the Chebyshev polynomials of the first kind,” Journal of Integer Sequences, vol. 15, no. 3, article 12.3.3, 2012. [29] S. StanimiroviΒ΄c, P. StanimiroviΒ΄c, M. MiladinoviΒ΄c, and A. IliΒ΄c, β€œCatalan matrix and related combinatorial identities,” Applied Mathematics and Computation, vol. 215, no. 2, pp. 796–805, 2009.

International Journal of Combinatorics

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014