Stereoselective Synthesis Novartis.pptx

54 downloads 23868 Views 12MB Size Report
Organic Chemistry, Jonathan Clayden, Nick Greeves, Stuart Warren, Peter Wothers. ◾ Stereochemistry of Organic Compounds, Ernest L. Eliel, Samuel H. Wilen.
1

Introduction to Stereoselective Organic Synthesis

Introduc)on  to  Stereoselec)ve   Organic  Synthesis   Ph Me H "H("

 

O O O Me

N

Bu H

B

O

H

O R Me

Bu

O

R H

RO O

N H Me

O O

RO2C OR O CO2R O Ti Ti O O

RO

◾  Advanced  Organic  Chemistry:  Parts  A  and  B,  Francis  A.  Carey,  Richard  J.  Sundberg       ◾ Organic  Chemistry,    Jonathan  Clayden,  Nick  Greeves,  Stuart  Warren,  Peter  Wothers     ◾ Stereochemistry  of  Organic  Compounds,  Ernest  L.  Eliel,  Samuel  H.  Wilen     ◾ Selecvated/carbonyl considered/to/be/ largest/group

RS O M

R RM

Donald  J.  Cram,  Nobel  Prize  with   Jean-­‐Marie  Lehn  and  Charles  J.   Pederson,  1987   Nu RL R

RS

torsional/strain not/considered OH

RM

Cram,  D.  J.;  Elhafez,  F.  A.  A.,  J.  Am.  Chem.  Soc.,  1952,  74,  5828   Different  model  put  forward  by  Karabatos  in  1967;  Karabatsos,  G.  J.  J.  Am.  Chem.  Soc.  1967,  89,  1367  

Introduction to Stereoselective Organic Synthesis

Acyclic  Stereocontrol  –  aZack  on  aldehydes  and  ketones  with  α-­‐stereocentres   The  Bürgi-­‐Dunitz  trajectory   ◾  Cram’s  rule  assumes  that  the  nucleophile  approaches  perpendicular  to  the  plane  of  the  carbonyl  group.   ◾  In  the  1970s  two  crystallographers,  Hans-­‐Beat  Bürgi  and  Jack  D.  Dunitz,  determined  the  trajectory  of  axack  on  a   carbonyl  group  by  analysis  of  the  X-­‐ray  structures  of  a  number  of  cyclic  amino  ketones.   ◾  The  Burgi-­‐Dunitz  angle  is  approximately  107  °  -­‐  close  to  the  tetrahedral  angle.   ◾  Axack  along  the  Burgi  Dunitz  trajectory  maximises  overlap  of  the  nucleophile  HOMO  with  the  LUMO  of  the  carbonyl   group  (π*  orbital).  

Nu&

N

O

R' R

107 ° O

Bürgi,  H.B.;  Dunitz,  J.D.;  Lehn  ,  J.M.,  G.  Wipff,  Tetrahedron,  1974,  30,  1563.  

58

59

Introduction to Stereoselective Organic Synthesis

Acyclic  Stereocontrol  –  aZack  on  aldehydes  and  ketones  with  α-­‐stereocentres  

◾  Felkin-­‐Anh  Model  –  most  widely  used  and  accepted  model  for  addi)on  of  nucleophiles  to  α-­‐chiral  aldehydes  and  ketones   Assump-ons:   ◾  Transi)on  states  are  all  reactant-­‐like  rather  than  product  like.   ◾  Torsional  strain  considera)ons  are  dominant  hence  staggered  transi)on  state  conforma)ons  are  dominant.   ◾  Reac)ve  conforma)on  has  the  largest  group  perpendicular  to  the  plane  containing  the  carbonyl  group  RC=O.   ◾  The  nucleophile  approaches  along  the  Burgi-­‐Dunitz  trajectory  ~107°  for  best  overlap  with  the  C=O  π*  orbital.     RL O RM

R RM

HO

R

RM

H

RL

HO

R Nu

RM

Nu

Nu(

O RL

favourable

R H

RL

nucleophile6approachs along6Burgi(Dunitz6angle passed6the6smallest6group RL R RM

O H

Nu(

unfavourable

RL OH

R RM

H Nu

RL

R

OH Nu

RM

unfavourable6approach passed6larger6group Chérest,  M.;  Felkin,  H.;  Prudent,  N.  Tetrahedron  Lee.  1968,  18,  2199;  Anh,  N.  T.;  Eisenstein,  O.  Nouv.  J.  Chim.  1977,  1,  61;  Bürgi,  H.  B.;  Dunitz,  J.  D.;  Sheser,  E.   J.  Am.  Chem.  Soc.  1973,  95,  5065;  Bürgi,  H.  B.;  Dunitz,  J.  D.;  Lehn,  J.  M.;  Wipff,  G.  Tetrahedron  1974,  30,  1563  

60

Introduction to Stereoselective Organic Synthesis

Acyclic  Stereocontrol  –  aZack  on  aldehydes  and  ketones  with  α-­‐stereocentres   Examples  

O Ph

LiAlH4

Me

OH Ph

OH

Me Me

Me

Ph

Me Me

Ph

O Ph

+ 3:1

Ph

LiAlH4 Me H

Me Me

O Me

Me

OH

H

Me

"H1"

Me Et

H NBn2

which0is0the0large0group?

OMe

Ph

Me

OH

Et

O OMe

NBn2

major7diastereomer

Me

+

Me Me

H

OLi

O

OH

OH

Et

O OMe

NBn2 24:1 92%0d.e.

appears0that0NBn20 funcCons0as0large0group

◾  Why    is  the  stereocontrol  so  good  when  NBn2  and  CH(Me)Et  are  similar  in  size?  

61

Introduction to Stereoselective Organic Synthesis

Acyclic  Stereocontrol  –  aZack  on  aldehydes  and  ketones  with  α-­‐stereocentres  

Polar  Felkin-­‐Anh  Model  –  use  for  aldehydes/ketones  with  α-­‐electronega)ve  groups.   ◾  Conforma)ons  where  electronega)ve  groups  are  perpendicular  to  the  plane  of  the  RC=O  group  are  more  reac)ve  to   nucleophilic  axack.   O

X X

Me

O

X%=%electroneag/ve%group e.g.%OR,%NR2,%SR,%Ph%etc.

C=O%π*

H overlap%to%give%new% lower%energy%LUMO

Me

π*%C=O

NBn2

NBn2 O CH(Me)Et

H H

H

Me

H

OH

H

CH(Me)Et

O

OH

Et

Nu

Nu/

new%lower energy%LUMO more%reac/ve

O OMe

NBn2 major5diastereomer

OH

LiBH(sBu)3 Ph

SMe

σ*C>X

C>O%σ*

Ph

+

SMe

OH Ph SMe

favoured:by:electronic model:(polar:FelkinEAnh model)

4:96

◾  Note:  the  reac)ve  conforma)on  of  the  substrate  is  not  necessarily  the  ground  state  conforma)on.    As  all   of  the  above  reac)ons  are  kine)cally  controlled  it  is  the  energies  of  the  compe)ng  transi)on  states  which  are  important.   Anh,  N.  T.;  Eisenstein,  O.  Nouv.  J.  Chim.  1977,  1,  61  

62

Introduction to Stereoselective Organic Synthesis

Acyclic  Stereocontrol  –  aZack  on  aldehydes  and  ketones  with  α-­‐stereocentres  

◾  Cornforth-­‐Evans  Model  -­‐  polar  Felkin-­‐Anh  model  does  not  support  all  of  the  available  experimental  data     (nevertheless  it  is  a  useful  predic)ve  tool).     ◾  In  the  1950s  Cornforth  proposed  a  model  for  addi)on  to  α-­‐heteroatom  subs)tuted  carbonyls  based  on  the  minimisa)on   of  dipoles.   Nu)

Features(and problems

RS X

O M

R

X

RL

Nu)

90-°-nucleophile trajectory

RS O M

R

net-dipoleminimised

Cornforth(model

ac>vated-carbonyl considered-to-belargest-group

RL

Nu X R

RS

RL

torsional-strain not-considered OH

◾  In  2003  the  Cornfoth  model  was  modified  by  Evans  to  take  into  account  the  Burgi-­‐Dunitz  angle  and  minimisa)on  of   torsional  strain.   ◾  The  model  predicts  the  same  major  diastereomer  as  the  polar-­‐Felkin-­‐Anh  model  but  assumes  a  more  ionic  transi)on  state   with  dipole  minimisa)on.   Nu PO R

RM O M RL

D.  A.  Evans,  S.  J.  Siska,  V.  J.  Cee,  Angew.  Chem.,  Int.  Ed.,  2003,  42,  1761.  

63

Introduction to Stereoselective Organic Synthesis

Acyclic  Stereocontrol  –  aZack  on  aldehydes  and  ketones  with  α-­‐stereocentres  

◾  Cram-­‐Chelate  model  –  use  for  aldehydes/ketones  with  α-­‐electronega)ve  groups  when  chela)on  between  the  α-­‐ electronega)ve  group    and  the  carbonyl    group  is  possible.    

RL

O

NuM

RL

R'

M+

OR

O O R

RL

favourable

R' H

nucleophile6approachs along6Burgi(Dunitz6angle passed6the6smallest6group in6chelated6transi?on6state MeO

Me2Mg Ph

Me

HO Me MeO

Ph

R'

RO

H Nu

Nu(

O

HO

RL

HO

R' Nu

OR epimer6to6that6predicted by6polar6Felkin(Anh6model

Me OH +

Me

MeO

Ph Me

1:99

◾  Two  things  are  required  for  chela)on  control:  i)  a  heteroatom  available  for  coordina)on  to    a  metal  ion;     ii)  a  metal  ion  that  favours  coordina)on  to  both  C=O  and  the  heteroatom.   ◾  Mg2+  ,  Zn2+  ,  Al3+  ,  Ce3+  ,  Ti4+  generally  excellent  at  chela)on  (highly  charged  ca)ons  generally  good).   ◾  Li+  some)mes  can  chelate.   ◾  Na+  and  K+  generally  poor  at  chela)ng.   Cram,  D.  J.;  Elhafez,  F.  A.  A.,  J.  Am.  Chem.  Soc.,  1952,  74,  5828   Cram,  D.  J.;  Kopecky,  K.  R.  J.  Am.  Chem.  Soc.  1959,  81,  2748  

64

Introduction to Stereoselective Organic Synthesis

Acyclic  Stereocontrol  –  aZack  on  aldehydes  and  ketones  with  α-­‐stereocentres   Summary  

O R

YES  

Is  there  a  heteroatom   at  the  α-­‐stereogenic    centre?    

X Y Z

NO   Use  Felkin-­‐Anh  model:   consider  reac)ons  on  conforma)ons   with  largest  group   perpendicular  to  RC=O  plane.  

RL O RM

R H Nu(

Is  there  a  metal  ion     capable  of  chela)on   with  the  heteroatom?  

NO  

YES  

Use  polar  Felkin-­‐Anh  model:   consider  reac)ons  on  conforma)ons   with  the  most  electronega)ve  atom   perpendicular  to  RC=O  plane.   Or  use  Evans-­‐Cornforth  model  –     minimise  dipoles.    

X O R

R R' H Nu(

M O H

Use  Cram-­‐chelate  model:   consider  reac)ons  on     conforma)ons  with  C=O  and   heteroatom  chelated  by  metal  ion.  

RL M+

R' X Nu

O O R

R' H Nu(

65

Introduction to Stereoselective Organic Synthesis

Problem:  Ra)onalise  the  stereochemical  course  of  the  following  reac)ons.   L.  E.  Overman,  R.  J.  McCready,  Tetrahedron  Lee.,  1982,  23,  2355.  

 

O Me

Me Me

OH

LiAlH4,,THF

OH Me

Me Me

OR R,=,CH2OBn R,=,SiPh2tBu

+

Me

Me Me

OR

70 5

OR

30 95

Problem:  Predict  the  stereochemical  outcome  of  the  following  reac)on.  

T.  B.  Durham,  N.  Blanchard,  B.  M.  Savall,  N.  A.  Powell,  W.  R.  Roush,  J.  Am  .Chem.  Soc.,  2004,  126,  9307.       TBSO

TMSO

OTBS OBz

TMS

O

Me

OTBS OH

H

O

OTBS OBz

Me

Me

Me

OMe

BF3•OEt2

Me Me

Me

Me

OMe

TMS

66

Introduction to Stereoselective Organic Synthesis

Acyclic  Stereocontrol  –  aZack  on  alkenes  with  α-­‐stereocentres  

◾  The  low  energy  conforma)ons  of  alkenes  carrying  allylic  subs)tuents  have  one  subs)tuent  eclipsing  the  alkene.   ◾  The  lowest  energy  conforma)on  of  but-­‐1-­‐ene  has  the  hydrogen  atom  (smallest  group)  eclipsing  the  alkene.   ◾  Another  low  energy  conforma)on  has  the  methyl  group  eclipsing  the  alkene.   ◾  Eclipsing  the  smallest  group  with  the  alkene  minimises  allylic  1,3-­‐strain  (A1,3  strain).           H Me   H H H

H6outside3 conforma,on

 

C

H

H H

C

C

C

H Me

H

H 5

H6inside3conforma,on minimises3A1,33strain

4

H

rela,ve energy 3 kJ3mol61

H C H Me

2

C

H

5.56

H H H

2.05

0

60

C H 120

C

1

2

H

Me

H H 180

◾  The  H-­‐outside  conforma)on  suffers  from  destabilising  overlap  of  filled  orbitals   which  is  absent  in  the  H-­‐inside  conforma)on.   ◾  With  (Z)-­‐alkenes  the  difference  in  energy  between  Me-­‐inside  and  H-­‐inside  is     greatly  increased.   Wiberg,  K.  B.;  Mar)n,  E.,  J.  Am.  Chem.  Soc.  1985,  107,  5035.   Dorigo,  A.  E.,  Prax,  D.  W.,  Houk,  K.  N.,  J.  Am.  Chem.  Soc.  1987,  109,  6591.   For  a  review  see:  R.  W.  Hoffmann,  Chem.  Rev.,  1989,  89,  1841.  

H

3

Me

1

0

H

5.52

φ

H

destabilising,interac/on between,filled,orbitals (σC5H!πC5C) HH

H H5outside

H

H

H H H5inside

67

Introduction to Stereoselective Organic Synthesis

Acyclic  Stereocontrol  –  aZack  on  alkenes  with  α-­‐stereocentres  

Strategy   ◾  Draw  lowest  energy  conforma)on  of  alkene.   ◾ Is  the  approach  of  the  reagent  to  both  sides  of  the  alkene  equally  favourable?   ◾  Watch  out  for  groups  capable  of  delivering  the  reagent  to  one  face  of  the  alkene.        

Me

Me

mCPBA

Me

O

SiMe2Ph

Me

+ Me

SiMe2Ph

Me O

SiMe2Ph

61:39 major& Me conformer H gives&major product Me

Me

H SiMe Ph 2 H

Me

Me H

H OH

SiMe2Ph

Me

O

Me SiMe2Ph

Me

major&product

mCPBA,a.acks least,hindered,face

mCPBA,a.acks least,hindered,face

SiMe2Ph minor conformer gives&minor product

Me H

H Me

SiMe2Ph

Me H

O

H H

SiMe2Ph Me

Me

Me O

SiMe2Ph

minor&product

68

Introduction to Stereoselective Organic Synthesis

Acyclic  Stereocontrol  –  aZack  on  alkenes  with  α-­‐stereocentres          

Me

Me Me

mCPBA

Me

O

Me

Me

SiMe2Ph

+ Me

SiMe2Ph

Me O Me SiMe2Ph

95:5

Me

Me Me

H SiMe Ph 2

Me Me

H

SiMe2Ph

Me H

Me

mCPBA,a.acks least,hindered,face

for,cis:alkenes only,one,heavily,populated conformer

H OH

SiMe2Ph Me

Me

O Me

Me SiMe2P h

Problem:  Explain  the  stereochemical  outcome  of  the  following  reac)on  from  Kishi’s  synthesis  of  monensin.       G.  Schmid,  T.  Fukuyama,  K.  Akasaka,  Y.  Kishi,  J.  Am.  Chem.  Soc.,  1979,  101,  259.        

BH3•THF,*0*°C then*H2O2,*2OH OBn

O

OH OBn

O

Problem:  Predict  the  stereochemistry  of  the  major  diastereomer  formed  in  the  following  reac)on.       W.  Bernhard,  I.  Fleming,  D.  Waterson,  Chem.  Commun,  1984,  28.           Me  

OEt LDA.then.MeI

PhMe2Si

Me

O

PhMe2Si

Me

O

OEt

Introduction to Stereoselective Organic Synthesis

Diastereoselec-ve  synthesis  –  Chiral  Auxiliaries      

◾  In  order  to  achieve  asymmetric  synthesis,  at  least  one  component  in  the  reac)on  must  be  chiral  and  non-­‐racemic.   ◾  A  general  approach  is  the  use  of  chiral  auxiliaries.   ◾  A  prochiral  substrate  is  axached  to  a  chiral,  non-­‐racemic  group  –  the  chiral  auxiliary.   ◾  The  reac)on  is  conducted  which  results  in  diastereomeric  products  which  may  be  readily  separated.   ◾  Cleavage  of  the  auxiliary  from  the  purified  reac)on  mixture  yields  the  chiral,  non-­‐racemic,  products.   ◾  The  requirements  of  a  good  chiral  auxiliary  are  as  follows:    i)    enan)omerically  pure  and  available  as  both  enan)omers    ii)  cheap  and  available  in  quan)ty    iii)  easy  to  introduce  into  the  substrate    iv)  gives  high  and  predictable  diastereocontrol    v)  easy  to  purify  the  major  diastereomer    vi)  easy  to  remove  from  product  without  loss  of  diastereomeric  and  enan)omeric  purity          

69

70

Introduction to Stereoselective Organic Synthesis

Diastereoselec-ve  Enolate  Alkyla-on      

O HO

install'chiral R auxiliary

O XC

R

i)'base ii)'R'X

O

remove'chiral R auxiliary

XC

O R

HO

R'

R'

◾  Reac)on  proceeds  by  forma)on  of  the  corresponding  enolate  which  reacts  with  an  electrophile  to  give  the  product.   ◾  Reac)on  requires  a  strong  non-­‐nucleophilic  base  to  deprotonate  the  carbonyl  compound.   ◾  pKa  (water)    ketone  ~  20,  ester  ~  25,  amide  ~  26   ◾  Requires  a  base  with  a    higher  pKa  (of  the  conjugate  acid)  for  complete  deprotona)on.       ◾  Typically  use,  LDA,  LiHMDS  (and  NaHMDS,  KHMDS),  and  LiTMP  

71

Introduction to Stereoselective Organic Synthesis

O P

Control  of  Enolate  Geometry  

O Me

N N NMe2  ◾  Control  of  enolate  geometry  is  crucial  in  diastereoselec)ve  enolate  alkyla)on  reac)ons.   Me2N NMe 2  ◾  (Z)-­‐Enolates  are  thermodynamically  more  stable  than  (E)-­‐enolates.     ◾  As  the  size  of  R  increases  the  ra)o  (Z):(E)  increases.   HMPA DMPU ◾  In  the  absence  of  addi)ves  such  as  HMPA  or  DMPU,  esters  give  predominantly  (E)-­‐enolates  whereas  ketones  and   amides  give  predominantly  (Z)-­‐enolates.   ◾  In  the  presence  of  addi)ves  such  as  HMPA  and  DMPU  (Z)-­‐enolates  predominate  for  esters  as  well  as  amides  and   ketones.   ◾  Take  home  message,  Esters  give  E-­‐enolates,  other  carbonyls  (ketones  and  amides)  give  Z-­‐enolates.           OM H H H H OM base R   Me (Z)'enolate O R O R H O   R Me   R H H H OM   deprotona/on0has0C3H0bond0 perpendicular0to0the0plane of0the0carbonyl0group0for0maximum orbital0overlap0(σC3H0to0π*C=O)

(E)'enolate

R

Me

1,3+diaxial interac4on

◾  Ireland  Model      (Z):(E)-­‐ra)o  depends  on  a  balance   between  the  1,3-­‐diaxial  interac)ons   and  the  developing    A1,3  strain.    

R

R Me

O

H

H

Me

Li

Li N

O

H

(Z)+enolate1transi4on1state

N

H

(E)+enolate1transi4on1state

A1,31strain1 as1enolate1 begins1to1form

Me

72

Introduction to Stereoselective Organic Synthesis

Enolate  Geometry    

O

 

R

Me

OLi

LDA,*THF*.78*°C

OLi Me

R

+

ketones  

R Me

R  

(Z)  

(E)  

iPr  

60  

40  

tBu  

>98  

99:1&dr imides*are*closer*to* esters*than*to*amides in*terms*of*acidity, enolate*nucleophilicity and*cleavage*chemistry

(Z)#enolate*formed with*very*high*selec7vity chelated*geometry*presumed in*ground*and*transi7on*state

Evans,  D.A:  Brixon.  T.C;  Dorow,  R.L;  Dellarfa,  J.F.,  J.  Am.  Chem.  Soc.,  1986,  108,  6395;     Evans,  D.A;  Brixon,  T.C;  Dorow,  R.L;  Dellarfa,  J.F.,  Tetrahedron,  1988,  44,  5525.  

iPr*group*blocks*one face*of*chelated*enolate

74

Introduction to Stereoselective Organic Synthesis

Diastereoselec-ve  Enolate  alkyla-on  

◾  The  oxazolidinone  enolates  react  readily  with  a  variety  of  reac)ve  electrophiles,    such  as  MeI,  BnBr,  allylBr,  NBS,  trisyl   azide,  oxaziridines,  azodicarboxylates.   ◾  Less  reac)ve  electrophiles  e.g.  β-­‐branched  alkyl  halides  do  not  react.   ◾  Diastereocontrol  in  all  of  these  reac)ons  is  predictable  (from  proposed  chelated  enolate)  and  high.      

source,of,"HO+" O O

O

O

N

O

NaHMDS, THF,,-78,°C

OMe

Na

O

O

O

N

Me selecBve,enolisaBon here,probably,as,a,result of,chelaBon,of,imide,to,sodium ions

OMe

(±)Ph

O

   

Me

HO X alcohol

LiBH4

O

O

N Me

OMe OH 96:4,dr

O R

O

68%

most*reacon H

O B O

H H3C

O H

R

Hoffmann,  R.;  Zeiβ,  H.  –J.  J.  Org.  Chem.,  1981,  46,  1309  

O B O

H

R0group0of aldehyde0in0pseudo equatorial0posi>on

O H3C

O B O

H O H

R

R

Ph CH3 iPr

94:6 93:7 96:4

R

syn:anti

CH3

R

H3C

OH

syn:anti

Ph CH3 R iPr

OH CH3

4:96 3:97 6:94

93

Introduction to Stereoselective Organic Synthesis

Enan-oselec-ve  Allyla-on  and  Crotyla-on  reac-ons  

◾  H.  C.  Brown  has  developed  B-­‐allyldiospinocampheyl  borane  and  the  corresponding  (E)  and  (Z)-­‐crotyl  deriva)ves.   ◾  All  of  the  reagents  are  readily  prepared  from  inexpensive  α-­‐pinene  which  is  available  in  quan)ty  in  both   Me enan)omers.   ◾  These  reagents  react  rapidly  with  aldehydes  at  low  temperature  to  give  the  products  in  excellent  yield  and   enan)omeric  excess.       ◾  As  with  the  aldol  reac)on,  the  (Z)-­‐crotyl  borane  gives  the  syn  product  and  the  (E)-­‐crotyl  borane  gives  the  an99%2ee

(%)%Ipc2B

Nobel  Prize  with  Georg  Wivg,  1979   O Me

Me B CH3

H3C

O OH

H H3C

CH3 syn$selec(ve 90%$ee

Brown,  H.  C.;  Jadhav,  P.  K.  J.  Am.  Chem.  Soc.,  1983,  105,  2092.   Racherla,  U.  S.;  Brown,  H.  C.    J.  Org.  Chem.,  1991,  56,  401.      

Me

Me B

CH3

H3C

OH

H H3C

CH3 an#$selec#ve 90%$ee

94

Introduction to Stereoselective Organic Synthesis

Enan-oselec-ve  Allyla-on  and  Crotyla-on  reac-ons  

◾  The  model  to  ra)onalise  the  stereoselec)vity  involves  minimising  the  interac)on  of  the  allyl/crotyl  unit  with  the   Ipc  –ligands.    

O Me

Me

H3C

B

OH

H

CH3 >99%2ee

(%)%Ipc2B H"poin'ng"into Me ring"in"sterically" most"hindered"posi'on Me

H H

O H

R

Me H H Me B Me

Me

Me

H

H

Me

Me

H

H H Me

H (smaller)"oxygen"of RCHO"rather"than" CH2"of"allyl"unit sits"in"sterically"most encumbered"posi'on

Brown,  H.  C.;  Jadhav,  P.  K.  J.  Am.  Chem.  Soc.,  1983,  105,  2092.   Racherla,  U.  S.;  Brown,  H.  C.    J.  Org.  Chem.,  1991,  56,  401.      

H

O H

R

H

H Me H H Me B Me H

Me H H Me B H Me

H Me

H

R

O H H

H

severe%steric clash%between%allyl unit%and%"Ipc"%unit

Me

95

Introduction to Stereoselective Organic Synthesis

Enan-oselec-ve  Allyla-on  and  Crotyla-on  reac-ons  

◾  W.  R.  Roush  has  developed  chiral  allyl  and  crotyl  boronate  reagents  based  on  tartrate  esters  and  amides.      

 

CO2iPr O R

H

O B

+

CO2iPr

O

RCHO

OH

toluene 0783°C,343A8 3sieves

yield3/3%

nC9H19CHO cC6H11CHO PhCHO

R

ee3/3%

86 77 78

79 78 71

CO2iPr O H

TBSO

O B

+

O

OH

toluene

CO2iPr

/782°C,242A7 2sieves

71%,285%ee 98:2,2an$:syn

TBSO Me

CO2iPr O H

TBSO

O B

+

a"rac%ve(electrosta%c interac%on(beteween(lone pair(and(carbonyl(carbon

O

H

O B O

H H

O H

R

CO2iPr

O

OH

toluene /782°C,242A7 2sieves

O

OiPr

O B O

H H

O H

R

Me

CO2iPr

OiPr OiPr

H CO2iPr

68%,272%ee 2:98,2an$:syn

TBSO

CO2iPr

OH

O

H

O O B

H H

O

R

R unfavourable+lone,pair lone,pair+repulsion

Roush,  W.  R.;  Ando,  K.;  Powers,  D.  B.;  Palkowitz,  A.  D.;  Halterman,  R.  L.  J.  Am.  Chem.  Soc.,  1990,  112,  6339.   Gung,  B.  W.;  Xue,  X.;  Roush,  W.  R.  J.  Am.  Chem.  Soc.,  2002,  124,  10692-­‐10697.   For  a  discussion  of  the  formyl  hydrogen  bond  see:  E.  J.  Corey,  D.  Barnes-­‐Seeman,  T.  W.  Lee,  Tetrahedron  Lee.,  1997,  38,  4351.    

H

96

Introduction to Stereoselective Organic Synthesis

Cataly-c  Asymmetric  Aldol  Reac-ons  –  Introduc-on  to  Organocatalysis   ◾  The  Hajos,  Parrish,  Wiechert  reac)on  –  intramolecular  proline-­‐catalysed  aldol  reac)on.       O O  

 

O Me

O

N H

Me O

Me O

CO2H O

3)mol%)catalyst DMF

Me O

Me

Me

O

OH

O

OH 100%)yield 93.4%)ee

enamine/ forma-on

H2O

CO2H

N H

iminium/ion hydrolysis

H2O O

N N O H O

O

Me chair&like transi-on/state

O O

O

N

OH

O Me

N O H O O

CO2H O Me

O N H O

Me

O

O Me

intramoleuclar acid/catalysis

O

chair&like transi-on/state

Hajos,  Z.  G.;  Parrish,    D.  R.  ;  J.  Org.  Chem.,  1974,  39,  1615.   Eder,  U.;  Sauer,  G.;  Wiechert,  R.  Angew.  Chem.  Int.  Ed.,  1971,  10,  496.   Overview  of  mechanis)c  studies:  Alleman,  C.;  Gordillo,  R.;  Clemente,  F.  R.;  Cheong,  P.  H.-­‐Y.;  Houk,  K.  M.  Acc.  Chem.  Res.,  2004,  37,  558.  

97

Introduction to Stereoselective Organic Synthesis

Cataly-c  Asymmetric  Aldol  Reac-ons  –  Introduc-on  to  Organocatalysis  

◾  The  Hajos,  Parrish,  Wiechert  reac)on  was  developed  into  an  intermolecular  reac)on  by  Barbas  and  List      

N H

O + Me

Me

CO2H 30+mol%

O

RCHO DMSO:acetone,+4:1

O

OH

Me

OH

O

Me

R

O

R H R"group"of aldehyde"is equatorial

H Me

O

R

O O chair4like transi7on" state"with" intramolecular acid"catalysis

H

N

O

O

H Me

NO2

H2O

Me

O

62%,%60%%ee

OH R H

OH

Me

97%,%96%%ee

O

94%,%69%%ee

OH

Me

O

O

Cl

Me

68%,%76%%ee N

OH

N H

CO2H HO C 2

N

allylic+strain

H

◾  Aldol  reac)on  uses  non-­‐enolisable  aldehydes  or  α-­‐branched  aldehydes  which  do  not  readily  form  enamines  (due  to   A1,3  strain).   ◾  Mechanism  involves  enamine  forma)on  from  acetone  followed  by  reac)on  with  RCHO  via  Zimmerman-­‐Traxler   type  transi)on  state.   List,  B.;  Lerner,  R.  A.;  Barbas  III,  C.  F.;  J.  Am.  Chem.  Soc..,  2000,  122,  2395.  

98

Introduction to Stereoselective Organic Synthesis

Cataly-c  Asymmetric  Aldol  Reac-ons  –  Introduc-on  to  Organocatalysis   ◾  MacMillan  developed  an  efficient  cross  aldol  reac)on  of  aldehydes.      

N H

O Me

H

O Me +

H

Me +

O

H

OH

H

O

O Et

Me +

H

Me 80%,%99%ee, 4:1,%an#:syn

N H

N H

H

N H

CO2H 10(mol%

DMF,(+(4(°C

O

OH

H Me 88%,$97%ee, 3:1,$an#:syn

CO2H 10(mol%

DMF,(+(4(°C

O

O H

10(mol%

DMF,(+(4(°C

O H

CO2H

CO2H

O H

Me 87%,%99%ee, 14:1,%an#:syn

10(mol%

DMF,(+(4(°C

OH

O

OH

H Me 99%,$81%ee, 3:1,$an#:syn

◾  Aldol  reac)on  uses  non-­‐enolisable  aldehydes  or  α-­‐branched  aldehydes  which  do  not  readily  form  enamines.   ◾  Mechanism  involves  stereoselec)ve  enamine  forma)on  from  CH3CH2CHO  followed  by  reac)on  with  acceptor  aldehyde.   ◾  Donor  aldehyde  (CH3CH2CHO)  added  slowly  over  course  of  reac)on  to  prevent  homo-­‐aldol  reac)on.   Northrup,  A.  B.;  MacMillan,  D.  W.  C.  J.  Am.  Chem.  Soc.,  2002,  124,  6798.  

99

Introduction to Stereoselective Organic Synthesis

Cataly-c  Asymmetric  Aldol  Reac-ons  –  Introduc-on  to  Organocatalysis   ◾  MacMillan  developed  an  efficient  cross  aldol  reac)on  of  aldehydes.      

CO2H

N H

O Me

H

R

O

OH Et

H

DMF,(+(4(°C

CO2H

N

H

HO2C allylic%strain

R s%trans (E)#enamine conforma8on favoured preferred

N

O H

R"group"of aldehyde"is equatorial

CO2H

N R

H R

H

(Z)%enamine disfavoured by4allylic%strain

H

H R

N

H

H

R'

80%,%99%ee, 4:1,%an#:syn

Me

CO2H

N H

O

10(mol%

H

H

R

O O

R'

O

H

N H Me

O

H2O

O

OH

H O

R R'

chair4like transi7on"state intramoleuclar"acid"catalysis

◾  Aldol  reac)on  uses  non-­‐enolisable  aldehydes  or  α-­‐branched  aldehydes  which  do  not  readily  form  enamines   ◾  Mechanism  involves  stereoselec)ve  enamine  forma)on  from  CH3CH2CHO  followed  by  reac)on  with  acceptor  aldehyde   ◾  Donor  aldehyde  (CH3CH2CHO)  added  slowly  over  course  of  reac)on  to  prevent  homo-­‐aldol  reac)on   Northrup,  A.  B.;  MacMillan,  D.  W.  C.  J.  Am.  Chem.  Soc.,  2002,  124,  6798.  

100

Introduction to Stereoselective Organic Synthesis

Cataly-c  Asymmetric  Mannich  Reac-ons    

 

OMe

O R1 excess

R2

+

RCHO +

N H

5)35+mol% R1

1

HN 2

3

R

R2 OMe

HN

O

Me

O

DMSO

H2N

OMe O

OMe

CO2H

OMe

HN

O Me

Me

HN

Me

Me

OMe O

OMe

HN

O

Me NO2

92%,%99%ee >20:1,%dr

OMe

HN

O Me

Me OH

80%,%93%ee

56%,%70%ee

35%,%96%%ee

OH

HN

Me

Me Me

Me

57%,%65%ee 17:1,%dr

90%,%93%ee

◾  Imine  formed  in  situ  between  aldehyde  and  amine.   ◾  Opposite  absolute  configura)on  at  C-­‐3  compared  with  aldol  reac)on.   ◾  syn-­‐Diastereomer  predominates  (an<  predominates  in  aldol  reac)on).   List,  B.;  J.  Am.  Chem.  Soc.,  2000,  122,  9336.    

101

Introduction to Stereoselective Organic Synthesis

Cataly-c  Asymmetric  Mannich  Reac-on   Mechanism    

 

OMe

O R1 excess

R2

RCHO +

+

N H

OMe

CO2H 5)35+mol%

O R1

DMSO

H2N

RCHO +

O

N H

Me OH

H2N

geometry-of-imine forces-Ar-and-R-intopseudo3axial-posi7ons-topermit-intramolecular acid3catalysis Ar N HO N H H O Me R chair3like transi7on-state

N R

H trans3imine favoured-on steric-grounds

CO2H N

CO2H

Me

R R2

OMe OMe

HN

HO2C

N

O

Me

OH favourable enamine-geometry minimises-allylic-strain

OH O

H

NHAr

Me

R OH

H2O

HO H R

Ar N

H Me

N O O

List,  B.;  J.  Am.  Chem.  Soc.,  2000,  122,  9336.   W.  Notz,  F.  Tanaka,  S.  Watanabe,  N.  S.  Chowdari,  J.  M.  Turner,  R.  Thayumanavan,  and  C.  F.Barbas  III,  J.  Org.  Chem.  2003,  68,  9624.  

102

Introduction to Stereoselective Organic Synthesis

Cataly-c  Asymmetric  Mannich  Reac-on  –  an-  selec-ve  –  catalyst  design  

◾ As  noted  above,  the  syn-­‐selec)ve  Mannich  reac)on  proceeds  via  a  chair  like  transi)on  state  from  the   thermodynamically  most  favourable  enamine  conforma)on.   ◾  In  order  to  have  an  an99%,'98%'ee

>99%,'87%'ee

OH

>99%,'99%ee

O

>99%,'99%ee

OH

S

F3C

OH

Ph

OH

S

S

95%,'99%'ee [with'(R,'R))catalyst]

S O O 95%,'98%'ee [with'(R,'R))catalyst] OH

OH O

N NHCH3

(S))MA)20565

OMe

F3C

96%,'91%'ee

Cl

N 68%,'92%'ee [with'(R,'R))catalyst]

For  perspec)ve  and  leading  references  see:    Noyori,  R.;  Yamakawa,  M.;  Hashiguchi,  S.  J.  Org.  Chem.,  2001,  66,  7932.  

CO2Me

156

Introduction to Stereoselective Organic Synthesis

Cataly-c  Asymmetric  Reduc-on  of  Ketones  –  transfer  hydrogena-on   O H

HO

Cl H

Ru NTs N H

Ph

Ph

H O

H H

H

HO

Ru NTs N H

a"rac%ve CH(π#interac+on (electrosta+c)

Ph

Ph

H Ru NTs N H

H Ph

H

Ru

NTs Ph

R O H N

Ph

H

Ph

◾  Aryl  ketones  and  propargylic  ketones  are  the   best  substrates.   ◾  Low  catalyst  loading.   ◾ Can  be  conducted  in  an  open  reac)on  vessel  at   high  substrate  (up  to  10  M)  concentra)on.   ◾  Mechanism  related  to  classical  Meerewein-­‐ Pondorf-­‐Verley  reduc)on.      

R OH

For  perspec)ve  and  leading  references  see:    Noyori,  R.;  Yamakawa,  M.;  Hashiguchi,  S.  J.  Org.  Chem.,  2001,  66,  7932.  

157

Introduction to Stereoselective Organic Synthesis

Asymmetric  Reduc-on  of  Ketones  –  chiral  boranes  /  borohydrides  

◾  Treatment  of  ketones  with  chiral  boranes  can  result  in  highly  enan)oselec)ve  asymmetric  reduc)on.   ◾  The  most  efficient  reagents  for  this  reduc)on  are  Alpine-­‐borane™  and  DIP-­‐chloride     Me

Me

B

)2B

Cl

DIP'Cl (diisopinocampheylboron8chloride)

Alpine'borane™

O

O D

Me

OH

OH

B slow 10%$ee

D fast

O

100%$ee fast Me OH

100%$ee

For  a  review  see:  Brown,  H.  C.;  Ramachandran,  P.  V.  J.  Organomet.  Chem.,  1995,  500,  1.    

Me

R R B O H R Large H Me R Small

small%group bu,resses%against axial%Me%group

158

Introduction to Stereoselective Organic Synthesis

Asymmetric  Reduc-on  of  Ketones  –  chiral  boranes  /  borohydrides   ◾  More  Lewis  acidic  than  Alpine-­‐borane™  due  to    electronega)ve  chlorine  atom.   ◾  reduces  wide  variety  of  ketones  with  high  enan)oselec)vity.   ◾  Ar  group  is  the  “large”  group.     Me

)2B

Cl

Me Me

small%group bu,resses%against axial%Me%group

DIP$Cl (diisopinocampheylboron6chloride) O Me

)2B

+

OH

OH

OH

R

Ar

Cl

or R1 R2

O

N R

R3

R R B O H R Large H Me R Small

87%$ee

92%$ee

OH

OH Cl

95%$ee

For  a  review  see:  H.  C.;  Ramachandran,  P.  V.  J.  Organomet.  Chem.,  1995,  500,  1.    

91%$ee

98%$ee

159

Introduction to Stereoselective Organic Synthesis

Cataly-c  Asymmetric  Reduc-on  of  Ketones  Corey,  Bakshi,  Shibata  (CBS)-­‐reduc-on  

◾  E.  J.  Corey  has  developed  a  highly  effec)ve  cataly)c  asymmetric  reduc)on  of  prochiral  ketones  using  BH3    as  the   hindered'concave stoichiometric    reductant.   face

H

CO2H

H Ph Ph

6,steps

Ph H

N B Me 10-mol%-catalyst BH3•THF-(0.6-equivalents) THF,-R.T.

O R Large

O

O

NH

R Large OH

B

BH3

O Ph H

N

B

Me

BH3

chiral borohydride

R Small OH

Cl

Me

N

Me

OH

R Small OH

Ph

Ph

Br

MeO 98%$ee

95%ee OH

97%$ee

OH

97%$ee

91%$ee OH

95%$ee small$group

For  a  review  see:  Corey,  E.  J.;  Helal,  C.  J.;  Angew.  Chem.,  Int.  Ed.  1998,  37,  1986.        

E.  J.  Corey,  Nobel  Prize,   1990  for  or  his  development  of   the  theory  and  methodology  of   organic  synthesis  

160

Introduction to Stereoselective Organic Synthesis

Cataly-c  Asymmetric  Reduc-on  of  Ketones  -­‐  Corey,  Bakshi,  Shibata  (CBS)-­‐reduc-on   Mechanism  

OBH2 R Large

O

Ph

R Small

O Ph H

N

B

R Large

Me

BH3

BH3 Ph

Ph O

Ph H

N

B

BH2

Me R Small

O H

R Large

Ph H

R Small

ketone&coordinates from&most&accessible& face&of&oxazaborolidine with&R Small&bu8ressing&the Me&group Me O B R Small N O H2B R Large H

For  a  review  see:  Corey,  E.  J.;  Helal,  C.  J.;  Angew.  Chem.,  Int.  Ed.  1998,  37,  1986.         For  a  large  scale  CBS-­‐reduc)on  (>1.5  kg)  see:  Duquexe,  J.;  Zhang,  M.;  Zhu,  L.;  Reeves,  R.  S.  Org.  Process  Res.  Dev.  2003,  7,  285    

161

Introduction to Stereoselective Organic Synthesis

Asymmetric  Reduc-on  of  Ketones  -­‐  Applica-ons   H

Ph

Ph

CF3

O N B Me 10-mol%

O Cl

OH

O N

Cl

0.6-equiv.-BH3•THF THF-0-°C

H H--Cl (R)BfluoxeEne (Prozac™)

100%-yield Corey,  E.  J.;  Reichard,  G.  A.  Tetrahedron  Lee.,  1989,  30,  5207.  94%-ee Me B )2

Me

CF3

Cl

O

OH

O

Cl

N

Cl

Me

H H++Cl (R)'fluoxe;ne (Prozac™)

70'85%+yield 97%+ee Srebnik,  M.;  Ramachandran,  P.  V.;  Brown,  H.  C.  J.  Org.  Chem.,  1988,  53,  2916.  

Problem:  Predict  the  major  enan)omer  of  the  product  in  the  following  reac)on.  E.    J.  Corey,  C.  J.  Helal,  Tetrahedron  Lee.,  1995,  36,  9153.     Ph H

Ph

O N B Me 15+mol%

O

O

iPr3SiO

NO2

O

BH

toluene+378+°C

OH

iPr3SiO

NO2

162

Introduction to Stereoselective Organic Synthesis

Asymmetric  Addi-on  of  Diethylzinc  to  aldehydes  

RCHO

+

Et2Zn

H

NMe2 OH 2.mol%

OH

OH Et

toluene,.0.°C 97%$yield 98%$ee

OH Et

Et

96%$ee OH

nBu

90%$ee OH

Et

Et

Bu3Sn

60%$ee

85%ee

◾  Ac)ve  catalyst  formed  from  reac)on  of  Et2Zn  with  amino  alcohol.   ◾  Coordina)on  of  a  second  molecule  of  Et2Zn  and  of  RCHO  gives  pre-­‐transi)on  state  assembly.   ◾  Et  group  delivered  selec)vely  to  one  the  two  prochiral  faces  of  the  aldehyde.   ◾  Alipha)c  aldehydes  generally  give  products  with  moderate  enan)omeric  excess.   Me2 Et N Zn O H Zn O Et Et

RCHO coordinates to+zinc+opposite gem?dimethyl+group

H+atom+bu8resses against+Et+group H

Me2 Et N Zn O H Zn O Et Et

For  a  review  see:  Noyori,  R;  Kitamura,  M.  Angew.  Chem.  Int.  Ed.,  1991,  30,  49.      

unfavourable+interac/on of+alkyl/aryl+groups

H

163

Introduction to Stereoselective Organic Synthesis

Problem:    Ra)onalise  the  stereochemical  outcome  of  the  following  reac)on.   J.  Va´zquez,  M.  A.  Pericas,  F.  Maseras,  A.  Lledos,  J.  Org.  Chem.,  2000,  65,  7303.      

  N O

Ph H

Ph Ph OH 6'mol%

Et2Zn,'toluene'0'°C

OH Me 99%#ee

164

Introduction to Stereoselective Organic Synthesis

Cataly-c  Asymmetric  Reduc-on  with  Organocatalysts   Me

O

+

EtO2C

Me

Me

CO2Et N H

91%$yield,$93%$ee

O

Ph Me

O Me

Me

74%,%94%%ee

92%,%97%%ee

95%,%91%%ee

Me

O O Me 74%,%90%%ee

Me

O

Cl

Me

TIPSO

+

EtO2C

Cl

O

Ph

Me

N

•-TFA N 20-mol% H CHCl3,-830-°C

H H Ph

O

O

MeO Me 83%,%91%%ee

S.  G.  Ouellet,  J.  B.  Tuxle,  D.  W.  C.  MacMillan,  J.  Am.  Chem.  Soc.,  2005,  127,  32.      

Me

O Me Me

95%,%97%%ee

CO2Et N

Me

165

Introduction to Stereoselective Organic Synthesis

Cataly-c  Asymmetric  Reduc-on  with  Organocatalysts   O

Ph

Me

Me iminium%ion forma*on H2O Me

O N

O

O

Ph Me

N N •-TFA H

s4trans geometry minimises%allylic4strain

H2O Me

O N N

N

favoured iminium%ion geometry to%minimise allylic4strain

Me

Ph

hydride%delivered from%least%hindered face%of%iminium%ion

Me

Me H

Ph

Me

Me

EtO2C Me

CO2Et N H

N

N H

direct#a.ack on#imine hindered CO2Et

N H

Ph

O

H H EtO2C

tBu#group#blocks#a.ack of#nucleophiles#on#top#face

Me H CO2Et Me NH EtO2C Me hydride#a.ack from#most#accessible face#of#iminium#ion

Me

◾  α,β-­‐Unsaturated  iminium  ion  more  electrophilic  than  α,β-­‐unsaturated  aldehyde  (lower  energy  LUMO).   ◾  Asymmetric  iminium  ion  catalyst  complementary  to  asymmetric  enamine  catalysis.   ◾  LUMO  lowering  via  asymmetric  α,β-­‐unsaturated  iminium  ion  forma)on  is  a  general  and  useful  concept  for   asymmetric  catalysis.   S.  G.  Ouellet,  J.  B.  Tuxle,  D.  W.  C.  MacMillan,  J.  Am.  Chem.  Soc.,  2005,  127,  32.      

166

Introduction to Stereoselective Organic Synthesis

Summary  

O

Ph Me H "H("

O O Me

N

Bu H

B

O

H

O R Me

Bu

O

R H

RO O

N H Me

O O

RO2C OR O CO2R O Ti Ti O O

RO

◾  In  order  to  ra)onalise  the  stereochemcial  outcome  of  many  of  the  reac)ons  you  have   seen  you  need  to  consider:     i)  steric  and  electronic  factors   ii)  steroelectronic  effects   iii)  associa)ve  substrate-­‐reagent  interac)ons     ◾  In  order  to  do  this  it  is  impera)ve  to  draw  clear  conforma3onal  diagrams.    

O tBu

H O E

O

R1

Introduction to Stereoselective Organic Synthesis

Appendix

◾  Glossary  of  terms   achiral  –  not  chiral  i.e.  molecule/object  has  a  superimposable  mirror  image.    If  a  molecule  can  gain  access  to  a  conforma)on  which   has  a  plane  of  symmetry  (or  centre  of  inversion)  it  will  be  achiral,   chiral  –  Molecules  (and  objects)  which  have  a  non-­‐superimposable  mirror  image,   chiral  centre  –  see  stereogenic  centre,   diastereomers  –  stereoisomers  which  are  not  related  as  enan