Substituted clonidine derivatives. II. Ethyl 3,5-dichloro-4 - IUCr

1 downloads 0 Views 197KB Size Report
of these compounds did not match the activity of clonidine. ... in both compounds are shorter compared to that observed in clonidine (Byre et al., 1976; Cody ...
CIF access Acta Cryst. (1999). C55, IUC9900085

[ doi:10.1107/S0108270199098996 ]

Substituted clonidine derivatives. II. Ethyl 3,5-dichloro-4-(1-isobutyrylimidazolidin2-ylideneamino)benzoate and ethyl 3,5-dichloro-4-(1,3-diisobutyrylimidazolidin-2ylideneamino)benzoate E. M. Elssfah, K. Chinnakali, H.-K. Fun, I. W. Mathison, E. K. Gan, M. Zubaid, T. W. Sam and K. S. Khoo Abstract In C16H19Cl2N3O3, (I), and C20H25Cl2N3O4, (II), the imidazolidine rings adopt half-chair conformation. (I) exists in the imidazolidine form. The dihedral angle between the phenyl and imidazolidine rings are 80.95 (6)° for (I) and 66.7 (2) and 67.5 (2)° for (II). The dihedral angle between the mean planes through the carboethoxy groups and the phenyl rings are 3.4 (1)° for (I), and 4.0 (2) and 6.0 (2)° for (II). In (I), the glide-related molecules are involved in N—H···N intermolecular hydrogen bonds. Comment In continuation of our program on the development of more potent antihyper- tensive drugs, another class of clonidine derivatives were synthesized in which the phenyl ring has moderately to milder electron withdrawing groups attached in the p-position. The title compounds, (I) and (II), from that series of compounds contain the carboethoxy group and both of these compounds did not match the activity of clonidine. The x-ray structural study was taken up in order to understand whether the compound exist as imidazolidine or imidazoline and further to elucidate the relative configuration of the phenyl ring with respect to the imidazolidine ring. The compound (I) exists in imidazolidine form. The asymmetric unit of (II) contains two molecules; the N1—C7 distances in both compounds are shorter compared to that observed in clonidine (Byre et al., 1976; Cody & DeTitta, 1979) which resulted in significant increase of N2—C7 and N3—C7 bond lengths due to decreased resonance. The addition of isobutyryl group at the N atoms caused the relative increase of Csp3—N(C) distances. The C1—N1—C7 angle in (I) is narrower than that observed in (II). The N1—C7—N2 angle in both compounds are widened compared to clonidine. The imidazolidine rings in (I) and (II) adopt half-chair conformation. The phenyl ring planes form dihedral angles of 80.95 (6) and 66.7 (2)°, 67.5 (2) with the mean plane through the imidazolidine rings of (I) and (II), respectively. The close approach of O1 towards N1 restrict the rotation of that isobutyryl group in both compounds. The dihedral angle between the mean planes through the carboethoxy groups and phenyl rings are 3.4 (1)° for (I), and 4.0 (2) and 6.0 (2)° for (II). In (I), the glide related molecules are involved in N—H···N intermolecular hydrogen bonds (Table 2).

Experimental Ethyl p-aminobenzoate was converted to 2,6-dichloro-4-aminobenzoate with a mixture of concentrated hydrochloric acid and hydrogen peroxide. The product was formylated with a mixture of formic acid and acetic anhydride. Dehydration and concomittant chlorination of the amide with a thionyl chloride and sulfuryl chloride mixture gave the dichloroimine derivat-

CIF access ive which on reaction with anhydrous ethylenediamine gave the 2-(4-carboethoxy-2,6-dichlorophenylimino) imidazolidine. 2-(4-Carboethoxy-2,6-dichlorophenylimino)imidazolidine on reaction with an excess of isobutyryl anhydride in isobutyric acid for 12 h at 60°C gave a mixture of amides. The reaction was quenched with aqueous ammonia and the amide mixture was extracted with diethyl ether and separated by flash column chromatography on silica gel with toluene:ethyl acetate (7:3) as eluant. The half amide, 2-(4-carboethoxy-2,6-dichlorophenylimino)-1-isobutyryl imidazolidine preceded the diamide, 2-(4-carboethoxy-2,6-dichlorophenylimino)- 1,3-diisobutyrylimidazolidine from the column. Crystals used for this study were obtained by re-crystallization of the separated products from ethyl acetate. Refinement The data collection for (II) was covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different φ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-todetector distance was 4 cm and the detector swing angle was −35°. Coverage of the unique set is over 99% complete. Crystal decay was monitored by repeating thirty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible. All but methyl H atoms of (I) were located from a difference map and refined isotropically; the methyl H atoms of (I) and all H atoms of (II) were geometrically fixed and allowed to ride on the parent atoms to which they attach; rotating group refinement was used for the methyl groups. For the refined H atoms of (I), the C—H distances range from 0.92 (2) to 1.04 (3)Å and Uiso values range from 0.051 (6) to 0.13 (1) Å2. Computing details Data collection: XSCANS (Siemens, 1994) for (I); SMART (Siemens, 1996) for (II). Cell refinement: XSCANS for (I); SAINT (Siemens, 1996) for (II). Data reduction: XSCANS for (I); SAINT (Siemens, 1996) for (II). For both compounds, program(s) used to solve structure: SHELXTL (Sheldrick, 1997). Program(s) used to refine structure: SHELXTL for (I); SHELXTL (Sheldrick, 1997) for (II). Molecular graphics: SHELXTL for (I); SHELXTL (Sheldrick, 1997) for (II). For both compounds, software used to prepare material for publication: SHELXTL (Sheldrick, 1997) and PARST (Nardelli, 1995)

2-(4-carboethoxy-2,6-dichlorophenylimino)-1-isobutyrylimidazolidine Crystal data C16H19Cl2N3O3

V = 1797.6 (3) Å3

Mr = 372.24

Z=4

Monoclinic, P21/n

Mo Kα

a = 13.6707 (10) Å

µ = 0.38 mm−1 T = 293 (2) K 0.60 × 0.40 × 0.32 mm

b = 10.4841 (10) Å c = 13.9479 (12) Å β = 115.943 (6)º

Data collection Siemens P4 diffractometer

2842 reflections with I > 2σ(I)

CIF access Absorption correction: empirical (using intensity measurements) using XSCANS (Siemens, 1994) Tmin = 0.82, Tmax = 0.90 5095 measured reflections 4093 independent reflections

Rint = 0.022 3 standard reflections every 97 reflections intensity decay: 2σ(F2)] = 0.039

260 parameters

2

wR(F ) = 0.110

H-atom parameters constrained

S = 0.95

Δρmax = 0.21 e Å−3

4093 reflections

Δρmin = −0.29 e Å−3

Table 1 Selected geometric parameters (Å) O1—C10 O2—C14 O3—C14 O3—C15 N1—C7 N1—C1

1.222 (2) 1.206 (2) 1.336 (2) 1.457 (2) 1.269 (2) 1.400 (2)

N2—C7 N2—C8 N3—C10 N3—C7 N3—C9

1.342 (2) 1.436 (3) 1.382 (2) 1.410 (2) 1.468 (2)

Table 2 Hydrogen-bond geometry (Å, °) D—H···A i

N2—H1N2···O1 Symmetry codes: (i) x−1/2, −y+3/2, z−1/2.

D—H

H···A

D···A

D—H···A

0.83 (2)

2.20 (2)

3.025 (2)

175 (2)

2-(4-carboethoxy-2,6-dichlorophenylimino)-1,3-diisobutyrylimidazolidine Crystal data C20H25Cl2N3O4

V = 8755.9 (2) Å3

Mr = 442.33

Z = 16

Monoclinic, C2/c

Mo Kα

a = 42.7786 (3) Å

µ = 0.33 mm−1 T = 293 (2) K 0.54 × 0.16 × 0.12 mm

b = 9.2896 (2) Å c = 22.7485 (3) Å β = 104.407 (1)º

Data collection Siemens SMART CCD area-detector diffractometer Absorption correction: empirical (using intensity measurements) using SADABS (Sheldrick, 1996) Tmin = 0.85, Tmax = 0.97

9917 independent reflections 4290 reflections with I > 2σ(I) Rint = 0.082

CIF access 26680 measured reflections

Refinement R[F2 > 2σ(F2)] = 0.083

533 parameters

2

wR(F ) = 0.213

H-atom parameters constrained

S = 1.04

Δρmax = 0.35 e Å−3

9917 reflections

Δρmin = −0.45 e Å−3

Table 3 Selected geometric parameters (Å) N1A—C7A N1A—C1A N2A—C17A N2A—C7A N2A—C8A N3A—C7A N3A—C10A N3A—C9A O1A—C10A O2A—C14A O3A—C14A O3A—C15A O4A—C17A

1.282 (5) 1.381 (5) 1.382 (6) 1.411 (6) 1.477 (5) 1.378 (5) 1.395 (6) 1.481 (6) 1.206 (5) 1.206 (5) 1.331 (6) 1.456 (5) 1.209 (5)

N1B—C7B N1B—C1B N2B—C17B N2B—C7B N2B—C8B N3B—C7B N3B—C10B N3B—C9B O1B—C10B O2B—C14B O3B—C14B O3B—C15B O4B—C17B

1.270 (5) 1.376 (5) 1.397 (5) 1.398 (5) 1.482 (5) 1.389 (5) 1.391 (6) 1.476 (5) 1.209 (5) 1.198 (5) 1.332 (5) 1.447 (5) 1.209 (5)

Acknowledgements The authors would like to thank the Malaysian Government for research grant R&D No. 190–9609-2801. Part of this work partially funded from a research grant from Ferris State University, Michigan, USA. KC thanks the Universiti Sains Malaysia for a Visiting Post Doctoral Fellowship. References Byre, C., Mosted, A. & Romming, C. (1976). Acta Chem. Scand. Ser. B, 30, 843–846. Cody, V. & DeTitta, G. (1979). J. Cryst. Mol. Struct. 9, 33–43. Nardelli, M. (1995). J. Appl. Cryst. 28, 659. Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption correction of Area Dectector Data. Univ. of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXTL. Structure Determination Programs. Version 5.10. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA. Siemens (1994). XSCANS User's Manual. Version 2.1. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA. Siemens (1996). SMART and SAINT. Area-Detector Control and Integration Software. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.

CIF access Scheme 1

supplementary materials

supplementary materials 2-(4-carboethoxy-2,6-dichlorophenylimino)-1-isobutyrylimidazolidine Crystal data C16H19Cl2N3O3

F000 = 776

Mr = 372.24

Dx = 1.375 Mg m−3

Monoclinic, P21/n a = 13.6707 (10) Å b = 10.4841 (10) Å c = 13.9479 (12) Å β = 115.943 (6)º V = 1797.6 (3) Å3 Z=4

Mo Kα radiation λ = 0.71073 Å Cell parameters from 44 reflections θ = 5.3–12.6º µ = 0.38 mm−1 T = 293 (2) K Parallepiped, colourless 0.60 × 0.40 × 0.32 mm

Data collection Siemens P4 diffractometer

Rint = 0.022

Radiation source: fine-focus sealed tube

θmax = 27.5º

Monochromator: graphite

θmin = 2.5º

T = 293(2) K θ/2θ scans Absorption correction: empirical (using intensity measurements) using XSCANS (Siemens, 1994) Tmin = 0.82, Tmax = 0.90

h = −15→15 k = 0→13

5095 measured reflections 4093 independent reflections 2842 reflections with I > 2σ(I)

every 97 reflections intensity decay: 2σ(F )] = 0.039 wR(F2) = 0.110

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained Calculated w = 1/[σ2(Fo2) + (0.0646P)2] where P = (Fo2 + 2Fc2)/3 ?

S = 0.95

(Δ/σ)max = 0.001

4093 reflections

Δρmax = 0.21 e Å−3

260 parameters

Δρmin = −0.29 e Å−3

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations

sup-1

supplementary materials between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) Cl1 Cl2 O1 O2 O3 N1 N2 N3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 H12A H12B H12C C13 H13A H13B H13C C14 C15 C16 H16A H16B H16C H1N2 H3 H5 H8A H8B

sup-2

x

y

z

Uiso*/Ueq

0.57899 (4) 0.33308 (4) 0.74299 (10) 0.27206 (12) 0.17930 (11) 0.52145 (12) 0.44445 (13) 0.59200 (11) 0.45151 (13) 0.47113 (14) 0.40803 (15) 0.32291 (13) 0.30096 (14) 0.36429 (14) 0.51702 (13) 0.4692 (2) 0.55923 (17) 0.68837 (13) 0.72041 (16) 0.6614 (3) 0.5843 0.6813 0.6815 0.84432 (19) 0.8776 0.8686 0.8643 0.25691 (14) 0.11407 (18) 0.03463 (18) −0.0118 0.0727 −0.0085 0.3907 (17) 0.4242 (18) 0.2471 (17) 0.405 (2) 0.479 (3)

0.75780 (5) 1.08679 (6) 0.80060 (13) 0.94372 (14) 1.08271 (13) 0.91326 (14) 0.71847 (16) 0.78862 (14) 0.92568 (16) 0.86446 (16) 0.88699 (17) 0.97260 (16) 1.03534 (18) 1.01054 (17) 0.81412 (16) 0.6184 (3) 0.6732 (2) 0.84877 (17) 0.96961 (19) 1.0809 (2) 1.0683 1.1588 1.0859 0.9849 (3) 0.9128 0.9900 1.0614 0.99600 (17) 1.1198 (2) 1.2152 (2) 1.2405 1.2884 1.1786 0.7174 (19) 0.846 (2) 1.0961 (19) 0.603 (2) 0.538 (4)

0.14267 (4) 0.24195 (3) 0.60017 (9) −0.22036 (10) −0.16873 (9) 0.29179 (10) 0.31030 (13) 0.44809 (10) 0.18316 (12) 0.10417 (13) −0.00300 (13) −0.03470 (12) 0.04108 (12) 0.14833 (12) 0.34190 (12) 0.38767 (19) 0.48618 (15) 0.51308 (11) 0.47722 (14) 0.4987 (2) 0.4605 0.4755 0.5737 0.53241 (19) 0.5161 0.6081 0.5076 −0.15102 (12) −0.27931 (14) −0.27872 (17) −0.3506 −0.2383 −0.2469 0.2510 (17) −0.0538 (17) 0.0236 (15) 0.399 (2) 0.360 (2)

0.05864 (16) 0.06105 (17) 0.0509 (3) 0.0592 (4) 0.0511 (3) 0.0471 (4) 0.0517 (4) 0.0405 (3) 0.0391 (4) 0.0415 (4) 0.0430 (4) 0.0390 (4) 0.0406 (4) 0.0406 (4) 0.0381 (4) 0.0708 (7) 0.0509 (5) 0.0382 (4) 0.0506 (5) 0.0821 (8) 0.123* 0.123* 0.123* 0.0874 (9) 0.131* 0.131* 0.131* 0.0425 (4) 0.0566 (5) 0.0653 (6) 0.098* 0.098* 0.098* 0.052 (6)* 0.066 (6)* 0.051 (6)* 0.085 (8)* 0.131 (13)*

supplementary materials H9A H9B H11 H15A H15B

0.6219 (18) 0.5345 (18) 0.7012 (17) 0.081 (2) 0.170 (2)

0.616 (2) 0.699 (2) 0.965 (2) 1.045 (2) 1.153 (2)

0.5193 (16) 0.5408 (18) 0.4045 (16) −0.3195 (19) −0.3055 (18)

0.063 (6)* 0.067 (6)* 0.057 (6)* 0.080 (8)* 0.081 (7)*

Atomic displacement parameters (Å2) Cl1 Cl2 O1 O2 O3 N1 N2 N3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

U11 0.0483 (3) 0.0554 (3) 0.0449 (7) 0.0659 (9) 0.0470 (7) 0.0433 (8) 0.0424 (8) 0.0358 (7) 0.0353 (8) 0.0362 (8) 0.0441 (10) 0.0381 (9) 0.0345 (8) 0.0377 (8) 0.0316 (8) 0.0645 (15) 0.0461 (11) 0.0335 (8) 0.0467 (10) 0.116 (2) 0.0553 (14) 0.0420 (9) 0.0539 (12) 0.0609 (13)

U22 0.0511 (3) 0.0879 (4) 0.0616 (8) 0.0658 (9) 0.0650 (8) 0.0474 (8) 0.0530 (9) 0.0431 (8) 0.0387 (9) 0.0351 (8) 0.0428 (10) 0.0412 (9) 0.0458 (9) 0.0477 (10) 0.0424 (9) 0.0643 (15) 0.0512 (11) 0.0463 (9) 0.0554 (11) 0.0480 (12) 0.108 (2) 0.0457 (10) 0.0678 (14) 0.0647 (13)

U33 0.0621 (3) 0.0380 (2) 0.0317 (5) 0.0361 (6) 0.0313 (6) 0.0319 (6) 0.0424 (8) 0.0334 (6) 0.0318 (7) 0.0428 (8) 0.0367 (8) 0.0315 (7) 0.0346 (7) 0.0321 (7) 0.0322 (7) 0.0604 (12) 0.0477 (10) 0.0286 (7) 0.0349 (8) 0.0674 (14) 0.0699 (14) 0.0323 (8) 0.0321 (8) 0.0527 (11)

U12 0.0132 (2) 0.0081 (3) 0.0075 (6) 0.0098 (7) 0.0124 (6) −0.0076 (7) −0.0143 (7) −0.0006 (6) −0.0089 (7) 0.0007 (7) −0.0013 (8) −0.0025 (7) 0.0027 (8) −0.0056 (8) 0.0009 (7) −0.0214 (12) 0.0025 (9) 0.0050 (7) −0.0105 (9) 0.0001 (14) −0.0328 (14) −0.0029 (8) 0.0085 (11) 0.0122 (11)

U13 0.0108 (2) 0.0187 (2) 0.0033 (5) 0.0134 (6) 0.0078 (5) −0.0008 (6) 0.0024 (7) 0.0069 (6) 0.0042 (6) 0.0076 (7) 0.0126 (7) 0.0095 (6) 0.0088 (7) 0.0113 (6) 0.0066 (6) 0.0059 (11) 0.0133 (8) 0.0078 (6) 0.0041 (7) 0.0262 (14) 0.0002 (11) 0.0092 (7) 0.0039 (8) 0.0087 (10)

U23 0.0074 (2) −0.0022 (2) 0.0063 (6) −0.0020 (6) 0.0087 (6) 0.0089 (6) 0.0099 (7) 0.0103 (6) 0.0054 (6) 0.0077 (7) −0.0007 (7) 0.0051 (7) 0.0074 (7) 0.0026 (7) 0.0039 (7) 0.0216 (11) 0.0180 (9) −0.0017 (7) 0.0003 (8) −0.0023 (11) 0.0124 (14) 0.0028 (7) 0.0107 (9) 0.0104 (10)

Geometric parameters (Å, °) Cl1—C2 Cl2—C6 O1—C10 O2—C14 O3—C14 O3—C15 N1—C7 N1—C1 N2—C7 N2—C8 N3—C10 N3—C7 N3—C9

1.7379 (18) 1.7360 (18) 1.222 (2) 1.206 (2) 1.336 (2) 1.457 (2) 1.269 (2) 1.400 (2) 1.342 (2) 1.436 (3) 1.382 (2) 1.410 (2) 1.468 (2)

C1—C6 C1—C2 C2—C3 C3—C4 C4—C5 C4—C14 C5—C6 C8—C9 C10—C11 C11—C12 C11—C13 C15—C16

1.394 (2) 1.399 (3) 1.381 (2) 1.380 (3) 1.385 (2) 1.492 (2) 1.386 (2) 1.501 (3) 1.496 (3) 1.521 (3) 1.532 (3) 1.479 (3)

sup-3

supplementary materials C14—O3—C15 C7—N1—C1 C7—N2—C8 C10—N3—C7 C10—N3—C9 C7—N3—C9 C6—C1—C2 C6—C1—N1 C2—C1—N1 C3—C2—C1 C3—C2—Cl1 C1—C2—Cl1 C4—C3—C2 C3—C4—C5 C3—C4—C14 C5—C4—C14 C4—C5—C6 C5—C6—C1

116.52 (14) 119.86 (14) 113.70 (16) 130.45 (14) 119.54 (13) 109.86 (14) 116.61 (14) 120.79 (16) 122.30 (16) 122.01 (16) 119.23 (14) 118.75 (12) 119.86 (17) 119.88 (14) 118.64 (15) 121.47 (15) 119.54 (16) 122.08 (16)

C5—C6—Cl2 C1—C6—Cl2 N1—C7—N2 N1—C7—N3 N2—C7—N3 N2—C8—C9 N3—C9—C8 O1—C10—N3 O1—C10—C11 N3—C10—C11 C10—C11—C12 C10—C11—C13 C12—C11—C13 O2—C14—O3 O2—C14—C4 O3—C14—C4 O3—C15—C16

118.83 (14) 119.08 (12) 129.63 (15) 123.10 (15) 107.25 (14) 103.73 (17) 104.02 (15) 117.11 (16) 122.76 (15) 120.10 (13) 109.02 (18) 109.97 (17) 112.7 (2) 124.22 (15) 124.27 (17) 111.51 (15) 106.60 (17)

C7—N1—C1—C6 C7—N1—C1—C2 C6—C1—C2—C3 N1—C1—C2—C3 C6—C1—C2—Cl1 N1—C1—C2—Cl1 C1—C2—C3—C4 Cl1—C2—C3—C4 C2—C3—C4—C5 C2—C3—C4—C14 C3—C4—C5—C6 C14—C4—C5—C6 C4—C5—C6—C1 C4—C5—C6—Cl2 C2—C1—C6—C5 N1—C1—C6—C5 C2—C1—C6—Cl2 N1—C1—C6—Cl2 C1—N1—C7—N2 C1—N1—C7—N3 C8—N2—C7—N1 C8—N2—C7—N3 C10—N3—C7—N1

107.2 (2) −79.3 (2) 0.3 (3) −173.40 (16) 179.85 (13) 6.1 (2) 0.3 (3) −179.23 (14) −0.1 (3) 179.36 (16) −0.6 (3) 179.91 (16) 1.3 (3) −178.20 (13) −1.1 (3) 172.73 (16) 178.35 (13) −7.8 (2) −8.7 (3) 173.17 (17) 177.0 (2) −4.7 (3) −9.6 (3)

C9—N3—C7—N1 C10—N3—C7—N2 C9—N3—C7—N2 C7—N2—C8—C9 C10—N3—C9—C8 C7—N3—C9—C8 N2—C8—C9—N3 C7—N3—C10—O1 C9—N3—C10—O1 C7—N3—C10—C11 C9—N3—C10—C11 O1—C10—C11—C12 N3—C10—C11—C12 O1—C10—C11—C13 N3—C10—C11—C13 C15—O3—C14—O2 C15—O3—C14—C4 C3—C4—C14—O2 C5—C4—C14—O2 C3—C4—C14—O3 C5—C4—C14—O3 C14—O3—C15—C16

174.88 (18) 171.89 (17) −3.6 (2) 10.6 (3) −166.33 (19) 9.7 (2) −11.6 (3) −174.19 (17) 0.9 (2) 7.5 (3) −177.34 (17) −96.6 (2) 81.6 (2) 27.4 (3) −154.38 (19) −3.6 (3) 176.04 (16) 0.9 (3) −179.65 (18) −178.77 (16) 0.7 (2) 179.89 (17)

Hydrogen-bond geometry (Å, °) D—H···A

D—H

H···A

D···A

D—H···A

N2—H1N2···O1i Symmetry codes: (i) x−1/2, −y+3/2, z−1/2.

0.83 (2)

2.20 (2)

3.025 (2)

175 (2)

sup-4

supplementary materials 2-(4-carboethoxy-2,6-dichlorophenylimino)-1,3-diisobutyrylimidazolidine Crystal data C20H25Cl2N3O4

F000 = 3712

Mr = 442.33

Dx = 1.342 Mg m−3

Monoclinic, C2/c a = 42.7786 (3) Å b = 9.2896 (2) Å c = 22.7485 (3) Å β = 104.407 (1)º V = 8755.9 (2) Å3 Z = 16

Mo Kα radiation λ = 0.71073 Å Cell parameters from 6111 reflections θ = 2.7–33.1º µ = 0.33 mm−1 T = 293 (2) K Needle, colourless 0.54 × 0.16 × 0.12 mm

Data collection Siemens SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Monochromator: graphite

9917 independent reflections 4290 reflections with I > 2σ(I) Rint = 0.082

T = 293(2) K

θmax = 27.5º

ω scans

θmin = 2.7º

Absorption correction: empirical (using intensity measurements) using SADABS (Sheldrick, 1996) Tmin = 0.85, Tmax = 0.97 26680 measured reflections

h = −53→53 k = 0→12 l = 0→29

Refinement Refinement on F2 Least-squares matrix: full 2

2

R[F > 2σ(F )] = 0.083 wR(F2) = 0.213

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained w = 1/[σ2(Fo2) + (0.081P)2]

where P = (Fo2 + 2Fc2)/3

S = 1.04

(Δ/σ)max = 2sigma(F2) is used only for calculating observed R-factor etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) Cl1A Cl2A N1A N2A N3A O1A O2A O3A O4A C1A C2A C3A H3AA C4A C5A H5AA C6A C7A C8A H8AA H8AB C9A H9AA H9AB C10A C11A H11A C12A H12A H12B H12C C13A H13A H13B H13C C14A C15A H15A H15B

sup-6

x

y

z

Uiso*/Ueq

−0.12112 (3) −0.21037 (3) −0.18341 (8) −0.20014 (8) −0.20626 (9) −0.21875 (10) −0.11598 (9) −0.07962 (8) −0.21021 (8) −0.16532 (10) −0.13536 (10) −0.11660 (10) −0.0971 −0.12634 (11) −0.15532 (11) −0.1621 −0.17399 (10) −0.19538 (10) −0.20858 (12) −0.1897 −0.2245 −0.22226 (13) −0.2455 −0.2170 −0.20508 (11) −0.18685 (11) −0.1689 −0.20964 (13) −0.1993 −0.2289 −0.2151 −0.17341 (14) −0.1618 −0.1591 −0.1909 −0.10714 (13) −0.05940 (13) −0.0480 −0.0726

−0.43144 (15) −0.05323 (12) −0.2613 (4) −0.5099 (4) −0.4043 (4) −0.3655 (4) −0.0793 (5) −0.2323 (4) −0.4150 (3) −0.2449 (4) −0.3132 (4) −0.2861 (5) −0.3346 −0.1869 (5) −0.1144 (5) −0.0461 −0.1425 (4) −0.3814 (5) −0.6271 (5) −0.6821 −0.6915 −0.5465 (5) −0.5372 −0.5939 −0.3207 (6) −0.1787 (5) −0.1839 −0.0586 (6) 0.0328 −0.0623 −0.0706 −0.1527 (8) −0.0634 −0.2300 −0.1483 −0.1585 (6) −0.2123 (6) −0.1213 −0.2116

0.37303 (6) 0.25321 (6) 0.35005 (16) 0.32742 (17) 0.41295 (18) 0.50110 (18) 0.13937 (17) 0.19358 (14) 0.23264 (14) 0.30798 (18) 0.31349 (19) 0.27370 (19) 0.2782 0.22663 (19) 0.22171 (19) 0.1913 0.26117 (19) 0.3616 (2) 0.3646 (2) 0.3846 0.3401 0.4097 (2) 0.3957 0.4489 0.4644 (2) 0.4741 (2) 0.4546 0.4444 (3) 0.4548 0.4587 0.4012 0.5419 (2) 0.5479 0.5590 0.5614 0.1823 (2) 0.1513 (2) 0.1592 0.1099

0.0743 (4) 0.0682 (4) 0.0500 (9) 0.0513 (9) 0.0597 (11) 0.0923 (12) 0.0938 (13) 0.0675 (9) 0.0701 (10) 0.0440 (10) 0.0485 (11) 0.0519 (12) 0.062* 0.0484 (11) 0.0513 (11) 0.062* 0.0452 (10) 0.0500 (11) 0.0687 (15) 0.082* 0.082* 0.0731 (15) 0.088* 0.088* 0.0623 (13) 0.0616 (13) 0.074* 0.0899 (18) 0.135* 0.135* 0.135* 0.105 (2) 0.157* 0.157* 0.157* 0.0617 (13) 0.0719 (15) 0.086* 0.086*

supplementary materials C16A H16A H16B H16C C17A C18A H18A C19A H19A H19B H19C C20A H20A H20B H20C Cl1B Cl2B N1B N2B N3B O1B O2B O3B O4B C1B C2B C3B H3BA C4B C5B H5BA C6B C7B C8B H8BA H8BB C9B H9BA H9BB C10B C11B H11B C12B H12D H12E H12F C13B H13D H13E

−0.03595 (13) −0.0233 −0.0474 −0.0219 −0.20408 (11) −0.19824 (13) −0.2020 −0.22048 (13) −0.2424 −0.2153 −0.2179 −0.16294 (14) −0.1493 −0.1581 −0.1593 −0.13050 (3) −0.03747 (3) −0.06767 (8) −0.05164 (8) −0.04767 (8) −0.03938 (10) −0.12900 (8) −0.16752 (7) −0.03881 (7) −0.08434 (9) −0.11430 (10) −0.13224 (9) −0.1519 −0.12112 (10) −0.09202 (10) −0.0844 −0.07415 (9) −0.05643 (9) −0.04369 (12) −0.0625 −0.0267 −0.03257 (11) −0.0092 −0.0399 −0.05029 (11) −0.06649 (12) −0.0835 −0.04069 (14) −0.0331 −0.0498 −0.0230 −0.08172 (15) −0.0931 −0.0966

−0.3337 (7) −0.3268 −0.4234 −0.3292 −0.5192 (5) −0.6677 (5) −0.7418 −0.6943 (6) −0.6961 −0.7850 −0.6187 −0.6740 (7) −0.6744 −0.5915 −0.7602 0.05152 (13) 0.44136 (12) 0.2099 (4) −0.0332 (4) 0.0474 (4) 0.0643 (4) 0.4901 (4) 0.3361 (3) 0.0823 (3) 0.2460 (4) 0.1861 (4) 0.2340 (4) 0.1904 0.3474 (4) 0.4108 (4) 0.4876 0.3615 (4) 0.0863 (5) −0.1615 (5) −0.2220 −0.2179 −0.0966 (5) −0.0893 −0.1533 0.1217 (6) 0.2693 (6) 0.2742 0.3822 (6) 0.3685 0.4768 0.3722 0.2907 (8) 0.3808 0.2137

0.1600 (3) 0.1307 0.1549 0.2002 0.2654 (2) 0.2408 (2) 0.2689 0.1792 (2) 0.1825 0.1638 0.1520 0.2380 (3) 0.2784 0.2165 0.2173 0.38559 (6) 0.47863 (6) 0.39475 (15) 0.42627 (16) 0.33506 (17) 0.24268 (17) 0.59723 (18) 0.55356 (13) 0.51723 (13) 0.43712 (18) 0.43739 (18) 0.47628 (18) 0.4758 0.51630 (18) 0.51570 (18) 0.5415 0.47746 (18) 0.38770 (19) 0.3940 (2) 0.3795 0.4201 0.3420 (2) 0.3516 0.3054 0.2810 (2) 0.2702 (2) 0.2923 0.2964 (3) 0.3394 0.2883 0.2777 0.2026 (2) 0.1965 0.1879

0.0925 (18) 0.139* 0.139* 0.139* 0.0571 (12) 0.0676 (14) 0.081* 0.0825 (17) 0.124* 0.124* 0.124* 0.122 (3) 0.183* 0.183* 0.183* 0.0653 (4) 0.0674 (4) 0.0458 (9) 0.0453 (8) 0.0515 (9) 0.0935 (13) 0.0900 (12) 0.0589 (8) 0.0585 (8) 0.0393 (10) 0.0414 (10) 0.0443 (10) 0.053* 0.0437 (10) 0.0445 (10) 0.053* 0.0421 (10) 0.0426 (10) 0.0611 (13) 0.073* 0.073* 0.0622 (13) 0.075* 0.075* 0.0616 (13) 0.0695 (14) 0.083* 0.0915 (18) 0.137* 0.137* 0.137* 0.112 (2) 0.168* 0.168*

sup-7

supplementary materials H13F C14B C15B H15C H15D C16B H16D H16E H16F C17B C18B H18B C19B H19D H19E H19F C20B H20D H20E H20F

−0.0651 −0.13914 (11) −0.18549 (11) −0.1920 −0.1723 −0.21441 (12) −0.2268 −0.2076 −0.2274 −0.04651 (10) −0.05312 (11) −0.0532 −0.02783 (13) −0.0314 −0.0291 −0.0069 −0.08660 (12) −0.1026 −0.0877 −0.0906

0.2911 0.4008 (5) 0.3774 (5) 0.4774 0.3654 0.2823 (6) 0.3061 0.1836 0.2961 −0.0283 (5) −0.1665 (5) −0.2467 −0.1945 (6) −0.2874 −0.1218 −0.1923 −0.1543 (6) −0.1496 −0.0687 −0.2370

0.1809 0.5593 (2) 0.5970 (2) 0.5913 0.6381 0.5867 (2) 0.6152 0.5920 0.5461 0.4893 (2) 0.5194 (2) 0.4914 0.5772 (2) 0.5928 0.6065 0.5691 0.5314 (3) 0.4934 0.5545 0.5538

0.168* 0.0543 (12) 0.0599 (13) 0.072* 0.072* 0.0813 (17) 0.122* 0.122* 0.122* 0.0459 (10) 0.0527 (11) 0.063* 0.0840 (17) 0.126* 0.126* 0.126* 0.0872 (18) 0.131* 0.131* 0.131*

Atomic displacement parameters (Å2) Cl1A Cl2A N1A N2A N3A O1A O2A O3A O4A C1A C2A C3A C4A C5A C6A C7A C8A C9A C10A C11A C12A C13A C14A C15A

sup-8

U11 0.0589 (8) 0.0693 (8) 0.055 (2) 0.059 (2) 0.067 (3) 0.116 (3) 0.096 (3) 0.067 (2) 0.096 (3) 0.054 (3) 0.050 (3) 0.049 (3) 0.052 (3) 0.066 (3) 0.049 (3) 0.048 (3) 0.080 (4) 0.084 (4) 0.058 (3) 0.059 (3) 0.084 (4) 0.107 (5) 0.065 (4) 0.081 (4)

U22 0.0770 (9) 0.0405 (7) 0.037 (2) 0.035 (2) 0.051 (3) 0.081 (3) 0.109 (3) 0.071 (2) 0.0353 (19) 0.028 (2) 0.037 (3) 0.050 (3) 0.042 (3) 0.034 (3) 0.026 (2) 0.046 (3) 0.046 (3) 0.058 (3) 0.065 (4) 0.069 (4) 0.066 (4) 0.133 (6) 0.059 (3) 0.075 (4)

U33 0.0807 (9) 0.0942 (9) 0.058 (2) 0.057 (2) 0.062 (3) 0.097 (3) 0.083 (3) 0.069 (2) 0.066 (2) 0.047 (3) 0.053 (3) 0.055 (3) 0.049 (3) 0.051 (3) 0.055 (3) 0.054 (3) 0.076 (4) 0.078 (4) 0.068 (3) 0.056 (3) 0.118 (5) 0.071 (4) 0.059 (3) 0.067 (3)

U12 −0.0007 (7) 0.0063 (6) −0.0116 (17) −0.0123 (17) −0.020 (2) −0.015 (2) 0.008 (2) −0.0115 (19) −0.0120 (17) −0.0143 (19) −0.010 (2) −0.007 (2) −0.011 (2) −0.009 (2) −0.0081 (19) −0.002 (2) −0.016 (3) −0.028 (3) −0.005 (3) −0.016 (3) −0.012 (3) −0.027 (4) −0.015 (3) −0.030 (3)

U13 0.0052 (6) 0.0196 (7) 0.0143 (19) 0.0083 (18) 0.016 (2) 0.059 (3) 0.033 (2) 0.0249 (19) −0.0037 (18) 0.007 (2) 0.003 (2) 0.008 (2) 0.010 (2) 0.009 (2) 0.002 (2) 0.008 (2) 0.012 (3) 0.022 (3) 0.022 (3) 0.014 (2) 0.021 (3) 0.015 (3) 0.011 (3) 0.032 (3)

U23 0.0416 (7) 0.0163 (7) 0.0056 (18) 0.0103 (18) 0.010 (2) 0.008 (2) 0.043 (2) 0.0075 (18) 0.0104 (16) 0.0034 (19) 0.009 (2) 0.009 (2) 0.004 (2) 0.011 (2) 0.002 (2) 0.013 (2) 0.024 (3) 0.015 (3) 0.014 (3) −0.003 (3) −0.006 (4) −0.012 (4) 0.006 (3) −0.009 (3)

supplementary materials C16A C17A C18A C19A C20A Cl1B Cl2B N1B N2B N3B O1B O2B O3B O4B C1B C2B C3B C4B C5B C6B C7B C8B C9B C10B C11B C12B C13B C14B C15B C16B C17B C18B C19B C20B

0.080 (4) 0.057 (3) 0.093 (4) 0.100 (4) 0.086 (5) 0.0577 (7) 0.0526 (7) 0.052 (2) 0.053 (2) 0.052 (2) 0.138 (4) 0.082 (3) 0.056 (2) 0.079 (2) 0.040 (2) 0.045 (3) 0.037 (2) 0.044 (3) 0.047 (3) 0.040 (2) 0.038 (2) 0.078 (3) 0.061 (3) 0.063 (3) 0.072 (4) 0.107 (5) 0.128 (6) 0.052 (3) 0.064 (3) 0.073 (4) 0.049 (3) 0.068 (3) 0.079 (4) 0.069 (4)

0.095 (5) 0.044 (3) 0.029 (3) 0.065 (4) 0.065 (4) 0.0544 (8) 0.0436 (7) 0.033 (2) 0.031 (2) 0.049 (2) 0.083 (3) 0.093 (3) 0.058 (2) 0.0325 (18) 0.028 (2) 0.030 (2) 0.038 (3) 0.036 (2) 0.026 (2) 0.027 (2) 0.041 (3) 0.038 (3) 0.048 (3) 0.071 (4) 0.071 (4) 0.057 (4) 0.138 (7) 0.046 (3) 0.064 (3) 0.090 (4) 0.036 (3) 0.031 (2) 0.071 (4) 0.068 (4)

0.111 (5) 0.063 (3) 0.076 (4) 0.081 (4) 0.198 (8) 0.0810 (9) 0.1084 (10) 0.053 (2) 0.050 (2) 0.057 (2) 0.077 (3) 0.101 (3) 0.068 (2) 0.0558 (19) 0.046 (2) 0.048 (3) 0.055 (3) 0.048 (3) 0.056 (3) 0.057 (3) 0.049 (3) 0.067 (3) 0.080 (4) 0.056 (3) 0.067 (4) 0.115 (5) 0.068 (4) 0.063 (3) 0.057 (3) 0.089 (4) 0.052 (3) 0.057 (3) 0.095 (4) 0.123 (5)

−0.005 (4) −0.015 (2) −0.009 (3) −0.015 (3) 0.021 (4) −0.0125 (6) −0.0146 (5) 0.0041 (16) 0.0037 (16) 0.0094 (18) 0.011 (2) −0.022 (2) −0.0028 (16) 0.0009 (15) 0.0034 (17) −0.0009 (18) −0.0029 (19) 0.0056 (19) −0.0019 (18) −0.0035 (18) −0.0009 (19) 0.006 (2) 0.011 (2) −0.004 (3) 0.014 (3) 0.002 (3) 0.028 (5) 0.001 (2) 0.006 (3) −0.019 (3) 0.007 (2) 0.007 (2) 0.004 (3) −0.002 (3)

0.040 (4) 0.001 (2) 0.012 (3) 0.019 (3) 0.004 (5) 0.0121 (6) 0.0245 (7) 0.0149 (18) 0.0092 (16) 0.0195 (18) 0.060 (3) 0.034 (2) 0.0255 (16) 0.0015 (16) 0.0045 (19) 0.007 (2) 0.005 (2) 0.005 (2) 0.005 (2) 0.006 (2) 0.0097 (19) 0.016 (3) 0.024 (3) 0.025 (3) 0.022 (3) 0.036 (4) 0.021 (4) 0.009 (2) 0.026 (2) 0.036 (3) 0.009 (2) 0.010 (2) 0.010 (3) 0.020 (3)

0.001 (4) 0.013 (3) 0.005 (2) −0.012 (3) −0.026 (5) −0.0297 (6) −0.0121 (7) −0.0006 (17) −0.0082 (17) −0.005 (2) −0.002 (2) −0.054 (3) −0.0156 (17) −0.0064 (15) 0.0032 (19) −0.0054 (19) 0.002 (2) 0.001 (2) −0.0063 (19) 0.000 (2) −0.004 (2) −0.014 (2) −0.013 (3) −0.003 (3) 0.014 (3) 0.014 (4) 0.030 (4) −0.012 (2) −0.003 (3) −0.013 (3) −0.002 (2) −0.004 (2) 0.027 (3) 0.025 (4)

Geometric parameters (Å, °) Cl1A—C2A Cl2A—C6A N1A—C7A N1A—C1A N2A—C17A N2A—C7A N2A—C8A N3A—C7A N3A—C10A N3A—C9A O1A—C10A O2A—C14A

1.732 (4) 1.733 (4) 1.282 (5) 1.381 (5) 1.382 (6) 1.411 (6) 1.477 (5) 1.378 (5) 1.395 (6) 1.481 (6) 1.206 (5) 1.206 (5)

Cl1B—C2B Cl2B—C6B N1B—C7B N1B—C1B N2B—C17B N2B—C7B N2B—C8B N3B—C7B N3B—C10B N3B—C9B O1B—C10B O2B—C14B

1.739 (4) 1.729 (4) 1.270 (5) 1.376 (5) 1.397 (5) 1.398 (5) 1.482 (5) 1.389 (5) 1.391 (6) 1.476 (5) 1.209 (5) 1.198 (5)

sup-9

supplementary materials O3A—C14A O3A—C15A O4A—C17A C1A—C6A C1A—C2A C2A—C3A C3A—C4A C4A—C5A C4A—C14A C5A—C6A C8A—C9A C10A—C11A C11A—C12A C11A—C13A C15A—C16A C17A—C18A C18A—C19A C18A—C20A

1.331 (6) 1.456 (5) 1.209 (5) 1.407 (5) 1.407 (6) 1.374 (6) 1.396 (6) 1.391 (6) 1.474 (6) 1.367 (6) 1.502 (7) 1.520 (7) 1.525 (7) 1.525 (6) 1.490 (7) 1.533 (7) 1.506 (6) 1.528 (7)

O3B—C14B O3B—C15B O4B—C17B C1B—C2B C1B—C6B C2B—C3B C3B—C4B C4B—C5B C4B—C14B C5B—C6B C8B—C9B C10B—C11B C11B—C13B C11B—C12B C15B—C16B C17B—C18B C18B—C19B C18B—C20B

1.332 (5) 1.447 (5) 1.209 (5) 1.399 (5) 1.409 (5) 1.381 (5) 1.397 (5) 1.380 (5) 1.473 (6) 1.372 (5) 1.506 (6) 1.529 (7) 1.527 (6) 1.532 (7) 1.490 (6) 1.514 (6) 1.502 (6) 1.527 (6)

C7A—N1A—C1A C17A—N2A—C7A C17A—N2A—C8A C7A—N2A—C8A C7A—N3A—C10A C7A—N3A—C9A C10A—N3A—C9A C14A—O3A—C15A N1A—C1A—C6A N1A—C1A—C2A C6A—C1A—C2A C3A—C2A—C1A C3A—C2A—Cl1A C1A—C2A—Cl1A C2A—C3A—C4A C5A—C4A—C3A C5A—C4A—C14A C3A—C4A—C14A C6A—C5A—C4A C5A—C6A—C1A C5A—C6A—Cl2A C1A—C6A—Cl2A N1A—C7A—N3A N1A—C7A—N2A N3A—C7A—N2A N2A—C8A—C9A N3A—C9A—C8A O1A—C10A—N3A O1A—C10A—C11A N3A—C10A—C11A C10A—C11A—C12A

123.9 (4) 125.4 (4) 123.6 (4) 109.3 (4) 132.6 (4) 110.2 (4) 117.3 (4) 116.7 (4) 120.7 (4) 122.9 (4) 115.8 (4) 121.8 (4) 118.8 (4) 119.4 (3) 121.0 (4) 118.1 (4) 119.7 (4) 122.1 (5) 120.6 (4) 122.6 (4) 119.7 (3) 117.6 (3) 122.9 (4) 129.4 (4) 107.7 (4) 102.4 (4) 103.0 (4) 117.8 (5) 121.2 (5) 121.0 (4) 108.8 (4)

C7B—N1B—C1B C17B—N2B—C7B C17B—N2B—C8B C7B—N2B—C8B C7B—N3B—C10B C7B—N3B—C9B C10B—N3B—C9B C14B—O3B—C15B N1B—C1B—C2B N1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—Cl1B C1B—C2B—Cl1B C2B—C3B—C4B C5B—C4B—C3B C5B—C4B—C14B C3B—C4B—C14B C6B—C5B—C4B C5B—C6B—C1B C5B—C6B—Cl2B C1B—C6B—Cl2B N1B—C7B—N3B N1B—C7B—N2B N3B—C7B—N2B N2B—C8B—C9B N3B—C9B—C8B O1B—C10B—N3B O1B—C10B—C11B N3B—C10B—C11B C13B—C11B—C10B

126.0 (4) 125.4 (3) 122.5 (4) 110.1 (3) 130.8 (4) 110.4 (4) 118.8 (4) 116.1 (3) 122.8 (4) 120.8 (4) 115.8 (4) 122.0 (4) 118.3 (3) 119.6 (3) 120.5 (4) 118.5 (4) 119.0 (4) 122.5 (4) 120.7 (4) 122.4 (4) 119.6 (3) 118.0 (3) 122.4 (4) 129.8 (4) 107.8 (4) 102.9 (4) 103.4 (3) 117.3 (5) 121.4 (5) 121.3 (4) 109.9 (5)

sup-10

supplementary materials C10A—C11A—C13A C12A—C11A—C13A O2A—C14A—O3A O2A—C14A—C4A O3A—C14A—C4A O3A—C15A—C16A O4A—C17A—N2A O4A—C17A—C18A N2A—C17A—C18A C19A—C18A—C20A C19A—C18A—C17A C20A—C18A—C17A

109.6 (4) 111.7 (5) 123.7 (5) 123.2 (5) 113.1 (4) 107.9 (4) 122.1 (5) 121.7 (4) 116.1 (4) 110.9 (5) 111.4 (4) 107.6 (4)

C13B—C11B—C12B C10B—C11B—C12B O2B—C14B—O3B O2B—C14B—C4B O3B—C14B—C4B O3B—C15B—C16B O4B—C17B—N2B O4B—C17B—C18B N2B—C17B—C18B C19B—C18B—C17B C19B—C18B—C20B C17B—C18B—C20B

112.8 (5) 107.3 (4) 122.7 (4) 123.8 (4) 113.5 (4) 107.2 (4) 121.3 (4) 122.7 (4) 115.9 (4) 111.6 (4) 111.1 (4) 107.9 (4)

C7A—N1A—C1A—C6A C7A—N1A—C1A—C2A N1A—C1A—C2A—C3A C6A—C1A—C2A—C3A N1A—C1A—C2A—Cl1A C6A—C1A—C2A—Cl1A C1A—C2A—C3A—C4A Cl1A—C2A—C3A—C4A C2A—C3A—C4A—C5A C2A—C3A—C4A—C14A C3A—C4A—C5A—C6A C14A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—Cl2A N1A—C1A—C6A—C5A C2A—C1A—C6A—C5A N1A—C1A—C6A—Cl2A C2A—C1A—C6A—Cl2A C1A—N1A—C7A—N3A C1A—N1A—C7A—N2A C10A—N3A—C7A—N1A C9A—N3A—C7A—N1A C10A—N3A—C7A—N2A C9A—N3A—C7A—N2A C17A—N2A—C7A—N1A C8A—N2A—C7A—N1A C17A—N2A—C7A—N3A C8A—N2A—C7A—N3A C17A—N2A—C8A—C9A C7A—N2A—C8A—C9A C7A—N3A—C9A—C8A C10A—N3A—C9A—C8A N2A—C8A—C9A—N3A C7A—N3A—C10A—O1A C9A—N3A—C10A—O1A C7A—N3A—C10A—C11A C9A—N3A—C10A—C11A

125.5 (4) −63.2 (6) −174.6 (4) −3.0 (6) 3.7 (6) 175.4 (3) 1.3 (6) −177.1 (3) 1.1 (6) −178.3 (4) −1.5 (6) 177.9 (4) −0.4 (6) −178.8 (3) 174.4 (4) 2.5 (6) −7.2 (5) −179.0 (3) 163.4 (4) −16.8 (7) −6.4 (8) 173.1 (4) 173.8 (4) −6.8 (5) −25.5 (7) 168.8 (5) 154.3 (4) −11.3 (5) −142.0 (4) 23.9 (5) 21.4 (5) −159.1 (4) −26.3 (5) 175.1 (5) −4.3 (7) −5.5 (8) 175.1 (4)

C7B—N1B—C1B—C2B C7B—N1B—C1B—C6B N1B—C1B—C2B—C3B C6B—C1B—C2B—C3B N1B—C1B—C2B—Cl1B C6B—C1B—C2B—Cl1B C1B—C2B—C3B—C4B Cl1B—C2B—C3B—C4B C2B—C3B—C4B—C5B C2B—C3B—C4B—C14B C3B—C4B—C5B—C6B C14B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—Cl2B N1B—C1B—C6B—C5B C2B—C1B—C6B—C5B N1B—C1B—C6B—Cl2B C2B—C1B—C6B—Cl2B C1B—N1B—C7B—N3B C1B—N1B—C7B—N2B C10B—N3B—C7B—N1B C9B—N3B—C7B—N1B C10B—N3B—C7B—N2B C9B—N3B—C7B—N2B C17B—N2B—C7B—N1B C8B—N2B—C7B—N1B C17B—N2B—C7B—N3B C8B—N2B—C7B—N3B C17B—N2B—C8B—C9B C7B—N2B—C8B—C9B C7B—N3B—C9B—C8B C10B—N3B—C9B—C8B N2B—C8B—C9B—N3B C7B—N3B—C10B—O1B C9B—N3B—C10B—O1B C7B—N3B—C10B—C11B C9B—N3B—C10B—C11B

−63.7 (6) 125.6 (5) −173.3 (4) −2.1 (6) 4.3 (5) 175.5 (3) 1.3 (6) −176.3 (3) 0.4 (6) −179.0 (4) −1.2 (6) 178.3 (4) 0.3 (6) −179.0 (3) 172.7 (4) 1.4 (6) −8.0 (5) −179.3 (3) 162.4 (4) −15.0 (7) −3.8 (7) 174.5 (4) 174.0 (4) −7.6 (4) −26.2 (7) 169.5 (4) 156.2 (4) −8.1 (4) −145.0 (4) 19.8 (5) 19.6 (5) −161.8 (4) −22.7 (4) 177.0 (4) −1.3 (7) −3.4 (7) 178.3 (4)

sup-11

supplementary materials O1A—C10A—C11A—C12A N3A—C10A—C11A—C12A O1A—C10A—C11A—C13A N3A—C10A—C11A—C13A C15A—O3A—C14A—O2A C15A—O3A—C14A—C4A C5A—C4A—C14A—O2A C3A—C4A—C14A—O2A C5A—C4A—C14A—O3A C3A—C4A—C14A—O3A C14A—O3A—C15A—C16A C7A—N2A—C17A—O4A C8A—N2A—C17A—O4A C7A—N2A—C17A—C18A C8A—N2A—C17A—C18A O4A—C17A—C18A—C19A N2A—C17A—C18A—C19A O4A—C17A—C18A—C20A N2A—C17A—C18A—C20A

sup-12

−91.7 (6) 88.9 (5) 30.7 (7) −148.7 (5) 0.9 (7) 179.1 (4) −3.6 (7) 175.8 (5) 178.2 (4) −2.5 (6) −162.7 (4) −15.2 (7) 148.5 (5) 161.3 (4) −35.0 (6) −38.0 (6) 145.5 (4) 83.7 (6) −92.8 (5)

O1B—C10B—C11B—C13B N3B—C10B—C11B—C13B O1B—C10B—C11B—C12B N3B—C10B—C11B—C12B C15B—O3B—C14B—O2B C15B—O3B—C14B—C4B C5B—C4B—C14B—O2B C3B—C4B—C14B—O2B C5B—C4B—C14B—O3B C3B—C4B—C14B—O3B C14B—O3B—C15B—C16B C7B—N2B—C17B—O4B C8B—N2B—C17B—O4B C7B—N2B—C17B—C18B C8B—N2B—C17B—C18B O4B—C17B—C18B—C19B N2B—C17B—C18B—C19B O4B—C17B—C18B—C20B N2B—C17B—C18B—C20B

29.1 (7) −150.5 (5) −93.9 (6) 86.5 (5) −1.3 (7) 176.3 (4) −5.5 (7) 173.9 (5) 176.9 (4) −3.6 (6) −174.2 (4) −16.5 (6) 145.9 (4) 160.0 (4) −37.6 (6) −45.1 (6) 138.5 (4) 77.3 (5) −99.2 (4)