Supplementary Information Genomic insights into members of ... - Nature

0 downloads 0 Views 1MB Size Report
Category: Lipopolysaccharide related (LPS), Cell envelope related (CE). 41. Cell envelope ..... Appl Environ Microbiol 69:2463–2483. 103. Bowman JP, Rea SM ...
Supplementary Information

1 2 4

Genomic insights into members of the Candidate phylum Hyd24-12 common in mesophilic anaerobic digesters

5 6

Authors: Rasmus Hansen Kirkegaard, Morten Simonsen Dueholm, Simon Jon McIlroy, Marta Nierychlo, Søren Michael Karst, Mads Albertsen, and Per Halkjær Nielsen

3

7

Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.

8 9

Content:

10 11

Supplementary Figures

12

Figure S1. Heat map of the ten most abundant bacterial OTUs in reactor 1 from Viborg during the period 2013 to 2015.

13

Figure S2. Cell envelope classification.

14

Figure S3: Geographic locations of the sample sites.

15

Figure S4: Evaluation of the effect of bead beating.

16 17

Supplementary Tables

18

Table S1: Metadata for the anaerobic digester plants sampled in this study. Separate file.

19

Table S2: Titles and pubmed IDs for 16S rRNA gene sequence surveys detecting Hyd24-12 within the SILVA database. Separate file.

1

20 21

Table S3: Abundance estimates based on read mapping of TruSeq DNA PCR free metagenome data to the 16S rRNA genes of the MiDAS database (McIlroy et al., 2015)

22 23

Supplementary Data:

24

Supplementary Data 1: V1-V3 Primer sequences incl. Illumina adaptors and barcodes. Separate file.

25

Supplementary Data 2: Curated annotations for the three Hyd24-12 genomes. Separate file.

26 27 28

Supplementary References

29 30 31

32 33 34

Figure S1. Heat map of the ten most abundant bacterial OTUs in reactor 1 from Viborg during the period 2013 to 2015. Hyd24-12 is stably present in the period and has a read abundance of up to 8.2 %.

2

DL

DL

DL

Aquificae

Hyd24-12

0.92 0.98 0.98 0.98 0.98 0.99 1 0.99 0.99 0.08 0.98 0.23 0.98 0.98 0.98 0.97 0.95 0.8 0.72 0 0 0.01 0.07 0 0 0 0 0.02 0 0

DL

Acidobacteria

0.22 0.16 0.22 0.22 0.22 0.33 1 1 1 0.18 0.87 0.91 0.29 0.24 0.31 0.18 0.38 0.13 0.47 0 0.09 0 0.02 0 0 0 0 0.91 0 1

DL

Proteobacteria

0 0 0.17 0.25 0 0.75 1 1 1 1 0.83 0.92 0 0 0 0 0 0 0.08 0 0 1 0.92 0 0 0 0 1 1 1

DL

Planctomycetes

0 0 0 0 0 0 1 1 0.77 1 0.62 0.62 0 0 0 0.08 0.23 0 0 0 0 1 0.38 1 0.69 0 0 1 1 1

DL

Verrucomicrobia

0.67 0.67 0.67 0.67 0.33 1 0.67 0.67 0.67 1 0.67 1 0.67 0.67 0.67 0.33 0.33 0 0 0 0 0 1 0.67 0 0.33 0 0.67 1 1

DL

Chlamydiae

D(L) DL

Chlorobi

D

Bacteroidetes

DA

Spirochaetes

Fusobacteria

0 0 0.01 0 0.02 1 0 0 0.01 0 0.05 1 0 0 0.02 0 1 0.96 0 0 0.02 0 0.98 1 0 0 0.02 0 1 1 0 0 0.02 0 0.59 1 0 0 0.02 0 1 1 0 0 0.02 0 1 1 0 0 0.02 0 1 1 0 0 0.01 0 0.8 1 0 0 0.13 0 1 1 0 0 0.02 0 0.8 0.88 0.01 0 0.01 0 0.34 0.96 0 0 0.02 0 0.46 0.83 0 0 0.01 0 0.36 0.96 0.14 0 0.16 0 0.98 0.5 0 0 0.01 0 0.97 0.75 0 0 0 0 0.98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.65 1 0.96 1 0 0.96 0.98 0.33 0.91 0.71 0 0 0.98 0 0.98 1 0 1 0.94 0 0.94 0.57 0 0.92 0.99 0 0.97 0.57 0.98 1 0.78 0.6 0.84 0 0 0 0.99 0.6 0.98 0 0.82 0.17 0.98 1 0.98 1 0 1 0.9 1 0.81 0.07 0.61 0.96

DA

Deinococcus-Thermus

DA

Thermotogae

DA

Cyanobacteria

PFAM description Glycos_transf_N - (kdotransferase) LpxK - Tetraacyldisaccharide-1-P 4'-kinase LpxB - Lipid-A-disaccharide synthetase LpxC - UDP-3-O-acyl N-acetylglycosamine deacetylase LpxD - UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase, LpxD ExbD - Biopolymer transport protein ExbD/TolR Surf_Ag_VNR - Surface antigen variable number repeat YjgP_YjgQ - Predicted permease YjgP/YjgQ family Bac_surface_Ag - Surface antigen Secretin - Bacterial type II and III secretion system protein OEP - Outer membrane efflux protein OstA - OstA-like protein TonB_dep_Rec - TonB dependent receptor TonB - Gram-negative bacterial tonB protein Plug - TonB-dependent Receptor Plug Domain PdxA - Pyridoxal phosphate biosynthetic protein PdxA Lipopolysaccharide-assembly, LptC-related PdxJ - Pyridoxal phosphate biosynthesis protein PdxJ LolA - Outer membrane lipoprotein carrier protein LolA TolB_N - TolB amino-terminal domain OstA_C - Organic solvent tolerance protein DegV - Uncharacterised protein, DegV family COG1307 DivIVA - DivIVA protein HTH_WhiA - Sporulation Regulator WhiA C terminal domain WhiA_N - Sporulation Regulator WhiA N terminal DUF552 - Protein of unknown function (DUF552) Sortase - Sortase family LytR_cpsA_psr - Cell envelope-related transcriptional attenuator domain DUF1967 - Domain of unknown function (DUF1967) R3H - R3H domain

M

Tenericutes

PFAM PF04413 PF02614 PF02684 PF03331 PF04613 PF02472 PF07244 PF03739 PF01103 PF00263 PF02321 PF03968 PF00593 PF03544 PF07715 PF04166 PF06835 PF03740 PF03548 PF04052 PF04453 PF02645 PF05103 PF02650 PF10298 PF04472 PF04203 PF03816 PF09269 PF01424

M

Firmicutes

Category LPS LPS LPS LPS LPS CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE Other Other

M

Synergistetes

36 37 38 39 40 41

Enriched in P P P P P P P P P P P P P P P P P P P P P A+F A+F A+F A+F A+F A+F A+F A+F A+F

M

Chloroflexi

Cell envelope characteristics

Actinobacteria

35

1 0.97 0.88 1 0.93 1 1 1 1 1 1 0.94 1 1 1 1 1 1 0.93 1 1 1 1 1 1 0.93 1 0.92 1 1 1 1 0.91 1 0.5 1 1 1 1 0.96 1 1 1 1 1 1 1 1 1 1 1 1 1 0.95 1 1 1 1 1 1 1 1 1 0.42 1 0.88 1 0.85 1 1 1 0 1 1 0.98 1 1 0.25 0 0.75 0.11 0.95 0.6 1 1 0 1 0.33 0.87 1 1 1 0 0.88 0.33 0.89 1 1 1 0 1 0.33 0.88 1 1 1 0 1 1 0.88 0.4 1 1 0 0.38 0.11 0.81 0.4 0.75 1 0 1 1 0.9 0 1 0 0 0.25 0.22 0.97 1 1 0.83 0 0.13 0 0.92 1 0 0 0 0.5 0.33 0.93 1 0.5 0.08 0 0 0 0.06 0 0 0.08 0 0 0 0.05 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.38 0 0.05 0.8 0

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0

Figure S2. Cell envelope classification. Protein families substantially enriched or depleted in archetypal monoderm lineages (Actinobacteria and Firmicutes, A+F) relative to an archetypal diderm lineage (Proteobacteria, P), most of which have known roles in cell envelope biosynthesis. Cell envelope classification: Monoderm (M), Diderm (D), Diderm-LPS (DL), Diderm-Atypical (DA). Category: Lipopolysaccharide related (LPS), Cell envelope related (CE).

3

42 43 44 45 46

Figure S3: Geographic locations of the sample sites for the studies that make up the Hyd24-12 sequences in the SILVA database (v. 121, 1982 sequences from 48 studies in total).

4

47 48 49

50 51 52 53

Figure S4: Evaluation of the effect of bead beating duration on DNA yield and DNA integrity for digester-sludge using the FastDNA Spin kit for soil (MP Biomedicals, Santa Ana, CA, USA).

5

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

Supplementary Tables: Table S1: Metadata for the anaerobic digester plants sampled in this study. See separate file. Table S2: Titles and pubmed IDs for 16S rRNA gene sequence surveys detecting Hyd24-12 within the SILVA database. See separate file.

6

74 75

Table S3: Abundance estimates based on read mapping of TruSeq DNA PCR free metagenome data to the 16S rRNA genes of the MiDAS database (McIlroy et al., 2015). Location

Damhusaaen

Damhusaaen

Viborg

Viborg

Viborg

Viborg

(Foam)

Randers

Randers

(Foam)

(Foam)

Sample date (yyyymmdd)

76 77 78 79 80 81 82 83 84

20110404

20111214

20111005

20111005

20111214

20111214

20111214

20111214

Archaea*

3.95

4.56

7.89

7.00

7.58

11.52

9.35

12.69

Bacteria*

95.8

95.2

91.6

89.2

89.5

86.6

87.6

87.2

Eukaryota*

0.30

0.22

0.56

3.85

2.93

1.84

3.03

0.16

p_Hyd24-12*

1.30

3.46

0.53

0.37

1.82

1.40

1.86

1.18

* % of total mapped reads

Supplementary Data: Supplementary Data 1: V1-V3 Primer sequences incl. Illumina adaptors and barcodes. See separate file. Supplementary Data 2: Curated annotations for the three Hyd24-12 genomes. See separate file.

85 86

7

87 88 89 90 91 92 93

Supplementary references: All 16S rRNA gene sequences within the Hyd24-12 lineage of SILVA from surveys from 48 separate studies, with 10 studies of engineered systems and 38 studies of natural systems such as marine sediments, microbial mats in hydrogen, methane rich waters, and mud volcanoes:

94 95 96

Arnett CM, Rodriguez G, Maloney SW. (2009). Analysis of bacterial community diversity in anaerobic fluidized bed bioreactors treating 2,4-dinitroanisole (DNAN) and n-methyl-4-nitroaniline (MNA) using 16S rRNA gene clone libraries. Microbes Environ 24:72–5.

97

Beal EJ, House CH, Orphan VJ. (2009). Manganese- and iron-dependent marine methane oxidation. Science 325:184–187.

98 99

Bissett A, Bowman J, Burke C. (2006). Bacterial diversity in organically-enriched fish farm sediments. FEMS Microbiol Ecol 55:48– 56.

Aoki M, Ehara M, Saito Y, Yoshioka H, Miyazaki M, Saito Y, et al. (2014). A long-term cultivation of an anaerobic methaneoxidizing microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor. PLoS One 9:e105356.

100 101

Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, et al. (2009). Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci U S A 106:9151–9156.

102 103

Bowman JP, McCuaig RD. (2003). Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483.

104 105 106

Bowman JP, Rea SM, McCammon SA, McMeekin TA. (2000). Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ Microbiol 2:227– 237.

107 108

Callaghan A V., Davidova I a., Savage-Ashlock K, Parisi V a., Gieg LM, Suflita JM, et al. (2010). Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ Sci Technol 44:7287–7294.

109 110

Cheng L, Rui J, Li Q, Zhang H, Lu Y. (2013). Enrichment and dynamics of novel syntrophs in a methanogenic hexadecane-degrading culture from a Chinese oilfield. FEMS Microbiol Ecol 83:757–766.

111 112

Cheng T-W, Chang Y-H, Tang S-L, Tseng C-H, Chiang P-W, Chang K-T, et al. (2012). Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano. ISME J 6:2280–2290.

8

113 114

Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, et al. (2006). Stratified prokaryote network in the oxicanoxic transition of a deep-sea halocline. Nature 440:203–7.

115 116

Elshahed MS, Senko JM, Najar FZ, Kenton SM, Roe B a, Dewers T a, et al. (2003). Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69:5609–21.

117 118

Elshahed MS, Youssef NH, Luo Q, Najar FZ, Roe BA, Sisk TM, et al. (2007). Phylogenetic and metabolic diversity of Planctomycetes from anaerobic, sulfide- and sulfur-rich Zodletone Spring, Oklahoma. Appl Environ Microbiol 73:4707–4716.

119 120

Enright AM, Collins G, O’Flaherty V. (2007). Temporal microbial diversity changes in solvent-degrading anaerobic granular sludge from low-temperature (15 °C) wastewater treatment bioreactors. Syst Appl Microbiol 30:471–482.

121 122

Escudero L V, Casamayor EO, Chong G, Pedrós-Alió C, Demergasso C. (2013). Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations. PLoS One 8:e78890.

123 124

Fagervold SK, Galand PE, Zbinden M, Gaill F, Lebaron P, Palacios C. (2012). Sunken woods on the ocean floor provide diverse specialized habitats for microorganisms. FEMS Microbiol Ecol 82:616–628.

125 126

Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H. (2007). Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl Environ Microbiol 73:4119–27.

127 128

Hirschler-Réa A, Cravo-Laureau C, Casalot L, Matheron R. (2012). Methanogenic octadecene degradation by syntrophic enrichment culture from brackish sediments. Curr Microbiol 65:561–7.

129 130

Hollister EB, Engledow AS, Hammett AJM, Provin TL, Wilkinson HH, Gentry TJ. (2010). Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J 4:829–838.

131 132

Jeong J-Y, Park H-D, Lee K-H, Weon H-Y, Ka J-O. (2011). Microbial community analysis and identification of alternative hostspecific fecal indicators in fecal and river water samples using pyrosequencing. J Microbiol 49:585–94.

133 134

Kirk Harris J, Gregory Caporaso J, Walker JJ, Spear JR, Gold NJ, Robertson CE, et al. (2012). Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 7:50–60.

135 136

Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, et al. (2006). Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695.

137 138

Liu J, Wu W, Chen C, Sun F, Chen Y. (2011). Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems. Appl Microbiol Biotechnol 91:1659–75. 9

139 140

Lloyd KG, Albert DB, Biddle JF, Chanton JP, Pizarro O, Teske A. (2010). Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep. PLoS One 5:e8738.

141 142

Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K, Galdenzi S, et al. (2006). Dominant microbial populations in limestonecorroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72:5596–5609.

143 144

Martinez RJ, Mills HJ, Story S, Sobecky PA. (2006). Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ Microbiol 8:1783–96.

145 146

Mesbah NM, Abou-El-Ela SH, Wiegel J. (2007). Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617.

147 148

Mills HJ, Martinez RJ, Story S, Sobecky PA. (2005). Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol 71:3235–47.

149 150 151

Nelson MC, Morrison M, Schanbacher F, Yu Z. (2012). Shifts in microbial community structure of granular and liquid biomass in response to changes to infeed and digester design in anaerobic digesters receiving food-processing wastes. Bioresour Technol 107:135–143.

152 153 154

Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Røy H, et al. (2008). Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl Environ Microbiol 74:3198–215.

155 156

Oz N a, Ince O, Turker G, Ince BK. (2012). Effect of seed sludge microbial community and activity on the performance of anaerobic reactors during the start-up period. World J Microbiol Biotechnol 28:637–47.

157 158

Pachiadaki MG, Kallionaki A, Dählmann A, De Lange GJ, Kormas KA. (2011). Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano. Microb Ecol 62:655–668.

159 160

Pachiadaki MG, Lykousis V, Stefanou EG, Kormas KA. (2010). Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol Ecol 72:429–444.

161 162

Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ. (2008). Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci U S A 105:7052–7057.

163 164

Pjevac P, Kamyshny A, Dyksma S, Mussmann M. (2014). Microbial consumption of zero-valence sulfur in marine benthic habitats. Environ Microbiol 16:3416–3430.

10

165 166

Ramos-Padrón E, Bordenave S, Lin S, Bhaskar IM, Dong X, Sensen CW, et al. (2011). Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ Sci Technol 45:439–446.

167 168

Reed AJ, Lutz R a., Vetriani C. (2006). Vertical distribution and diversity of bacteria and archaea in sulfide and methane-rich cold seep sediments located at the base of the Florida Escarpment. Extremophiles 10:199–211.

169 170

Satoh H, Miura Y, Tsushima I, Okabe S. (2007). Layered structure of bacterial and archaeal communities and their in situ activities in anaerobic granules. Appl Environ Microbiol 73:7300–7307.

171 172

Schauer R, Røy H, Augustin N, Gennerich H-H, Peters M, Wenzhoefer F, et al. (2011). Bacterial sulfur cycling shapes microbial communities in surface sediments of an ultramafic hydrothermal vent field. Environ Microbiol 13:no–no.

173 174

Schöttner S, Pfitzner B, Grünke S, Rasheed M, Wild C, Ramette A. (2011). Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea. Environ Microbiol 13:1815–1826.

175 176

Sun W, Cupples AM. (2012). Diversity of five anaerobic toluene-degrading microbial communities investigated using stable isotope probing. Appl Environ Microbiol 78:972–80.

177 178

Wang J, Shi M, Lu H, Wu D, Shao MF, Zhang T, et al. (2011). Microbial community of sulfate-reducing up-flow sludge bed in the SANI process for saline sewage treatment. Appl Microbiol Biotechnol 90:2015–2025.

179 180

Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR. (2012). Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environ Microbiol 14:2726–40.

181 182

van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, et al. (2005). The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–3.

183 184

Xing W, Zhao Y, Zuo J-E. (2010). Microbial activity and community structure in a lake sediment used for psychrophilic anaerobic wastewater treatment. J Appl Microbiol 109:1829–1837.

185 186

Yakimov MM, La Cono V, Slepak VZ, La Spada G, Arcadi E, Messina E, et al. (2013). Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Sci Rep 3:3554.

187 188 189

Yanagawa K, Nunoura T, McAllister SM, Hirai M, Breuker A, Brandt L, et al. (2013). The first microbiological contamination assessment by deep-sea drilling and coring by the D/V chikyu at the iheya north hydrothermal field in the mid-okinawa trough (IODP Expedition 331). Front Microbiol 4:1–10.

190 11