Supporting Information - Royal Society of Chemistry

0 downloads 0 Views 2MB Size Report
The observation wavelengths were at 450 nm (black) and 570 nm (red). 1. 300 ... 450. 500. 550. 600. 650. 0.0. 0.2. 0.4. 0.6. 0.8. 1.0. 445 nm. 430 nm. 420 nm.
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information Photophysics of Lumichrome in Anionic and Cationic Micellar Media Banibrata Maity, Aninda Chatterjee and Debabrata Seth* Department of Chemistry, Indian Institute of Technology Patna Patna 800013, Bihar, India E-mail : [email protected]; Fax : 91-612-2277383

1.0 (b)

450 nm 570 nm

Fluorescence intensity (a.u.)

Fluorescence intensity (a.u.)

1.0 (a) 0.8 0.6 0.4 0.2 0.0 300

350

400

Wavelength (nm)

450

0.8 0.6 0.4 0.2 0.0 300

500

450 nm 570 nm

350

400

Wavelength (nm)

Fluorescence intensity (a.u.)

Fluorescence intensity (a.u.)

1.0 (d) 1.0 (c)

450 nm 570 nm

0.8 0.6 0.4 0.2 0.0 300

350

400

Wavelength (nm)

450

500

450

500

450 nm 570 nm

0.8 0.6 0.4 0.2 0.0 300

350

400

Wavelength (nm)

450

500

Fig. S1. The fluorescence excitation spectra of LCM in (a) pure water, (b) SDS, (c) DTAB and (d) MTAB micelles. The observation wavelengths were at 450 nm (black) and 570 nm (red).

1

(a)

23 nm

Normalised fluorescence intensity (a.u.)

Normalised fluorescence intensity (a.u.)

1.0

375 nm 420 nm 445 nm

0.8 0.6 0.4 0.2 0.0 450

500

550

600

650

Normalised fluorescence intensity (a.u.)

Wavelength (nm)

1.0

(c)

1.0

(b)

63nm

375 nm 420 nm 430 nm 445 nm

0.8 0.6 0.4 0.2 0.0 450

500

550

600

650

Wavelength (nm)

52 nm

375 nm 420 nm 430 nm 445 nm

0.8 0.6 0.4 0.2 0.0

450

500

550

600

650

Wavelength (nm)

Fig. S2. The excitation wavelength dependent emission shift of LCM in the presence of (a) SDS, (b) DTAB and (c) MTAB micelles (exi = 375 to 445 nm).

(b)

(a)

150000

140000

130000

Intensity

Intensity

140000

120000

130000

120000

110000 100000

110000

0.000

0.001

0.002

0.003

0.004

[SOS-Micelle]-1 (M-1)

0.005

0.006

0.0000

0.0005

0.0010

0.0015

0.0020

[SDS-Micelle]-1 (M-1)

Fig. S3. The plot of fluorescence intensity against [Micelle] in (a) SOS and (b) SDS micelles.

2

0.0025

5000

(a)

3000 2000 1000

neat water 16 mM DTAB 30 mM DTAB 60 mM DTAB 165 mM DTAB 310 mM DTAB IRF

3000 2000 1000

0

1

2

Time (ns)

5000

3

4

0

5

(c)

0

1

2

Time (ns)

3

4

neat water 5 mM MTAB 10 mM MTAB 25 mM MTAB 45 mM MTAB 90 mM MTAB

4000

Intensity

0

(b)

4000

Intensity

4000

Intensity

5000

neat water 20 mM SDS 160 mM SDS IRF

3000 2000 1000 0

0

1

2

3

Time (ns)

4

5

Fig. S4. The time resolved fluorescence emission decays of LCM with gradual addition of (a) SDS, (b) DTAB and (c) MTAB micelles, beyond their respective CMC values (exi = 375 nm).

3

5

5000

(a)

580 nm 454 nm 425 nm IRF

Intensity

2000 1000 0

580 nm 525 nm 455 nm 425 nm IRF

4000

3000

3000 2000 1000

0

1

2

3

Time (ns)

5000

0

4

0

Intensity

1

2

Time (ns)

(c) 580 nm 525 nm 458 nm 425 nm IRF

4000 3000 2000 1000 0

0

1

Time (ns)

2

3

Fig. S5. The emission wavelength dependent fluorescence emission decays of LCM in (a) SDS, (b) DTAB and (c) MTAB micelles.

1.0

(a)

Normalised Intensity (a.u.)

0.05 0.04

Absorbance

Intensity

4000

(b)

5000

0.03 0.02 0.01 0.00

350

400

450

Wavelength (nm)

500

550

0.8 0.6 0.4 0.2 0.0

400

450

500

Wavelength (nm)

550

600

Fig. S6. (a) The absorption and (b) emission spectra of LCM in isooctane.

4

1.0

pure water 20 cmc BHDC

Fluorescence intensity (a.u.)

Fluorescence intensity (a.u.)

1.0 (a) 0.8 0.6 0.4 0.2 0.0 400

450

500

550

600

(b)

0.8 0.6 0.4 0.2 0.0 400

650

pure water 20 mM KBr 1 M KBr

450

Fluorescence intensity (a.u.)

0.8 0.6 0.4 0.2 0.0 400

450

500

550

1.0 (d)

pure water 20 mM TMAB 1 M TMAB

550

600

600

650

pure water 20 mM KCl 1 M KCl

0.8 0.6 0.4 0.2 0.0 400

650

Wavelength (nm)

1.0 (e)

Fluorescence intensity (a.u.)

Fluorescence intensity (a.u.)

1.0 (c)

500

Wavelength (nm)

Wavelength (nm)

450

500

550

Wavelength (nm)

600

pure water 20 mM TMAC 1 M TMAC

0.8 0.6 0.4 0.2 0.0 400

450

500

550

Wavelength (nm)

600

650

Fig. S7. The emission spectral profile of LCM (exi = 375 nm) in (a) BHDC micelles and in presence of (b) KBr, (c) TMAB, (d) KCl and (e) TMAC salts.

5

650

5000 (a) 4000 3000 2000

0

1

2

3

4

Time (ns)

5000 (c)

2000

0

5

1

2

3

Time (ns)

Counts

2000

4

5

pure water 20 mM KCl 1 M KCl IRF

4000

3000

3000 2000 1000

1000

0

1

2

3

Time (ns)

4

0

5

5000 (e)

0

1

2

3

4

Time (ns)

pure water 20 mM TMAC 1 mM TMAC IRF

4000

Counts

0

0

5000 (d)

pure water 20 mM TMAB 1 M TMAB IRF

4000

Counts

3000

1000

1000 0

pure water 20 mM KBr 1 M KBr IRF

4000

Counts

Counts

5000 (b)

pure water 20 cmc BHDC IRF

3000 2000 1000 0

0

1

2

3

Time (ns)

4

5

Fig. S8. The time resolved fluorescence emission decays of LCM in (a) BHDC micelles and in presence of (b) KBr, (c) TMAB, (d) KCl and (e) TMAC salts.

6

5

Table S1 The fluorescence lifetime components of LCM in presence of BHDC micelles and in different salts (exi = 375 nm, emi = 470 nm).

1 (ns)

Medium

a1

2 (ns)

a2

LCM in pure water LCM in BHDC micellesa,b (20 CMC) LCM in 20 mM KBr

0.200

LCM in 1M KBr

0.090

LCM in 20 mM TMAB LCM in 1M TMAB

0.110

0.340

0.990

0.990

LCM in 20 mM KCl LCM in 1M KCl LCM in 20 mM TMAC LCM in 1M TMAC

aCMC bZ.

0.220

0.260

0.985

0.984

0.670

0.350

3 (ns)

a3 1.000

f> (ns) 

2.700

1.084

2.630

0.310

1.110

1.030

1.900

1.000

1.900

1.050

0.470

0.010

0.090

1.040

2.050

1.000

2.050

1.100

0.710

0.001

0.116

1.286

2.13

1.00

2.130

0.99

1.47

0.015

0.240

1.097

2.06

1.00

2.06

1.00

1.47

0.016

0.280

1.080

of BHDC = 0.49 mMb

Grenoble and S. Baldelli, J. Phys. Chem. B 2013, 117, 259.

7

χ2