Supporting Information

1 downloads 0 Views 8MB Size Report
576. 100 cycles. S12. Cu2MoS4. 0.1 M KPi. ~200. ~350. 60 min. S13 h-NiSx. 1.0 M KPi. -. 210. 6 h. S14. Fe1-xS. 0.1 M KPi. >637. -. 24 h. S15. Co9S8-700.

Supporting Information

Universal Surface Engineering of Transition Metals for Superior Electrocatalytic Hydrogen Evolution in Neutral Water

Bo You,† Xuan Liu,† Guoxiang Hu,‡ Sheraz Gul,§ Junko Yano,§ De-en Jiang*,‡ and Yujie Sun*,†

Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States ‡ Department of Chemistry, University of California, Riverside, California 92521, United States. § Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.



* E-mail: [email protected]; [email protected]

S1

I. Supplementary Results

Figure S1. SEM images of (a, b) pristine nickel foam and (c, d) Ni framework. The insets in (b) and (d) are the corresponding high-magnified SEM images.

S2

Figure S2. Fourier transform κ3-weighted oscillation curves of N-Ni, Ni framework, Ni 3 N and Ni foil.

S3

Figure S3. High-resolution XPS spectra of N-Ni and Ni framework in the Ni 2p regions.

S4

Figure S4. (a) XRD pattern of Ni 3 N/Ni along with the standard pattern of Ni 3 N. (b) LSV curves of N-Ni, and Ni 3 N/Ni in 1.0 M pH= 7 phosphate buffer. The peaks in Figure S4a marked with stars are ascribed to Ni. As shown in Figure S4b, the HER activity of our N-Ni is also much higher than that of nickel nitride supported on Ni foam (Ni 3 N/Ni).

S5

Figure S5. Nyquist plots of Ni framework and N-Ni measured at an overpotential of 60 mV. The inset shows the high-frequency region of the plots.

S6

Figure S6. (a-d) SEM images of N-Fe at different magnifications. (e) High-resolution N 1s spectrum of NFe. (f) XRD patterns of N-Fe and Fe together with the standard XRD pattern of Fe.

S7

Figure S7. (a-c) SEM images of N-Co at different magnifications. (d) High-resolution N 1s spectrum of NCo. (e) XRD patterns of N-Co and Co.

S8

Figure S8. (a-c) SEM images of N-Cu at different magnifications. (d) High-resolution N 1s spectrum of NCu. (e) XRD patterns of N-Cu and Cu.

S9

Figure S9. (a-c) SEM images of N-NiCo at different magnifications. (d) SEM and the corresponding elemental mapping images of N-NiCo. (e) Energy-dispersive X-ray spectra of N-NiCo. (f) XRD patterns of N-NiCo and NiCo together with the standard XRD patterns of Ni and Co.

S10

Figure S10. LSV curves of porous (a) Fe, (b) Co, (b) Cu, and (c) NiCo alloy before (black) and after (red) ammonium carbonate treatment in 1.0 M phosphate buffer of pH 7.

S11

Figure S11. (a) DFT-optimized structure of water adsorption on Ni(111); (b) DFT-optimized structure of water adsorption on N-Ni(111). Color code: blue, Ni; yellow, N; red, O; white, H.

S12

Figure S12. (a) Initial (IS), transition (TS), and final (FS) states of water dissociation on Ni(111); (b) Initial (IS), transition (TS), and final (FS) states of water dissociation on N-Ni(111). Color code: blue, Ni; yellow, N; red, O; white, H.

S13

Figure S13. Comparison of the kinetic energy barrier profiles of water dissociation on Ni(111) and NNi(111). IS: initial state; TS: transition state; FS: final state.

S14

Figure S14. LSV curves of porous (a) Fe, (b) Co, (c) Cu in 1.0 M KOH before (black) and after (red) ammonium carbonate treatment. S15

Figure S15. (a) DFT-optimized structure of hydrogen adsorption on Ni(111); (b) DFT-optimized structure of hydrogen adsorption on N-Ni(111); (c) DFT-derived hydrogen adsorption free energy (ΔG H ) on Ni(111) and N-Ni(111), relative to the computational hydrogen electrode (Nørskov et al., J. Phys. Chem. B, 2004, 108, 17886-17892.). Color code: blue, Ni; yellow, N; white, H.

S16

Table S1. Comparison of HER performance in neutral media for N-Ni with other HER electrocatalysts. Catalysts Electrolyte η 1 a (mV) η 10 a (mV) Durability N-Ni 1.0 M KPi ~10 64 18 h Co-P 0.1 M KPi >137 5h a-MoS x 2.0 M KPi 287 >290 H 2 -CoCat/FTO 0.5 M KPi ~325 40,000 s NiMoZn 0.1 M KPi ~187 NiS 1.0 M KPi 275 ~387 23 h Ni-Mo-S/C 0.5 M KPi ~125 200 30,000 s Ni-C-N NSs 1.0 M KPi 92.1 70 h Ni 3 N NSs 1.0 M KPi ~250 ~400 NiC NSs 1.0 M KPi ~100 ~200 CoP/CC 1.0 M KPi ~60 ~200 1000 cycles Co-S films 1.0 M KPi ~63 ~180 40 h Co-NRCNT 0.1 M KPi 330 540 10 h Mo 2 B 1.0 M KPi 250 45 h Mo 2 C 1.0 M KPi 200 45 h ALD-NiS x 1.0 M KPi 576 100 cycles Cu 2 MoS 4 0.1 M KPi ~200 ~350 60 min h-NiS x 1.0 M KPi 210 6h Fe 1-x S 0.1 M KPi >637 24 h Co 9 S 8 -700 1.0 M KPi ~150 370 10h 2D FeS 2 Discs 0.1 M KPi >100 >100 125h FeP/Ti 1.0 M KPi ~60 102 16h Fe x S y /C 0.1 M KPi ~280 ~557 28h h-Zn 0.3 Co 2.7 S 4 0.1 M KPi 90 60h Mo 2 [email protected] 0.1 M KPi ~80 156 15h 3D ordered 1.0 M KPi >100 204 10h porous Mo 2 C Ni 3 S 2 /NF 1.0 M KPi ~50 170 1000 cycles Co/CoO x /CN 1.0 M KPi 280 NiWS x ~250 ~350 3h 1.0 M PBS NiWS x ~200 ~275 1h Co-HNP/CC 1.0 M KPi 243 20h a -2 Overpotential required to reach current densities of 1 or 10 mA cm .

S17

References This work S1 S2 S3 S4 S5 S6 S7 S7 S7 S8 S9 S10 S11 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26

II. Supplementary References

[S1] Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G. Science 2016, 352, 1210-1213. [S2] Tran, P. D.; Tran, T. V.; Orio, M.; Torelli, S.; Truong, Q. D.; Nayuki, K.; Sasaki, Y.; Chiam, S. Y.; Yi, R.; Honma, I.; Barber, J.; Artero, V. Nat. Mater. 2016, 15, 640-646. [S3] Cobo, S.; Heidkamp, J.; Jacques, P. A.; Fize, J.; Fourmond, V.; Guetaz, L.; Jousselme, B.; Ivanova, V.; Dau, H.; Palacin, S.; Fontecave, M.; Artero, V. Nat. Mater. 2012, 11, 802-807. [S4] Torella, J. P.; Gagliardi, C. J.; Chen, J. S.; Bediako, D. K.; Colón, B.; Way, J. C.; Silver, P. A.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 2337-2342. [S5] Nichols, E. M.; Gallagher, J. J.; Liu, C.; Su, Y.; Resasco, J.; Yu, Y.; Sun, Y.; Yang, P.; Chang, M. C. Y.; Chang, C. J. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 11461-11466. [S6] Miao, J.; Xiao, F. X.; Yang, H. B.; Khoo, S. Y.; Chen, J.; Fan, Z.; Hsu, Y. Y.; Chen, H. M.; Zhang, H.; Liu, B. Sci. Adv. 2015, 1, e1500259. [S7] Yin, J.; Fan, Q.; Li, Y.; Cheng, F.; Zhou, P.; Xi, P.; Sun, S. J. Am. Chem. Soc. 2016, 138, 14546-14549. [S8] Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. J. Am. Chem. Soc. 2014, 136, 7587-7590. [S9] Sun, Y.; Liu, C.; Grauer, D. C.; Yano, J.; Long, J. R.; Yang, P.; Chang, C. J. J. Am. Chem. Soc. 2013, 135, 17699-17702. [S10] Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Angew. Chem. Int. Ed. 2014, 53, 4372-4376. [S11] Vrubel, H.; Hu, X. Angew. Chem. Int. Ed. 2012, 51, 12703-12706. [S12] Cimen, Y.; Peters, A. W.; Avila, J. R.; Hoffeditz, W. L.; Goswami, S.; Farha, O. K.; Hupp, J. T. Langmuir 2016, 32, 12005-12012. [S13] Tran, P. D.; Nguyen, M.; Pramana, S. S.; Bhattacharjee, A.; Chiam, S. Y.; Fize, J.; Field, M. J.; Artero, V.; Wong, L. H.; Loo, J.; Barber, J. Energy Environ. Sci. 2012, 5, 8912-8916. [S14] You, B.; Sun, Y. Adv. Energy Mater. 2016, 6, 1502333. [S15] Giovanni, C. D.; Wang, W. A.; Nowak, S.; Grenèche, J. M.; Lecoq, H.; Mouton, L.; Giraud, M. Tard, C. ACS Catal. 2014, 4, 681-687. [S16] Feng, L. L.; Li, G. D.; Liu, Y.; Wu, Y.; Chen, H. Wang, Y.; Zou, Y. C.; Wang, D.; Zou, X. ACS Appl. Mater. Interfaces 2015, 7, 980-988. [S17] Jasion, D.; Barforoush, J. M.; Qiao, Q.; Zhu, Y.; Ren, S.; Leonard, K. C. ACS Catal. 2015, 5, 66536657. [S18] Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak, R. E. ACS Nano 2015, 8, 11101-11107. [S19] Giovanni, C. D.; Reyes-Carmona, A.; Coursier, A.; Nowak, S.; Grenèche, J. M.; Lecoq, H.; Mouton, L. Rozière, J.; Jones, D.; Peron, J.; Giraud, M.; Tard, C. ACS Catal. 2016, 6, 2626-2631. [S20] Huang, Z. F.; Song, J.; Li, K.; Tahir, M.; Wang, Y. T.; Pan, L.; Wang, L.; Zhang, X. Zou, J. J. J. Am. Chem. Soc. 2016, 138, 1359-1365. [S21] Liu, Y.; Yu, G.; Li, G. D.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X. Angew. Chem. Int. Ed. 2015, 54, 10752-10757. [S22] Yu, H.; Fan, H.; Wang, J.; Zheng, Y.; Dai, Z.; Lu, Y.; Kong, J.; Wang, X.; Kim, Y. J.; Yan, Q.; Lee, J.-M. Nanoscale 2017, 9, 7260-7267. [S23] Feng, L.-L.; Yu, G.; Wu, Y.; Li, G.-D.; Li, H.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X. J. Am. Chem. Soc. 2015, 137, 14023-14026. [S24] Jin, H.; Wang, J.; Su, D.; Wei, Z.; Pang, Z.; Wang, Y. J. Am. Chem. Soc. 2015, 137, 2688-2694. [S25] Tran, P. D.; Chiam, S. Y.; Boix, P. P.; Ren, Y.; Pramana, S. S.; Fize, J.; Artero, V.; Barber, J. Energy Environ. Sci. 2013, 6, 2452-2459. [S26] Liu, B. R.; Zhang, L.; Xiong, W. L.; Ma, M. M. Angew. Chem. Int. Ed. 2016, 55, 6725-6729. S18