Sustainability and Energy?

2 downloads 0 Views 841KB Size Report
Feb 21, 2006 - USGS expert M. King Hubbert showed that oil and gas production from fields exhibit a bell shaped behavior – reaching a maximum production ...
Sustainability and Energy?

MIT Course 17.181-17.182 Lis Drake. February 21, 2006

• • • • •

What is meant by sustainability? How do we use energy today? What are the problems with present energy use?

How can needed change be driven? Consequences of no action

What is Sustainability?

• The ability of humanity to ensure that it meets the needs of the present without compromising the ability of future generations to meet their own needs. [Bruntland, 1987]* • Preservation of productive capacity for the foreseeable future. [Solow, 1992] • Biophysical sustainability means maintaining or improving the integrity of the life support system of earth. [Fuwa, 1995] • A dynamic harmony between the equitable availability of energyintensive goods and services to all people and the preservation of the earth for future generations [Tester, et al. 2005] *Full references are given in: Tester et al., Sustainable Energy: Choosing Among Options, The MIT Press Cambridge MA, 2005

The Three Dimensions of Sustainabilty

Finance/ Economy

Trade-Offs & Equity/ Synergies Ecology/

Social Development

Environment

Derived from World Bank (1996)

Intragenerational Principles

• Reduce gross inequities between the poorest and wealthiest both nationally and globally – Meet the basic needs of the poorest with food, shelter, health care, clean water, access to electricity, education, opportunity for work, etc. – Avoid exploitation of poorer country/region resources and labor to create even greater wealth for the richest

• Provide ways to protect the common good (social, environmental, economic) locally and globally through national and international governance/cooperation – Preserve natural ecosystems against unconstrained development – Avoid interference with natural balances in the atmosphere, the oceans, and the arctic regions – Maintain stable institutions that protect human rights, adjudicate conflicts, and allow responsible trade and market economy activities

Intergenerational Principles

• Trustee: Every generation has an obligation to protect interests of future generations • Chain of obligation: Primary obligation is to provide for the needs of the living and succeeding generations. Near term concrete hazards have priority over long term hypothetical hazards • Precautionary Principle: Do not pursue actions that pose a realistic threat of irreversible harm or catastrophic consequences unless there is some compelling or countervailing need to benefit either current or future generations

Sustainability Issues

• Carrying capacity of earth? • Sustainable economies, societal institutions, and the environment – Ecological footprints* for modest European lifestyle are 2.6 hectares or about 6.5 acres per person • US average = 24 acres per person (8.8 hectares) • UK average = 5.3 hectares per person (13.3 acres) – Above modest European lifestyle applied to China suggests it could support a sustainable population of 333 million! [Optimum Population Trust, UK, 1993] – Area of US is similar to China – so US can support a sustainable population at a modest European lifestyle – but we are ~3x above that level in consumption http://www.earthday.net/footprint/info.asp

Are There Limits to Growth?

• Malthus – 1798* – Population grows exponentially; food production grows linearly. Population growth ceases when incremental person doesn’t have resources to survive • Hardin – 1968 – Tragedy of the Commons • Ehrlichs – 1968 – Overpopulation is the problem, depleting soils and disrupting natural life support ecosystems • Forrester – 1972 – Limits to Growth – potential for disaster within 100 years • Meadows – 1992 – Beyond the Limits – overshoot but human ingenuity could prevent collapse • Cohen – 1995 – How many people can Earth support? (maybe a trillion, more likely around 16 billion) *Full references are given in:

Tester et al., Sustainable Energy: Choosing Among Options, The MIT Press Cambridge MA, 2005

What are the major concerns?

• Global Energy consumption is growing because:

– Population is growing – Energy use per capita is growing – especially in developing countries

• Major fossil energy sources have problems

– Security of supply/price stability (esp. petroleum) – Depletion concerns – Climate impacts

• Energy access is unequally distributed

• Global economy is significantly dependent on present levels of fossil energy prices and availability – change will slow economic growth

Energy Sources

Energy Sources, Conversions and Use

Biomass Fuels

Photovoltaics

Energy Forms

Solar Thermal

Wind, Hydro, Waves, Tidal

Electrochemical Chemical Heat

Mechanical Work

Electricity

Energy Sources

Nuclear

Fossil Fuels

Nuclear Fuels

Geothermal

To End Uses: Residential Industrial Transportation

Energy Use by Sector

• Typical Wealthy Country – – – –

25% primary energy to electricity 1/3 to transportation 1/3 to industry 1/3 to buildings (use half the electricity)

• Poorer Countries – Buildings and industries (rural) predominate, but industry and transportation grow with development

• Worldwide – 18% primary energy to electricity

Global Population Density Distribution

World Population 1650 550 million 1750 725 million 1850 1.2 billion 1900 1.6 billion 1950 2.6 billion 1980 4.5 billion 2000 6.1 billion ------------------------

Courtesy of NASA Visible Earth. http://visibleearth.nasa.gov/view_detail.php?id=116 ______________________________________________

2001 Per Capita Average Energy Use

for Selected Countries

TOE/person-year

Tonnes of Oil Equivalent per person per year 9

8

7

6

5

4

8

8

World Average = 1.6 TOE/person-year [1998 World Average = 1.4 TOE/per-yr]

5.9 4.8 4.8

4.3 4.1 4.3 4 3.9 2.6

3

2

1.5

1

0

USA Japan Brazil

Canada Germany China

Norway U.K. Egypt

From: BP Statistical Review of World Energy, 2002

Netherlands Switzerland India

1.1 0.9 0.7 0.5

Saudi Arabia Kazakhstan Africa

0.140.14 Russia Mexico Bangladesh

World Commercial Primary Energy Use –

Now and Projected (Edmonds, BAU)

Edmonds, 2095, 30+ bTOE?

BP data, 1999, 8.5 bTOE

USA

W. Eur.

M.E.+Afr.

USA

W. Eur.

M.E.+Afr.

Japan

Other Amer.

E. Eur + FSU

Austral + Asia

Other Amer. Austral + Asia

E. Eur + FSU

China

Japan China

From: BP Statistical Review of World Energy, 2000 and Edmonds, J., Energy Policy, 23:4-5, 1995

World Income Distribution in 1988 and 1993

(in millions of persons, bandwidth = 0.005) – Milanovic, World Bank 2000*

and Concerns at Different Income Levels

Figure by MIT OCW.

Percentage shares of world population, world

GDP, and world commercial energy consumption

for selected countries.

Country

% of World Population 2001

% of World GDP 2002

% of World Energy Consumption 2002

United States

4.6%

32%

24%

Japan

2.0%

12%

5%

France

0.9%

4%

3%

Germany

1.4%

6%

4%

United Kingdom

1.0%

5%

2%

China

20%

4%

11%

India

17%

2%

4%

10oF

[sample forecasts of future temperature change]

5oF

Adapted from MIT Joint Program on the Science and Policy of Global Change estimates of range of credible scenarios

0oF

Average Global Temp. change from 1990

The Greenhouse Gamble

Noise band 2000

2020

2040 Year

2060

2080

.

Courtesy of MIT Joint Program on the Science and Policy of Global Change

2100

Carbon emission factors from energy use

• CO2 = Pop x (GDP/pop) x (Btu/GDP) x

(CO2/Btu) – Seq [“Kaya equation”]

– – – – –

Pop represents global population

GDP/pop represents standard of living Btu/GDP represents energy intensity CO2/Btu represents carbon intensity Seq accounts for sequestered CO2

For additional information see: http://sequestration.mit.edu/CSI/

Average Annual Percent Change 1980-1999 Population

Standard of Living

Energy Intensity

Carbon Intensity

Carbon Emissions

Africa

2.54%

- 0.58%

0.82%

- 0.01%

2.77%

Australia

1.36%

1.98%

- 0.37%

0.00%

2.98%

Brazil

1.61%

0.76%

1.83%

- 0.80%

3.43%

China

1.37%

8.54%

- 5.22%

- 0.26%

4.00%

East Asia

1.78%

5.00%

0.92%

- 0.70%

7.10%

E. Europe

0.44%

- 1.91%

- 0.14%

- 0.61%

- 2.21%

India

2.04%

3.54%

0.27%

0.03%

5.97%

Japan

0.41%

2.62%

- 0.57%

- 0.96%

1.47%

Middle East

2.98%

0.04%

2.45%

- 1.14%

4.34%

OECD

0.68%

1.73%

- 0.88%

- 0.58%

0.94%

OECD-Eur.

0.53%

1.74%

- 1.00%

- 1.06%

0.18%

United States

0.96%

2.15%

- 1.64%

- 0.21%

1.23%

World

1.60%

1.28%

- 1.12%

- 0.45%

1.30%

Region

Energy Supply – what is available?

• Depletable Minerals (coal, oil, gas, nuclear fuels – also ores, etc.) – Resources – the amount of fuel estimated to be potentially recoverable in a particular region under present technological and economic conditions – Reserves – the amount of fuel identified at a high confidence level in a region by organizations prepared to produce it for the market under present technological and economic conditions Reserves Total existing



Resources

Geothermal energy – heat mining (gradually restored from heat transfer from earth’s core and radioactive species in subsurface)

Energy Supply – what is available?

• Renewable energy

– Solar energy is diffuse (land area) and variable (need storage or backup supply for most consumption uses) Total insolation on horizontal surface (W/m2) Location

Latitude

December

July

Boston

42o

58

246

LA

25o

108

298

Albuquerque

35o

139

338

– Thermal solar conversion at ~80% efficiency; PV at ~ 12%

– Wind and hydro are locally concentrated solar

– Biomass is solar energy converted at ~ 1% efficiency or less

World primary energy consumption

Courtesy of BP Statistical Review of World Energy 2006 and http://www.bp.com/statisticalreview/ _____________________________

Regional primary energy consumption pattern

2005

Courtesy of BP Statistical Review of World Energy 2006 and http://www.bp.com/statisticalreview/ ______________________________

Distribution of proved (oil) reserves 1985,

1995, 2005

Courtesy of BP Statistical Review of World Energy 2006 and ______________________________ http://www.bp.com/statisticalreview/

Oil production by area

Courtesy of BP Statistical Review of World Energy 2006 and ______________________________ http://www.bp.com/statisticalreview/

Oil reserves-to-production (R/P) ratios

Courtesy of BP Statistical Review of World Energy 2006 and ______________________________ http://www.bp.com/statisticalreview/

Crude oil prices since 1861

Courtesy of BP Statistical Review of World Energy 2006 and http://www.bp.com/statisticalreview/ _____________________________

Will there be an end to Cheap Oil??

• Pessimists have historically been wrong* – 1919 “The peak of US production will soon be past – possibly within 3 years.” – 1936 “It is unsafe to rest in the assurance that plenty of petroleum will be found in the future merely because it has been in the past.” – 1981 “If petroleum is not there to begin with, all of the human ingenuity that can be mustered into the service of exploration cannot put it there.” – 1998 “Global production of conventional oil will begin to decline sooner than most people think – probably within 10 years. *Daniel Butler USEIA/DOE AEO2001 conference

Pro and Con Arguments

• USGS expert M. King Hubbert showed that oil and gas production from fields exhibit a bell shaped behavior – reaching a maximum production rate and then declining. For a fixed reserve, this would seem likely. US production has declined in this way. Colin Campbell et al. see an end! • BUT, improvements in exploration, drilling technology, and the better extraction of minerals (less than half the oil is produced) have proven that economic oil production can be maintained or even grow. Adelman, Bauquis et. al. disagree. Is this like Malthus and agriculture? Or the Tragedy of the Commons?

Trends and Issues

• Population growth still increasing though slowing. Some OECD countries may actually see a populations decline without immigration • Increasing electrification in all sectors except transportation – which remains oil dependent • Existing energy technology infrastructure is in place; this is a barrier to competition from new sources • Growing concerns about “externalities:” – Global climate change – Economic and societal instabilities – Resource depletion – Land impacts • Worldwide dependence on low cost fossil fuels makes it difficult to raise prices over a short time span – could change trade patterns significantly • China’s rapid growth and motorization are creating growing demands for new petroleum production and refining

The Energy Challenge

• If we have to change our energy technologies over a relatively short period of time, where are the best alternatives? • How should we invest in developing better alternatives?

• What are the drivers that will encourage timely development and market penetration of these technologies? • Do we also have to change behaviors?

Some Barriers

• Most people don’t like change unless it will improve their life now • Changing energy sources will entail additional costs, will upset present economic balances, will create winners and losers, and may slow economic growth • Most people have a preference for short over long term gain, especially if the long term gain is intangible • We have trouble assessing the value of “externalities” – and the value may not be uniform among nations or regions • Moving to more expensive energy sources will force us to use less energy and perhaps to forgo some habits we have come to like (e.g., SUVs in the US) – and will differentially impact the poor • Our leaders are reluctant to do anything that may hurt major industries or the economy – unless there is a compelling reason to do so • Most Americans are unaware of the rapid growth of China and its competition in global markets for petroleum and other resources

Mitigating Climate Change:

Progress - How Far and How Fast?

• Gaming – Wait for the “other guy:” – Developed countries go first; Kyoto modest start – Each country wishes to preserve or improve economic status – US administration backed away from the Kyoto Protocol and looks to a variety of voluntary initiatives • Result – INACTION!

• BUT: Evidence of climate change is increasing and public awareness is rising, even in the US

Long-term World Energy Balance

[P-R. Bauquis, Oil and Gas Journal, 17/2/03] Energy Source

2000 BTOE

2020 %

BTOE

2050 %

BTOE

%

Oil

3.7

40

5.0

40

3.5

20

Gas

2.1

22

4.0

27

4.5

25

Coal+lignite

2.2

24

3.0

20

4.5

25

Total fossil

8.0

86

12.0

87

12.5

70

Renewables

0.7

7.5

1.0

6.5

1.5

8

Nuclear

0.6

6.5

1.0

6.5

4.0

22

Total commercial energy

9.3

100.0

14.0

100.0

18.0

100

Source: Revue de l”Energie, No. 509. Sept. 1999.

Addressing Poverty:

How Far and How Fast?

• • • •

Gaps between rich and poor still widening Cultural and religious values influence attitudes Energy/electricity access help improve life of the poorest Selfishness and denial – Developed world (especially the U.S.) – view that poverty is self-inflicted, limited social services aimed at reacting to problems rather than to correcting them, unwillingness to share enough domestically, much less internationally – Developing countries – desire for better quality of life among both the richer and the poorer, graft and corruption, acceptance of large inequities, inadequate resources (human and financial) for much change, anger at the “haves” – who are even more visible thanks to modern communications

Consequences of Inaction

• Climate change – Shifting regional weather patterns impacting ecosystems, agriculture, water, storms, floods, etc. – Most impact on the poor – wealthy countries can better afford mitigation • Poverty – Subhuman living conditions for many; ill-health, addiction, crime, mass migration, etc. – Loss of human capital and environmental degradation • Major societal inequities – Economic conflicts and disruptions – Institutional instabilities – “Fortress World” for the rich? Terrorism? Wars?

Some considerations…

• There is no right or wrong – it is a matter of balance

• Each one may contribute in a different way • Selfishness and materialism are OK in moderation, but may block other rewarding human values like being of service to others, feeling part of a community, self respect, love, and compassion • We can only control our behavior – not other people’s (though it is possible to be an example)

Thring's Sufficiency Concept (slightly modified) Too little (survival?) Lower limit

Quality of life

Upper limit

Sufficient (balance) Excess (obsession?) Consumption or Level of Activity

Applies to: food? money? cars? TVs? etc.? work? sleep? friends? and more!

Rewards of Action

• Perhaps a better quality of life with enough to meet our needs – not our wants! • A different business paradigm – not mass production, but life cycle service production with careful regard for externalities • Greatly reduced social inequity and improved societal stability • Appreciation and care for nature and diversity, both human and environmental • A balance between self-care and the good feeling from giving our share as part of a healthy community and world

Solving and Learning Modes



Solving – Mechanistic, rule-based – Specialist, self- focus – Deterministic, Linear – Cause-Effect, root cause – Error avoiding – Decompositional – Technological – Right-wrong, win/lose Examples: Litigation, wars

TREE =



Learning – Knowledge-based – Generalist, goal focus – Divergent, Intuitive – Non-linear, dynamic – Error expected – Integrative – Collaborative – Consensus Examples: Treaties, town meetings

TREE =

Figure by MIT OCW.

What can we do?

• In our daily living? • In choosing careers? • In our professional lives? • As private citizens? • As national citizens? • As global citizens? How much are we willing to do?