Technical Memorandum 79553 Gravity Anomalies

0 downloads 0 Views 11MB Size Report
WITH WAVELENGTHS SHORTER THAN 3300 KM ..... uncefrtaiities in the low degree and order (n, m< f2) gravity field model used to reduce the orbits. ...... 445. 15. Zs. Z6. 45. a3.(t. 23.;J7. 22.L5. 2,QK-. 247.42. 47.,e. P46.75. E46,4 2. 1.18e 0 ..... -(.523S7. -0.412P7. 759529. 5 0. 28. -24.;5. 219.52. G. CC77. -C.-3645. --.
NASA Technical Memorandum 79553 r(NAS A

THEN78Z26679 fAt -.7s553})'- GRILxES A' EAST PACIFIC RISE iITH WAVELENGTHS SHORTER,

:

THAN 3300 KN RERCOVERED FRON GEOS-3/ATS-6 ... unclas

,DATA TRACKING DOPPMER SAWELLITE-TO-SATELLIT-E COSC1 -08N" G3/46 24368.

(NASA) -,275, p HC ,A12/KF-A01 ..

Gravity Anomalies Near the East Pacific Rise with Wavelengths Shorter than 3300 KM Recovered from GEOS-3/ATS-6 Satellite-To-Satellite Doppler Tracking Data James G. Marsh, Bruce D. Marsh,

Timothy D.Conrad, William T. Wells,

and Ronald G. Williamson

DECEMBER 1977 National Aeronautics and Space Administration

"AS'FVL~

Goddard Space Flight Center Greenbelt. Maryland 20771

Satellites for Presented at the Second Internationa! Symposium on the Use of Artificial Geodesy and Geodynamics at Lagonissi, Greece, May 1978.

TM 79553

GRAVITY ANOMALIES NEAR THE EAST PACIFIC RISE

WITH WAVELfENGTHS SHORTER THAN 3300KM

RECOVERED FROM GEOS-3/ATS-6 SATELLITE-TO-SATELLITE

DOPPLER TRACKING DATA

James G. Marsh

Geodynamics Branch

Earth Survey Applications Division

Goddard Space Flight Center

Greenbelt, Maryland 20771

Bruce D. Marsh

Earth and Planetary Sciences Department

The Johns Hopkins University.

Baltimore, Maryland 21218

Timothy D. Conrad

William T. Wells

Ronald G. Williamson

EG&G/Washington Analytical Services Center, Inc.

Wolf Research and Development Group

Riverdale, Maryland 20840

December 1977

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

GRAVITY ANOMALIES NEAR THE EAST PACIFIC RISE

WITH WAVELENGTHS SHORTER THAN 3300KM

RECOVERED FROM GEOS-3/ATS-6 SATELLITE-TO-SATELLITE

DOPPLER TRACKING DATA

ABSTRACT

The velocity of the GEOS-3 satellite measured by Doppler as a function of time from the ATS-6 satellite has been used to recover gravity anomalies in the region of the East Pacific.

The orbit of GEOS-3 at an altitude of 840 km is per­

turbed by spatial changes in Earth's gravitational field.

These perturbations

are measured via ATS-6 which is in a synchronous orbit at an altitude of about 40, 000 km. The range-rate data were reduced using a gravitational field model complete to the 12 degree and order, since these low degree and order coef­ ficients are well known. A simulation of the possible effects causing the remain­ ing range-rate residuals relative to the 12, 12 field shows that in general the dominant effect is the neglect of the higher degree and order coefficients of the gravitational field model. The reduced range-rate data were smoothed using a filter correlation length of 1500 km and the resulting curv6 differen­ tiated to give accelerations (regals) as a function of space.

Point values taken

at equally spaced points along each profile were contoured to produce a map of the earth's high degree and order gravity field; two independent sets of GEOS-3 tracks were used to produce two independent maps.

These maps match satisfac­

torily, and they are broadly similar to existing maps.

In areal extent the closest

match'is with Rapp's newest compilation of surface data, although his map shows generally smaller amplitudes and much less detail. This is a promising new method by which to study Earth's high degree and order gravitational field.

iii

CONTENTS

Page ABSTRACT ....................

........

INTRODUCTION .........

..........

. ....

..

iii

. . . . ..

1

GEOS-3/ATS-6 SATELLITE-TO-SATELLITE TRACKING SYSTEM

5

DATA ANALYSIS TECHNIQUES .............

........

8

DISCUSSION OF RESULTS ...............

.........

13

.....

22

ACKNOWLEDGEMENTS REFERENCES ..........

...........

.......... ................

APPENDIX ...............

.... ..................

23

.A-1

TABLES

Table

Page

1

Description of SST Passes .......

2

Errors Considered in Error Analysis

3

Correlation Between Actual SST Data and Synthetic Data

Due to Gravity Model Effects Above (12,12) .. .... ....

.......... ........

..... . .

26

...

27

28

ILLUSTRATIONS

Figure 1 2-A

2-B

Page

ATS-6/GEOS-3 SST Geometry .....

..............

....

29

Ground Tracks of, GEOS-3/ATS-6 Passes from April 26

to May 12, 1975 ............... .............

30

Ground Tracks of GEOS-3/ATS-6 Passes from May 29

to June 4, 1975 ............... ..............

31

v

ILLUSTRATIONS (Continued) Figure -3

4

Page GEOS-3/ATS-6 SST Residuals Computed Using PGS-110 Gravity Model Coefficients to (4,4) ...... ..........

..

Synthetic SST Range Rate Residuals Due to Unmodeled Error Sources for Revolution 254 .... ...... .......

32

33

5

Flow Diagram of Data Reduction and Analysis ..

6.

ATS-6/GEOS-3 Satellite to Satellite Range Rate Residuals for Revolution 221 Smoothed Using Correlation Distances of 1500km, 1000km and 500km ....... ........... ....

35

Comparison of Observed and Synthetic Accelerations for Revolution 758 - Ascending Pass Across North America. Accelerations are Relative to the PGS-110 (12,12) Gravity Model........ .................... ....

36

Comparison of Observed and Synthetic Accelerations for Revolution 233 - Ascending Pass Across North America. Accelerations are Relative to the PGS-110 (12,12) Gravity Model............... .............

37

7

8

9

10

11

12

13

....

...

34

Comparison of Observed and Synthetic Accelerations for Revolution 231 - Ascending Pass Across North America. Accelerations are Relative to the PGS-110 (12,12) Gravity Model .......... ........... . . . . . .38 GEOS-3/ATS-6 SST - Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12,12) Along Overlapping Ground Tracks ........ . . ...... ...

39

GEOS-3/ATS-6 SST - Range Rate Residuals Computed Using the PGS-110 Gravity Model Coeffi6ients to (12,12) Along Overlapping Ground Tracks ...... ........... .......

40

Histogram of Differences Between Synthetic Accelerations and Accelerations Derived from Range Rate Residuals . .

41

....

GEOS-3/ATS-6 Satellite to Satellite Accelerations Relative to PGS-110 -(12,12) Gravity Model Units - mgal x 10 ... ...... vi

42

ILLUSTRATIONS (Continued) Figure 14-A

Page GEOS-3/ATS-6 Satellite to Satellite Accelerations Relative to the PGS-110 "(12,12) Gravity Model. ATS-6 Subsatellite Longitude is 2660 East .

14-13

14-C

15

16

17

.................

.

43

GEOS-3/ATS-6 Satellite to Satellite Accelerations Relative to the PGS-110 (12,12) Gravity Model. The ATS-6 Subsatellite Longitude Varied from 2960 to 3190 East. ..

44

GEOS-3/ATS-6 Satellite to Satellite Accelerations Relative to the PGS-110 (12,12) Gravity Model. This map is based upon a 'combination of the data displayed in Figures 14-A and 14-B...... . ........ .................. ...

45

Gravity Anomalies Evaluated at the GEOS-3 Altitude of 840 km Corresponding to the Coefficients Above (12,12) in the PGS-110 Model ...... ..................

..

46

Gravity Anomalies Evaluated at th&°GEOS-3 Altitude of 840 km Corresponding to the Coefficients Above (12,12) in the Rapp 1977 Model ...... ...............

....

47

Gravity Anomalies Evaluated at the GEOS-3 Altitude of 840 km Corresponding to the Coefficients Above (12,12) in the GEM-10 Model

.............

vii

. ....

48

GRAVITY ANOMALIES NEAR THE EAST PACIFIC RISE

WITH WAVELENGTHS SHORTER THAN 3300 KM

RECOVERED FROM GEOS-3/ATS-6 SATELLITE-TO-SATELLITE

DOPPLER TRACKING DATA

INTRODUCTION

Density variations within the earth give rise to convection and also produce gravity anomalies.

The connection between gravity anomalies and thermal con­

vection in the earth was clearly shown in a theoretical study by Pekeris (1935). Later, in drawing attention to the theorem by Von Zeipel which gives the condi­ tions necessary for hydrostatic equilibrium withih a rotating, radioactive planet, Verhoogen (1949) used Pekeris's results and the earth's gravitational field to estimate a convective velocity in the mantle of a few centimeters per year. With the establishment of the kinematics of plate tectonics it has become increasingly clear that this model furnishes explanations for most of the mag­ netic, bathymetric, and heat flow anomalies observed in the ocean basins.

It is

now known that only second order variations in heat flow and bathymetry can be used to identify the style of convection within the mantle. Theoretical and nu­ merical studies (e.g. McKenzie, 1977), however, suggest a more direct, first order connection between thermal convection and gravity anomalies.

In short,

if the convection is strong enough to deflect the lithosphere then an upwelling current will cause a positive gravity anomaly; the'hot upwelling material alone, were it not able to deflect upward the surface, would of course cause a negative gravity anomaly. 1

Theoretical and numerical studies, many carried out under unusual assump­ tions; suggest a variation of gravity with surface deflection (bathymetric anomaly) of a few tens of mgals pertkilometer.

Surp iingly enough, a study of the corre­

lation between fre6-air gravity and bathymetry along the oceanic rises by Ander­ son et al. (1973) showed a gravity increase of about 30 nagals per km of elevation, even using a rather inaccurate gravity model. The use of a more modern grav­ itational field model shows a poorer correlation than found by these authors. Other studies in the North Atlantic (Sclater et al., 1975), and in'the Hawaiian area (Watts, 1976) have shown similar correlations between free air gravity and sea floor elevation.

In each of these three studies, however, -the authors have used

averaged surface data instead of removing a low degree and order field model to expose long wavelength gravity anomalies; In a world-wide study, Marsh and Marsh (1976) used a gravitational field model complete to the 30th degree and order (PGS11O, Lerch 1976) to lookfor short wavelength gravity anomalies which might iidicate a pattern of convection as suggestdt'by theoretical studies (Richter and Parsois, 1975).

They removed

a field model complete to the 12th degree and order and the highest order har­ monics, beyond n, m-23, and found that this field consists almost wholly of. anomalies possessing a wavelength of about 2000 km.

Where correlations were

possible they found a close correlation between bathymetry and gravity and a close correspondence to surface gravity maps, although this latter correlation is not surprising since the field model contained a great amount of this same

2

data in addition to satellite data. A peculiar-pattern of anomalies of alternating sign was also found spanning the Pacific basin, striking approximately NW. Along the east Pacific rise a hint of a correspondence between gravity and ba­ thymetry was also noted.

Yet many of the anomalies within the Pacific are of a

small amplitude - d±10 mgal while the uncertainties are often as large as :8 ngal. Although the pattern of anomaly uncertainties does not resemble the anomaly pattern, the map must be viewed with caution. Marsh and Marsh were also con­ cerned with the possibility of introducing purely numerical perturbations into the resulting map through the procedure of truncation of the spherical harmonic field model. The present study was undertaken to obtain accurate gravity anomalies in the region of the east Pacific rise that would be independent of any particular gravi­ tational field model, that could be used to check the higher degree and order part of existing field models, that would not use a huge collection of spherical harmonic coefficients, and that would supply much needed gravity data in this region. Since there is little hope of obtaining extensive sea surface gravity measurements in this area, the new method of satellite-to-satellite tracking (SST) was used. Satellite-to-satellite doppler tracking basically involves the use of a station­ ary (relative to Earth) satellite (ATS-6) at an altitude of 40; 000ikm to track a lower satellite which in this case was GEOS-3 at an altitude of about 840 km whose orbit is nearly circular.

Doppler tracking furnishes range rates as a

function of time which, once corrected for long wavelength orbital perturbations,

3

can be easily converted to line-of-sight (between ATS-6 and GEOS-3) accelera­ tions or gravity anomalies.

By reducing the orbits using a gravitational field

model complete -to only the 12th degree and order, gravity anomalies with wave­ lengths smaller than about 3,300km could be revealed. .The profiles of anom­ alies can then be used to construct a gravity map. This method, which was used by Muller and Sjogren (1968), and Sjogren etal. (1974), for the detection of limur mascons, has the great advantage of being simple; the data have little opportunity to become adulterated during processing. More recently Sjogren etal. (1976) have analyzed ATS-6/GEOS-3 SST data by re­ ducing the orbits with only a J 2 gravitational field and have observed the effects of gravitational perturbations on the GEOS-3 orbit.

Vonbun et al. (1976) have

also recently conducted an experiment involving SST tracking between ATS-6 and Apollo at an altitude of 230km.

These data have been analyzed for the recovery

of gravity anomalies in the Indian Oceanarea. To compare our SST derived gravity anomalies with those of the high degree and order part of the field model used by Marsh and Marsh, synthetic line-of­ sight range-rates were computed using the coefficients of the PGS-110 field model above the 12th degree and order.

This has provided a very useful inde­

pendent check on the high degree and order portion of the PGS-1lO field model. A total of 28 passes of satellite-to-satellite tracking data have been ana­ lyzed.

The consistency. of the data has been measured by comparison of signa­

tures of passes having a similar ground track but separated, by several weeks in time.

These comparisons revealed a high level of repeatability. 4

A test of the

accuracy of the residuals is possible from passes which traverse the U.S. where the PGS-i0 field and surface gravity data closely agree. Three such passes of SST residuals over the U.S. show excellent agreement with the residuals pre­ dicted by the PGS-110 model, thus confirming that the observed residuals can be attributed to high-degree perturbations in the gravitational field of the earth. Error analyses indicate that if orbital arc lengths of one revolution or less are used, the effects of high-order geopotential coefficients will indeed produce the dominant signature in the SST residuals. In the remainder of this report the procedures leading to the production of the gravity map over the east Pacific rise are discussed in detail. GEOS-3/ATS-6 SATELLITE-TO-SATELLITE TRACKING SYSTEM The ATS-6/GEOS-3 Satellite-to-Satellite Tracking Experiment was conducted to determine the tracking and orbit accuracies attainable with this type of system and also to determine the geophysical importance of the SST data type.

Basic­

ally, the inter-satellite range rate measurement is made in the following man­ ner: the initial signal is transmitted from an ATS-6 ground station to the ATS-6 spacecraft, where it is converted to the proper frequency for reception by GEOS-3. The converted signal is then transmitted to GEOS-3, where it is processed for transmission back to ATS-6 .and thence to the ATS-6 ground station via the same instrumentation.

The final observation, in this experiment, takes the form of

an average range rate sum: R = '1 +i 2 +'

5

3

+ i4

Figure 1 shows the geometry of this measurement. This doppler observation involves the counting of cycles of a signal returned from the satellites to deter­ -mine its Doppler shift due to the motion ofte satellites and-the ground station. In this experiment, the type of observation generated is called "destruct Doppler." To generate destruct data, the time required to collect N cycles of the signal is measured by counting cycles of a 100 MHz clock. The counter is th6n reset to zero, hence the name "destruct Doppler."

For orbit determination with

this type of observation, the data were converted from range rate time into an average range rate in meters/second.

An average range rate measurement is

'obtained from range rate time by the following:

where fx = constant determined by particular tracking configuration fB = ground generated bias frequency

N = integrated doppler signal plus bias cycles accumulated T = integration time interval required to accumulate N cycles c = speed of light

The quantity fx is computed as follows: fx

a (fRRfB)

6

where m

= GEOS-3 transponder ratio

=

221

fRR = Ground generated ranging carrier frequency

K = ATS-6 transponder frequency multipliers Further details on the system operation are provided by Teles et al., (1975) and detailed preprocessing information is,given by Eddy, et al., (1975).

The

expected data quality for the SST measurement was approximately 0.07 cm/sec for a 10 second integration period. The actual noise level of the data used in this experiment was found to be close to this expected data quality. A data rate of six measurements per minute was used throughout this experiment. The basis for selecting data for this experiment was two-fold: 1. Passes where GEOS-3 crossed the equator (either ascending or descend­ ing) somewhere between 2200 east longitude and 8000 east longitude ­

since the main area of interest was the Pacific Ocean, and 2. Sufficient ground tracking data of GEOS-3 were available within one revolution of the SST pass of interest so that short arc orbit determi­ nation for GEOS-3 was possible. The ground tracking data of GEOS-3 was obtained from the GSFC lasers, C-Band radars, and U.S. Navy geoceiver tracking systems. Using the above criteria, a data set of 28 SST passes was chosen. A summary of the ground tracks of these passes is shown in Figures 2A and 2B. A descrip­ tion of the orbital arcs is presented in Table 1. 7

DATA ANALYSIS TECHNIQUES. Orbital solutions were computed for each pass of SST data using a combi­ nation of-the SST data, direct rada trackihg oftATS-6 and laser, C-Band and Navy geoceiver tracking of GEOS-3.

The GEODYN orbit computation computer

program (Martin, et al., 1976) was used for these analyses.

The following

forces were modeled: luni-solar gravity, solar radiation pressure, atmospheric drag and the gravity field of the earth using the PGS-110 coefficients through the 12th degree and order.

The gravity field below (12,12) is well-known and fur­

thermore any errors in the lower degree coefficients appear as long wavelength features distinct from the wavelengths of interest. The result of the orbit com­ putation process was a set of range-rate residuals (observed minus computed range rate) for each pass of data.

These residuals are "line-of-sight": between

GEOS-3 and ATS-6 however, near the sub-satellite point of ATS-6 (-300 - 400

Sjogren, 1976) they can be considered to be radial accelerations. To analyze the relationship of the SST residuals to the neglected higher order coefficients of the gravitational field model and to assess the magnitude of other unmodeled errors, an orbital error analysis program called ORAN (Martin, 1973) was used.

This error analysis routine simulates the least

squares orbital adjustment process and accounts for the effects of spacecraft geometry on the residuals and thus provides line of sight synthetic residuals which can be directly compared with the observed residuals.

8

At the outset of this investigation, orbit computations were performed for several revolutions using the PGS-110 coefficients through (4,4) in order to test the sensitivity of the data to the gravity field of the earth.

The residuals due to

the unmodeled gravitational effects above (4,4) were quite large, amounting to about one cm/sec.

Such residuals for revolution 240 are presented in Figure 3.

Synthetic residuals computed using the PGS-110 coefficients above (4,4), also shown in this figure, are in excellent agreement with these observed residuals. Since the main goal of this analysis-was to study gravity anomalies defined by the higher degree and order terms, orbital solutions were subsequently computed using a (12,12) gravity model. To insure that the dominant effects in the SST range rate residuals were due principally to the neglect of the higher degree gravity coefficients, the effects of other unmodeled errors were calculated. considered are presented in Table 2.

The error sources and,magnitudes

The magnitudes of the error sources were

chosen to represent realistic state of the art uncertainties.

The only significant

errors are: tracking station location error, tropospheric refraction correc­ tion error and error due to the C-band radar tracking system bias (i.e., the other errors were at least one order of magnitude smaller than the afore­ mentioned errors).

The effects of ionospheric refraction were negligible due to

the 840 kin altitude of GEOS-3. A typical plot of the propagation of these effects into the SST residuals is presented in Figure 4 for REV No. 254.

The maximum

effect due to each of the error sources was plotted. This error propagation is

9

considered to be conservative in that no cancellation or interaction of the error sources has been assumed.

The signature of the non-gravitational error in the

SST range rate residuals is clearly distinct from the effects of the higher degree and order terms of the gravity field. Thus, based upon this error analysis, it was concluded that corruption of the high degree gravitational signature due to non-gravitational errors would be small. The residuals corresponding to the coefficients above 12th degree could also have been obtained by computing the orbit with the full model and then subtracting these residuals from the residuals corresponding to a solution which only included coefficients below the 12th degree.

This was actually done as a test and the re­

siduals-generated with the ORAN program were confirmed. A number of steps were involved in going from the raw data to the implied gravity field accelerations.

Figure 5 presents a flow chart for the data reduction

and analyses procedures used in this investigation. The raw SST data were first of all preprocessed and converted to average range rate measurements in a format acceptable to the GEODYN orbit determi­ nation program.

The SST data were then combined with the laser, C-Band, and

geoceiver GEOS-3 tracking data in order to compute both the GEOS-3 and ATS-6 orbits. After the orbit computation, a tape was generated containing the SST re­ siduals (observed minus computed values) along with a tape which contained the information (i. e., station identification numbers, data types and times) which al­ lowed an exact simulation of the data reduction by the error analysis program.

10

The error analysis program was then used to produce the synthetic SST resid­ uals.

Both the actual range rate residuals and the synthetic residuals were fil­

tered producing smoothed residuals and accelerations.

These quantities were

then plotted in a variety of ways is a means of determining the correlation be­ tween the actual and synthetic residuals and accelerations. An optimal linear smoother was used for smoothing the SST residuals and for calculation of accelerations.

The heart of the smoother is a Kalman filter.

In the operation of the smoother a forward pass of the data through the filter is followed by a backward pass of the data through the same filter with the forward and backward filtered outputs being optimally combined.

The identical forward

and backward operations assure a symmetrical dependence of the smoothed output on the data. Computational efficiency is achieved by the sequential, recursive operations.

The output of the smoothing process also includes the

first derivative. The smoother is optimal with respect to the following signal and noise proc­ esses: 1.

The signal is a zero .mean stationary random process with a fading memory correlation function modeled as:

E(S(t) S(t-+-r)) E

S(t)

=

=

U2 (1 +[X IT +

expected value

signal at time t

11

r)

eX2-

S(t+r) = signal at time t+r

T

= change in time

a2

= signal variance

X

= defined by the correlation length

2.

The noise is a zero-mean white-noise random sequence.

3.

There exists no correlation between signal and noise.

The primary parameter whih may be varied to change the smoother character­ istics is the signal correlation time. The secondary parameter is the signal-to­ noise ratio. The derivation and characteristics of the smoother are described in consid­ erable detail by Fang (1976). For these data a correlation length of 1500 km and a data noise of .07 cm/sec were used. After some experimentation this 1500 km correlation length was se­ lected as optimal for exposing the anomalies of interest-. An example of the ef­ fect of the correlation length on the observed range rates is shown in Figure 6 where the profiles obtained using filter correlation lengths of 500, 100 and 1500km are shown.

The additional detail displayed when filter correlation

lengths of 500 and 1000km were used oes'not appear to be meaningful.

12

DISCUSSION OF RESULTS In the Appendix a complete documentation of the results for each pass of data is presented.

The information presented for each pass consists of:

1. a plot of the range-rate residuals and the result of smoothing the pass of residuals versus time. 2. a plot of the synthetic range-rate residuals and the smoothed residuals from item 1 yersus time. 3. a plot of the synthetic accelerations and the accelerations determined from smoothing versus time. 4. a scatter plot of synthetic accelerations versus the accelerations de­ termined from smoothing. 5. a complete listing of the detailed data which were used to derive items 1, 2 and 3.

The format for the data tabulated in item 5 is described below.

Revolution 231 OBSERVATION TIME YYMMDD

HHMM

750426 750426 750426

831 831 831

GEOS-3SUBSAT- RANGE RATE SMOOTHED ELLITE POINT RESIDUAL RESIDUAL SEC

LAT E. LONG

4. -63.02 14, -62.80 24. -62.56

7.68 6.45 5.24

CM/SEC -0,08720 0.08745 -0.10546

CM/SEC

-

-0.02386 -0.01712 .0.00954

SYNTHETIC RESIDUAL

OBSERVED ACCELERATION

SYNTHETIC ACCELERATION

CM/SEC

MGAL

MGAL

0.55848

0.005177

0.64556

0.72234

0.06876

where, Observation Time

= Time of the GEOS-3/ATS-6 range rate observation, year, month, day, hour, minute, second given in col­ unas noted as YYMMDD HHMM SEC.

GEOS-3 Sub-satellite = Latitude and east longitude of the GEOS-3 sub-satellite Point Range-rate Residual

point. = ATS-6/GEOS-3 range-rate residual (observed-computed) value obtained after computing the orbits with the

13

coefficients through degree and order 12 in the PGS­ 110 gravity model. Smoothed Residual

=The smoothed residuals were obtained by processing the range-rate residuals through the smoothing program.

Synthetic Residual

=

Synthetic residuals were computed by simulating, through an error analysis program, the effects of the neglect of the higher degree and order PGS-110 coef­ ficients on the SST residuals.

Observed Acceleration = Acceleration obtained from the smoothing program. Synthetic Acceleration = Acceleration computed for the synthetic residuals. A previous comparison, Marsh and Marsh (1976), of the PGS-110 gravity anomalies corresponding to terms of degree 13 through 22 and corresponding anomalies derived from a mbdel based solely upon surface gravity data (PGS-130, Lerch, 1976) showed excellent agreement over North America, where a large amount of high quality surface data are available.

This comparison established

the validity of the PGS-110 model in this area. In the SST data set analyzed, three revolutions (758, 232 and 231) crossed North America and thus have pro­ vided an important ground truth test for our analysis techniques.

Figures 7, 8

and 9 present comparisons of the observed and synthetic accelerations for these passes.

The agreement is good along the total length of these profiles and is

particularly close over North America. It is noted that during SST tracking on revolution 758, GEOS-3 was observed simultaneously by four ground stations. This may account for the slightly better agreement along this pass. '14

A test of the consistency and repeatability of the SST data has been provided by the comparison of independent data along overlapping ground tracks.

Figure

10 presents such a comparison for revolutions 240 and 429 and Figure 11 pre­ sents a comparison for revolutions 254 and 453.

These plots indicate a high

level of repeatability in the data thus providing further confidence in the results. The formal estimate of error in the accelerations derived from the filter with a correlation length of 1500 km, data noise of 0.07 cm/se and a signal to noise ratio of 2 is approximately 0.4mgal. As a check on this estimate the rms of the difference between the synthetic accelerations and the accelerations de­ rived from the range-rate residuals was computed.

This gave a value of

0.6 mgal, which is in good agreement with the formal error estimate, particu­ larly since this latter value also reflects errors in the synthetic accelerations. A histogram of these differences is shown in Figure 12 which indicates that the differences have a zero mean and are even approximately Gaussian distributed. This is further verification that the accelerations derived from the range-rate residuals are an independent estimate of the accelerations derived from the high order terms of the PGS-110 gravity model. A close inspection of the graphs and tabulations has indicated a strikingly high level of agreement between the synthetic range-rate residuals and accel­ erations and the observed residuals and accelerations.

In order to quantify the

level of agreement and examine it for statistical significance, correlation coef­ ficients have been calculated between,the synthetic and observed range-rate residuals and accelerations for each pass of data. 15

Table 3 presents these correlation coefficients.

The average correlation

coefficient for the accelerations along the 28 passes was 0.55 which is statisti­ cally significant at the 99. 99% confidence level. That is, if the true correlation were in fact zero, and this type of analysis were repeated'for a large number of cases, only 0.01%of the time would we find a correlation as large as 0.55. Thus the analysis has provided an independent verification of the validity of the terms of degree and order greater than 12 in the PGS-110 gravity model which would imply that gravity anomalies defined by these terms with wavelengths shorter than 3300 km have been independently observed. Close inspection of the plots of the observed and synthetic accelerations has indicated that if certain portions of the synthetic curves were shifted slightly, the agreement would be even better and hence the correlations even higher. For example, note the accelerations between 21 and 31 minutes for revolution 695, and between 32 and 42 minutes for revolution 724.

The justification for

considering these shifts is based upon the results of previous investigations (Black, 1976) which have indicated that in the determination of global gravity fields, errors of a few degrees in the locations of the anomalies are not uncom­ mon even though the magnitudes of the anomalies have been reliably estimated. It is noted that displacements due to the fact that the accelerations are "line-of­ sight" have been accounted for in the generation of the synthetic residuals. Figure 13 presents plots of the observed accelerations along the GEOS-3 ground tracks for the revolutions prior to May 20, 1975 when ATS-6 was located

16

at 940 west longitude. -After May 20, 1975, ATS-6 was drifting toward the east at a rate of about 30 per day. Similar results can be observed for passes over the same geographic area in most cases. anomaly patterns.

Visual inspection also revealed

In order to facilitate comparison of these patterns with pat­

terns defined by the high deiree and order terms in the PGS-1l0 model, con­ tour maps of the accelerations have been produced. The acceleration maps were contoured by a computer routine which first grids the data.

There are many ways to grid data and depending on the distri­

bution of real data points spurious anomalies can be introduced by this process. The anomalies outside the area of the satellite ground tracks were produced in this fashion and should be ignored.

Machine contouring can also sometimes

produce strange effects within the region containing data and to check this, one of the maps, Figure 14-A (SST-1, 2, 4) based upon revolutions 100, 200 and 400 collected before May 20 was contoured by hand. It turned out to be essentially identical to the machine contoured map. Each map presented herein has been machine contoured.

Since tracks which cross generally do not match exactly in

amplitude, although they usually do so in sign, at these points an average value was taken and the resulting map is hence somewhat smoothed by the contouring process.

The number of ascending (SE to NW) passes are so few that they can­

not be considered to yield a reliable map of the gravity over most of South and North America.

Thus the most reliable part of the map shown in Figure 14-A

is that area contained within the envelope of descending (NE to SW) revolutions and within about 30 or 40 degrees of 94 degrees west longitude. 17

Figure-14-B .(SST-6, 7) presents an independent contour map of the accel­ erations corresponding to the 600,700 series of passes when A'TS-6 was drifting from 94' West longitude to 410 west longitude.

These maps have no reliance on

a higher degree and order gravitational field model, but instead rely only on a field model complete to the 12th degree and order. These independent data sets show basically the same features within 30' - 400 of ATS-6, but the position of ATS-6 is different for each map. The anomalies are largely broad undulating features- striking WNW with a wavelength of about 259 - 30 This is particularly so in the east Pacific.

(2700-300km).

This does not appear to be caused­

by contouring or an insufficient number of tracks, and this strike fs not caused by single ascending orbits for there-are none in this region. lantic area the maps are somewhat different.

In the North At­

Here the SST-1, 2,4 -map shows a

pattern of broad anomalies while the SST-6, 7 shows a much shorter wavelength pattern. - The agreement here is not close, but this area is well'outside the 30' -

400 circle about the ATS-6 subsatellite point where the accelerations are largely radial. Even within the 300 circle of ATS-6 there ate some rather large dis­ crepancies between the two maps.

The large bulls-eye anomaly near 2680 lon­

gitudeand -12- latitude on SST-1, 2,4 appears alone within a large positive re­ gion, but on the SST-6,7 map this anomaly is less obvious because this positive band consists also of other anomalies. -The anomaly at 2600 and 5' on the

SST-6,7 map, in particular, does not appear on the SST-1, 2,4 map because no revolutions used in the SST-1, 2,4-map cross this feature.

18

The agreement between these maps can be,made much closer in the area. of the east Pacific if the SST-6,7 map is translated westward by about 4' rela­ tive-to the SST-1;2,4 map.

The difference in the position of ATS-6 for the data

collection used in each map may account for the apparent phase shift in the anomalies.

The eastward drift of ATS-6 moves the.30? spot centered about

ATS-6 where the line of sight range-rates can be considered. to be almost solely due to radial accelerations.

Unfortunately for many of the later passes in this

series (600-700) their circle of certainty about ATS-6 does not include much of the southeast Pacific, an area of prime -geophysical interest. Model studies show that the largest distortion of acceleration anomalies which-lie outside the .300 circle of certainty comes about principally as a shift in the phase of the measured anomaly relative to the true anomaly.

This could account for the ap­

parent longitude discrepancy of 4? between the two SST maps of line-of-sight accelerations. An acceleration map made from combining the two independent sets of SST data (SST-1,2,4 and SST-6,7) shows, of course, a combinationof the features of each data set (Figure .14-C). The absolute accuracy of these maps of SST accelerations is difficult to es­ timate.

Compared with the 'synthetic range rates computed using PGS-110 the

nearly Gaussian distribution, of differences gives a standard deviation of 0.6 mgal; on 'the eartb~s surface this would be about 6 mgal.

This is considered to

be, within the most reliable area'of these maps, an upper bound error estimate

19

since this comparison also reflects errors in the PCS-110 model. An estimate of the lower bound on error is gained from the study of error propagatioi due to uncefrtaiities in the low degree and order (n, m< f2) gravity field model used to reduce the orbits. The fornial errors on the GEM-10 c6efficients (n, m2 0-1

.j

SYNTHETIC RESIDUALS

C,

-0.o0 c.,'n'

OBSERVED RESIDUALS

-0-

'

-0 .2 1 1--1 0

5

1 1111 1 . 1 1 1 I I I 1I J I I 1 I I 1 I 1 I I 1 I 1 t 1 I 1 1 I I 10

15

20

25.

TIME IN MINUTES FROM APRIL 26, 1975,

30 0 8 h 3 1m

1 35

1

1 40

1 1 45

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 231

3.0

SYNTHETIC ACCELERATION-,,,.

c -0.0

,



OBSERVED ACCELERATION

-1.5

-

-3. 0

5

to

25 20 15 TIME IN MINUTES FROM APRIL 26, 1975,

30 0 8 h 3 1m

35

40

45

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 231

-

3.

x

24

K.-XX

K X ( x

0

-< w

i

0.

x XXx

x

XX )C

x x XXX

2.

-3. -3.

-2,

U.

-1.

1.

OBSERVED ACCELERATION (MGAL)

A-7

2.

3.

REVOLUTION 231 OBSERVATION TIME

.AT __E.

HHMM_

SEC

831 83 1

14. 24.

-62.50 -6Z. 56

831 7504 6~ • 546 83Z 7594M5 32

4:: 4 14. 24.

-:2.036 .0 -61.25 -60.96

WMMD

.

GEOS-3 SUBSATELLITE POINT

7504Z6

•750426 750426

*6 05

15042' 75042C.

832 652

-0 44 . 54 -,so

750116 75026 750 5_

750426

833 Raj

24.

833

4.

-4. -5 0 - 59_06 -57 -58.38

7S0426 75042 6

834 34

4. 14.

-57.66 -57 30

75046 7S0426 I50*26 750426

ol4 A3 854 835

324. !. .4 4.

!--56.55 1 I-55.39

LONG

RANGE RATE RESIDUAL

SMOOTHED RESIDUAL-

SYNTHETIC RESIDUAL

OBSERVED ACCELERATION

CMISEC

-CM/SEC

CMISEC

MEAL

0.C0745-'"-- 0.0172

-0.10546 -0.00964

6.45 !5.24 2*S7 172 -5 359.47 Z58*37

~

35 E23

3 5519 353.:17 352.10 -3501.iz 350.27

-0.00902 0.00591 9.31981 0.09064

0.00"s 0,02529 90005 50 WAS

0. 0 0 41 0.16341

5? 04*04 -0.04831

002091 0.07930 0:050o0 -063650

348.43 47 5 4

-0.01156 0.04535

345.8-0 344.gs 6-57 44."2 343.31

-0 .0 5 414 0.00165 0.00505 "-0.02149

0.00*177

•;"

.5 .722_

.0

S*;8894 tO

RUHRq 0-55221

0.009303

0004722M027'

0.04443 U:WW 0 03560

o0 1276

O .OI&R7

-08L -. C-5----0.00357 -0.00014 -0.00324

39*46 3 3

"12651 -008 532 _

-0:0587 -0 00838

24.

-52.09

337.31

750426 836 T546"836 7SO426

44. 54. 4

-51.22 -50.79 -99

353628

750 26 750426 750426

837 8.37 111-

24* 44: 4 .

-49.45 49:00 -4 .55

333,35 33 22, 53.2

0 088565 -0.0T374 -0o07177

-0:00456 -0.00658@ 1-06005 F, 02

750426

838

14.

-47.L8

330.35

-0.04,605.

-0;011

-0:1 352

750426 750426

838 838

34. 44.

-46;25 -45.78

329.21 328.6

-v=:Bet... --0*104 ,

-o~g5

-0.06893

-44

750426

856



335*05

.0

,623

34

_0 00680

-0.07760 . 67 73.8 0.0825

' -0.07165 -0.0199

750426

839

4:

83

327.57

0.|1184

-0o015G

839 839

24. 34.

-43.08 -43 .40

326.52 326.01

-0.06076 -0.044S5

-0.01533 -0;01443

750426

75025 53 0¢0

5* 4.

42:44 -41.95

3270 324.51

"-0.08622 0.05177

750426

4€

24°

-41098

323.5

750 426 750426

840 1, 0

44. 54.

-. 39.99 -39.50

322.60 322.14

-0.01619 -0.12591

750426

841 14. -38.51

321.24

0.04437

750426

841

24.

-38.01

320.79

750426

841

44.

- 37.1

319!9

"75042 710116 750426 750426

02 042 604 =2

750426

*

-M6005 -Z5.5 -- 4€ 4.-3.5

1.

-0065 ,

0.0200 6 -0:000 0.47. 5 -. -e40

-0.04 -0,00571 0.01 0095•.•3

-32.44 -31.93 -31.1k2

3163 315.85 315.4f,

=L0.08933 -0.041000.03952.

-0.00 6970 -0.010J55 -0.01035"

6 3 844

54. 4.

-30.39 -29.87

314.71 314.33

-0.08822 0.07467

-0.00933 -0.4055

a44 -4 844 844 645' 845

24* Z4: 44. 541 4. 14.

-28*03 :28.32" -27. 80 -27,27 -20.7 -26.23

313 59 -0.01296 313.23 "-0.07128 312 57 0.03492 512.'5l 0.014 -0066 31Z.11 a11*e2 -0.01034

750426 75045

845 54

34. 4 .­

--25.18 24.66

750426

845

44.



75042T .750425 7.50426

846 64 846

14* -43.05 2*-22.55 3 -22*03

309.75

7SO426 750426

846 847

54. 4.

7545 750426

847 847

24, 34.

750426

17So426 '750426 -'750 2 750426 750426 7W4026 S750¢26,

' 11.11. .310.7, 100

"

.25'9

0.0099J6 0.014 35

-a

309.08

-0.02493 0045 0.0396

-20.97 -20144

308.42 3013.10

0.00356 0.10282

0.047LS 0.05111

19*38 -15.85

n0.%5 307.13

0:08UN 0.0S787

6652 0.061114

05

7 :

15--0.|15 1:­

f

-0401570.

-0.02074a,

-0

0.044GZ ,0.08848

6

51689.7"

0.17021'

'0146

'

-048062 .

120.214

-042

0.154 0.08822

"275­

­ "-;

-0.o0032"

-0.048675

0*27140'6

-0.03980

"

-. "

03

-D.13202

-0.13372 O ; -8

-­ 0;02692 0004490

0.005SWB

,..=

'..."

"* 0 45g



-. 559, "0:06020'-

~

" "

.693 20:1 -ola'o. 4... * . . 0.11679 0.55"" • 8 0*20855• 0*2rG!52,1 " " " "0

*0

0.1 57 D1*1 .524 0,09008

"

_

~lg3

-0.006S5 0,63Z60 -0.00579- .... . l -0.4004a5" -­ 005", -a _60D1 0.002155

-O0O565 0.11.2

"

!-006763.

0.016616

-0*00.201

10 at0e5 1.3 24. 374

'

0*I30•00 5888

-Os=050

-0.01418 "-0.000163

::i-4

"

109043

6.08451

0095

-0.00a75 -0.00158

S43- 14 643 24: 34* 843

750426 750426

0.011695

-0.01165 -0.00989

-- '024

"2

2'0 9 ?­ .3 0.0723

-0.00500 -O.O0A0 -001

7504Z6 750426

.

-

"

07

0007%2

-6

-026

-3,36 4

*-5

:

- - 529504 4 4 "0 -0.362588 -0.2,V02 -0.22714" :

- 0 .008

54

04327232

20.55042

0 Ot04" - 0 .0 133 6

w3

'

"

- "

-0.35127 ,-040g0D

-0.51164

0wI02450



. " "

0- 27257';

0.24784 0.00056

341.7 3 4 0 .96

7W0426 75426

0

'

-5.o59 - 5 4 18

14 . 135 83 S 34 .

7504P6 7 0 26

SYNTHETIC ACCELERATION MGAL

0.3785 1 29

'

;"

...

.:

0:4257,, Q00

.. '

r.

0-" F1OAO 0 ? *2432

4

0.3348!i; O 22 . 0.076179

0107 0.13876

t,

/,t) .

0

7 -

ORIGINAL pAEL9 A-8

or

POOR QUALITy

ORIGINWAL PAG2 19

OF

POOR QJ~j

REVOLOTION 231 OBSERVATION TIME YYMMDD

HHMM

750420

847

750426

847

L&

75t6 750426 7826 75026.''848 -

"&lfA~

"848 848 048

-

'5026

85)

7504P6 74-

750426 .750426 750426 t

544.

750426 790fA

* 750426 * .350426

.

S750426

LAT .32 17 7 9 ,

-: r

_,4

.. lZ



3fl6

4

849 849

34. 44.

-12.45 -11.91

850 4. 850 14. ayZ4. '850 34.

-10.84 -10.31

54. 4.

851 51

24. 34.

YW. I

851

54. A',

.

-493 -A

CM/SEC

CM/SEC

0.05091

303.40 -303.10

0.08837 0.00870

0.042P43 0.63755

302.50 302.20

-0.02460 0.01940

0.0 687 0.02123 9.,~f~

0.00905

300.12 29S.83

-0:01224 0.02324

-0.02098 '0.02749

29S.24

-0.02770

-0.04047

-

0.914-0-057472 324 AIG9A

852 852

14. 24.

-3.85 -3.32

298.,5 292.36

-&.03761 -0.20513

7504i26 750426

52 852

45. 55.,

-224 -1.70

297.78 257.49

TO.07 81 -0.08250

-n

1

653

.L

Z9t I ".U

flJ*I...V

'u.vo0%*

853

1'.

-0.62

296.90

-0.05945

-0.06810

'~AA

ARM

pg.

-864n

O0A.4

53 853 8S?_ 854 854

35. 45. Er 5. 15.

0.46 0.99 1.Sa .07 -2.61

296.32 . 296.03 29O6 1 295.45 295.16

-0.01330 -0.00429 0a2inq12 -0.03086 -0.03949

-0.06345 -0.05916 0 0rI26a -0.04693 -0.03915

.

ul.0 5~0

750426'

.Lp5)*

854 '35.-

750426 750426

• 854 855

55. 5.

"Set'

f'6t -750426 750426

855 Z5. -855 35.

750426 750426 750426 750426 .71011 750426 750426

855 S5 856:' S. 856 15. '856 25. 5

856 45. 856 55.

750426 * 750426' 750426 750426

857 857 857 857

15. 25. 35., 45.

5. 8 $58 15. 85046

26

-

..

'..UJ.0

-u.upu.J19-.0Mb

294.57

4177 5.30

293.99 293.69

-0.06779 -0.11297 0.05291

-0.0 08" -0.00013

0.01035

5

A

011

-0

AM

" 0.16031 0.00960

7.99 a .53 9.07 9.61 101 10.68 11.22

292.22 1.2 291.63 291.33 "40 290.73 290.43

0.12415 0.05647 0.04671 0.05842 0 074 0.01262 0.00379

12.29 12.83 13.36 13.90

289.e3 289.52 289.22 280.91

14.7 - 15.50

2880 287.99

55 858 855 859 859 859 859

35 45. 55* 55 15 25. 35.

869 9 0 9 0 9 0

55. 5. 15. 25.

20.82 213, 21.88 22.41

.750426 75a426

9 0 9 1,

55. 5.

7654 6 50Q42L -F50469 750426 7imo1i 750426 150426

9 1 9 1

N50426 750426 _;042 . P50426

9 2 9 2 .9 a 9 3

'

750426 750426 7504Z6 .750426

50426 750426

9 9 9 9

9 9

1 3 2 2

3 3

. '750426 p#50426 750426 750426

9 4 9 4 94 9 4

0.03791 0J03103 0.025dS 0.91900

.

0.00861 -- 0.05220

.

60fUOU4

-1.115935

-0.26165

-0.14741

-U-.9cfr)

0.09258

.11 0.32302

0.43118

6215V94

0.63678

0.73178

03

8~7P

V*00=0d03V

0.69221

0.97728

0.97292

-0.020209

.

0.038091

0.063694

'

9.s.je

0.84223 0.71765

1.114801

0.3945 022250 0.05905 -0.08860 liE

-0.32327

-0.41015

0.766955

r0.53513

-0.57S1 -0597657

-0.59963

0*004522

-0.53501

-0.47163

-0.19504 -. 021739.

34 -0.19852 -0.405990

282.61. 252.47

10.11626 -0.07406-

-0.03116 -0.02914

25. 35. 45. 55. 1 15. 25,

2S.57 26.09 26.61 27.1417-6. 28.18 28.70

201.77 281.43 281.07 280.72 20026280.00 279.64

-0.05410 -0.05453 -0.04462 0.02847 -0O2SS4 0.04513 -0.00037

45. 55. 5%. 15..

29.74 30.26 30.77 31.29

278.90 278.53 278.15 277.77

32.32 32.83

'277.00 276.61 275.81 275.41 275.00 274.58

,a7'

-0.31320

-0.2349

23.99. '24.52

33.85' 34.36 ,3487 35.38

-fl.

-0.041045

-. 00713 -0.01097 -. 036-0*54

366-03:16847 -0.015a5 -0.0179 -0.01933 .0.015356 -0.02095 -0.02457 -0.0268 -002858 -0.03032

5. 15. 25. 35.

-1.126167

-0.58762 -0.52367 -0.45494

0.00672 0.00126

-0.02006 -. 16 0.00362 -0.02199

-

-0.55614 -0.57472

0~.J.V,55O

-'16.57. 2a7:36 -0100090 17.10. 287.05 -0.04758 17 .7 11.11 -*839 2114 '18:17 ,286.42 -004270 18.70 286.10 0.03694 19.23 245.78 -0.00062 19.76 285.46 '0.00942

220Mta

'50426 '50426 150426 "750426

0.05032 00 398 0.05529 0.05611 eei 048J1

'0.05214 0.04829

284.81 8.8 284.15 283.82

,35: 45.

0.031456

0

0.02979 0.03007

0.06451 0.06700 0.04654 0.05577

-0.

-

-0*.51373

-0.5231

'o-a

293.11 292.81

.

-0.50321.

.t04--667A

29.8

A*

75026 .[?46 S7W0426 750426 --750426 750426 750426

01

3.69

6.30" 6.92

-0.*40Ol

-0.49605

0.0 '1l*,et0

b1e

-0.031 0.06750

(5040

f

-0.42871 -0.4600S

6AA44

-0.05244 -0.05759

750426

5.

oe454

-fl49SflA 7

%.SVOAOO fl527

0.05587 -0.06376

-0.349055

-0.33328

0

-.0.00222 -0.00832

3101 '1 3011.71

080

0.0079834

-0.03720 -. 53 -0.212t2

0050480

0054

"fl anlI

MGAL

0.07461

nfl.rl.691

-I

MGAL

0*06129

0.bb

v.v50

SYNTHETIC ACCELERATION

0.1042t

0.06203 0.06I65 1

0.05925 0.057a2

0.02757

OBSERVED ACCELERATION

0.06020

0069 f1*0pp

7504Z6 750426

750426 750426 780':, 750426 750426

-

SYNTHETIC RESIDUAL

0.05016

'

JUL.90

- ...

9tA

.084097 0.07677 0.03598 0.07431

301.60

-85.16 -7.62 -6.55 -6.01

6

042

-9.23

051-5t4:049953

-0S01383

tO

304.01,

-133.,2

hA

8 50 851

0.04300

305.8 305.55 349 304.62

-1-.0,

14.

SMOOTHED RESIDUAL

CM/SEC

E LONG

14. 16.72 24. -16.L9 44.-151 54. -1.59 PA.-T

RANCE RATE RESIDUAL

306.01 306.49

96

flAG9

OCO49

-

SEC 44 54.

849

"of

S75046 750426

GEO -3 SUBSATELLITE POINT

.

-0.02046 -0.01372 -0*O0554 0.00382 * 011, 0.02460 0.03515

0.11378 0,1037a015270 0.11963

0.05442 0.06249 006922 0.07456

0.14659 0.02393

0.Os24 0.08241

0.062.r V~W0

0.08414

-0.06143 0.0493 0.08020 0.03080

0.08382 0.085310.0827 0.08054.

9 4 55. 36.39 273.74 0.11664 9 45 36.89 . 273.31 s. - 0.09110 .................................. 9 5 2& 37.90 27Z.4 0.08950 9 5 36. --38.40 272.00' 0.07608

-0.061252

.- 0.950648

0.05758

0.20398

-0.075703

-0.037698

-

0.53286 8.131059 0.69004 0 a2570 0.9292 A 96 1.01151 0.98418 1.018757 0.80295

0.66607

0.51599

0.367S ,

0.12691

0.04816

.02r

009921

0.07509 0.07087 0.015558-533

0.05899 0.100106% 0.05126

A-9

0 -0.12177

-0.09952

-0.18115 -0.12162

-0.03424

-0.05762

-'0.085f -0.12735

0.030048

-0.27549

-0.38229

-0.62866 -0.74780

-0.355206

REVOLUTION 231

OBSERVATION TIME YYMMDD __HHMM -50426 50426 Af504

9 5 9 5

6

GEOS-3 SUBSATELLITE POINT

46. 56.

A

750426

950426 9 6 16. 9 6 26.

'50426 50426 504 6 /50426

9 9 9 9

)CAAO

.

/50426 750426 '50426 '50426

6 6 7 7

38.B9 39.39

271.55 271.10

0.03410 -0.01827

0.04238 0.02248

1pp.

l7l.-..

.. f-fl07

flf-7

40.38 40.87

46. 56. 6. 16.

41.a5 42.34 4' .8 43.30

270.17 269.70 '268.73 268.24 207.74 267.23 266.20 265.67

-0.05101 -0.10500

8 8

6. 16.

45.69 46.16

264.59 264.03

-009824 -0.10496

-0.06067 -0.05611

G

Lb.

46.84

48j4

47.09

56. 6. 1i. 26. 36.

48.01 41.47 A.2 49.38 49.82

261.73 261.13 2tp.5i 259.89 259.26

9

4b.

3U.ZC

XCO.b

50.71

/50426 '50426

910 910 9n: 10 010 919

16. 26. 36 46. 56.

51.59 52.02 ZZ.IC 52.87 53.29

"50426

911

16.

54.12

252.30

'50426

9 8

36.

'50426 150426 59P Z50426 '50426

9 9 9 9

8 9 9 9 9

9

9

0.00777 0.00523 -! -0.07464 -nA AAI0

TOO.

~ 262.90,

750426

0.01049 -0.00102

44.26 44.74

7 7 6,S

9

!50426 '50426

0.0567B 0.04034

36. 46.-919

PC.

"..44N

1 U~t0

SMOOTHED RESIDUAL CMSEC

-0.02352 -0.03383 0.94390 -0.05089 -fldqn $.A -0.06122 -0.06327 .161

C

9 "5 99 9 9

E.LONG

LAT

SEC

RANGE RATE RESIDUAL CM/SEC

9

56.

.

0.b0b

-U.UgfbLt

SYNTHETIC RESIDUAL CM/SEC

.­ 0.55230 -0.93690 f-p~

-2.0338 -1.05177

0.051055

i-

WI At

.

n.

O~t

0.32761 0.52675 041V

.rv3S..Odd

-0.04145 .- 0.02175 -0.01114 0 9667i 0.00902 0.o0172

257.57

-0.02248 -0.01340 0.94152 0.03178 0.04206 V.S1U94 0.09425

256.62 255.94 ass::3 254.52 23.79

0.08256 0.01285 &0:132 -. 08700 0.07055

0.02528 0.03494 0.0:277 0.02886 0.02339

0.01364 f087 0.01395 -0.01087

0.00865 -0.02 -0.00976 -0.01976

-03 -0.04947 ' -VUIuooc.-u.Uq4ooo -0.0550 -.007237 , -007681 -0.07966

. 0.84662 1.00583 1.01343 0 97!6? 0.88220. 0.7S002

0.045238

U.QL~fb

0*39856

0.03016 0.049590 -

C.t75

-

0.02124 -04473 Z9% -0.43312 -0.55349

26,

54S93

291,-3

911 911

36. 46.

54.93 55.33

250.74 249.94

:50426 '50426

912 912

6. 16.

56.11 56.50

24B.30 247.46

WI'4 14

48.;-

S6.88

440.sV9

'50426 '50426 '50426 *50426

912 912 912 913

36. 56. 6.

57.25 57.62 57.98 58.33

245.72 244.82 243.91 242.98

-0.09989 -0.03046 -tt.u'c90 -0.03942 -0.07949 -8:09326 -0.09919

/50426

913 913

26. 36.

50.02 59.36

241.07 240.08

-0.14539 -0.02226

-0.07953 -0.07649

'50426 '50426 '50426 '50426 '50426 '50426

913 914 914 914 914 914

56. 6. 16. 26. 36. 46.

60.01 60.32 60.63 60.93 61.22 61.50

238.06 237.02 235.96 234.88 233.79 232.67

-0.03836 -0.08404 -0.00195 -0.07105 -0.08681 0.02270

-0.06458 -0.05555 -0.04576 -0.03421 -0.02154 -0.00602

'50426 r50426

915 915

6. 16.

62.04 62.29

230.38 229.20

-0.04892

0.04554

0.020A6 0.034-1

1.30569 1.28600

'=0.26 150426

915 915

36. 46. 56.

62.78 63.00

226.80 225.57

0.06792 0.14389 -01304

0.06137 .0.07303 0S03 -.

1.136 6 1.00707 0.4607

756426

915

63.22

224.32

-0.070278

-0.054763 -

-0 02 -0.85051 ppU

-0.65328 -0.51718 -0.35929 t018453

~ -v

0.18809 0.37005 0.70006-­ 0.844$8 0.97392 1.08660 .18000 1024990

A-IGWAO

A-10

-0.2n3478

-6.76017 46-OSPt -. -0.89976 "D.932S7

911

-

0.340393

0fl8H44V

9n~426

1.50426

-6ftf

-0.3020e -0.09660 0 11630

'50426 150426

46.

-048S3120:

-0.99024 "-0.123a Wo -0.66067

-0.09267

-

SYNTHETIC ACCELERATION MGAL

OBSERVED ACCELERATION MGAL

-04120614

0.646 0,

PA

1

GEOS-3 Revolution No. 233 h 20i April 26, 1975, 10

A-n1

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-1 10 Gravity Model Coefficients to (12, 12)

Revolution 233

0.4

SST RESIDUALS

0.2

S

}-

-0.2

SMOOTHED RESIDUALS

,

10T

21

O 2IA0

TIME IN MINUTES FROM APRIL 26, 1975,

30 10h

20 m

452

GEOS-3/ATS-6 SST Range Rate Reiiduals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

0.2

Revolution 233

•­

SYNTHETIC RESIDUALS t

o

-0-I"

OBSERVED RESIDUALS -0.2 0

5

10

15

20

25

TIME IN MINUTES FROM APRIL 26, 1975,

30 10 h 20m

35

40

45

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-1 10 Gravity Model Coefficients to (12, 12)

Revolution 233

3.o

1..5SYNTHETIC ACCELERATION

A

-1.5 OBSERVED ACCELERATION

1 111I 111I 11111111I

-3.0 0

5

to

11

15 20 25 TIME IN MINUTES FROM APRIL 26, 1975,

-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11I 30 10 h 2 0 m

35

40

45

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 233

3.

2.-

I. -x

X

< a

x

~Xyxx

< O o X

X

x

x

x S0.-

x

X

X

x

Lii

Ix

z

-.

-X

-3.

X

-2.

-1.

x

.1.2. 4

0 SERVED ACCELERATION (M GALS)

A-15

3.

REVOLUTION 233 OBSERVATION TIME

GEOS-3 SUBSATELLITE POINT

RANGE RATE RESIDUAL

SMOOTHED RESIDUAL

SYNTHETIC RESIDUAL

OBSERVED ACCELERATION

SYNTHETIC ACCELERATION

CM/SEC

CM/SEC

CM/SEC

MGAL

MGAL

0.015506

YYMMDD

HHMM

SEC

EAT

E.LONG

7E0426 75042&

1020 1020

44.54.

-45.17 -44.70

302.4 302.10

06.39374 0.29912

0.24633 0.22443

750426 75?JkP6 750425 750426

1021 021 -1021 1021

14. 24: 34. 44.

-4375 -4327 -278 -42.30

301.05 30. 4 300.03 299.54

011245

0.17145 0.1412f 0.20940 0.07679

-2.7061 -287484 -2.96146 -2.96300

1022

4.

-4 1.33

14.

-40.84

-298.56

1022 1022 1022

34. 44.

* 750426 750426

1022 1023

54. 4.

750426

1023

750426

10"3

750426 750426 750426 750426"

750426 .

'750426 750426 750426

*

,

7aort

750426

6.204 0.12010 0.03339

298.08

0.01713

0.01289

-0.05207

-2.73040

-0.01669

-2.51763

-39.85 -30.36

297;15 296.69

-30. -38.37

296.23 295.79

-0.07626 -0.23378 -0.13035

-0.06794 -0.08897 -010678

-0.07812

-0.12142

• -1.07893

24.

-37.37

294.91

-0.43957

-0.14188

34.

-Z36.86

294.48

-0.04409

-0.58548

1023 1024 1024 1024

54. 4. 14. 24.

-35.6 -35.35 -34.85. -34.34

293.3 203.21 292.80 292.39

-0.05027 -0.14052 -0.16148 -0.14816

-0.15C36 -0.15631 -. 15524 -0.15407

10t

go

-

,t~~ -0.03749 -0.10322

l~ -0.14666 -0.14087

-0.24968 -0.16991 -0.12304 b.01469 .fPAI -0.13023 , 0.00116

-0.12513 -0.113S -0.104t0 -0.09299

n

.

1024

4 54.

-33.32 -.32.81

291.59 291.19

750426 750426 750426 750426

14. 24. 34. 44. G.4. 14 .

-31.78 -31.27 -3075 -30.24

750426

.1025 1025 1025 1025 1119 1026 1026

-29.20 -28.68

290.41 290.03 289.65 289.27' 80Of n 28.53 288.37

750426 "750426 750426 750426

1026 1!6 106 1027

34. 44 54. 4.

-27.64 -27. 12 -26.60 -26.08-

287.44 257.08 28.73 286.38

-0.09933 -0.05880 0.00366 0.14607

750426 750426

1027 1027

24. 34.

-25.03 -24.50

285.65 285.34"-

-0.03101 0.11554

-0.00455 -0.00243

750426 * 750426

10 7 1028

54: 4.

-23.45 -22.93

284.66 284.33

0.00792

0.08518

-0.0012 -0.00112

750426

1028

24.

-21.87

283.66

0.00010

-0.00050

, 750426 75 426 50 4 2 4 -­ -r­ 750426 750426 -­ 5UgZ 750426

1028 1028 2 leas 1029 1029

44. 54. 4 '14; 24. ij.

-20.81 -20.28 i975 -1.22 -18.69

283.00 282.68 282.a5 282.03 281.71

-0.04020 -0.04147 0 iilO 0:02047 0.00267

-44.

-17,63

281.08

74040A 750426 1030 750426 1030 7t0426 _1020 750426 1030 750426 1030

4. 14. a4 34. 44.

-16.56 -16.03 15 SO -14.96 -14.43

-­ 0.4061 n-'S lOS& 0.09561 0.01426 02 Q90 0.13525 '0.0410a

.flU'JL0

30z0

z4.

* 750426 6 7S1042 7501426 750426

031 t83j 1031 1031

4. 14. '24. 35.

-13.36 -2.S2 -12.29 -11.75

278.59 f7S*fl 277.99 277.68

1031 1032

55* 5.

-10.68 -10.14

277.08 ­ 276.78

750426 - 1032 1D32 -750426 750426 1032 750426 1032 -Th0-426---033 750426 1033 I 750426 1033

25. 35. 45. 55. So 15. 25.

-9.07 -8.53 -7.99 -­ 7.46 -6*92 -6.30 -5.84

276.19 275.80 275.59 275.30 275*00 .274.71 274.41

0.31179 0.104'1 0.19701 0.17422 0.12351 0.12794

9.13572 013958 0.14?45 0 '.2 0.14504 0.14478

750426 1033 750426 1033 750426 1034' 750426 1034 750426 1034 750426 1034 754Q1034

46. 55. 5. 15. 25. 35. -5 55.

-4.76 -4.23 -3.69 -3.15 -2.61 -2.07 ...

273.63 273.53 273.24 272.95 272.66 272.37 .. *,

0.13540 0.24443 0.16895 0.06375 0.03960 0.11343

0.14169 0.13919 0.12630 0.13315 0.12977 0.12617

750420

-

-O04

ocw

1029 *f104.

750426' 750426

I

750426 110421

1034' '1035

75062N 750426

l35. 1035

750426

1.

-00-70

p

9S.Vs

2.f

*4t

-0.99 -0.45

7

280.45 250.14 279 g 279.51 279.21

271.78 271.401

1035

0.62 1.16 1.0 2.24

750426 750426

1036 1036

15. 25.

3.32 3.86

269.45 ' 269.16

750426 750426

1036 1036

45. 55.

4.94 5.47

26a.57 268e28

t7.

-

2J0fl

35. 45.50 55.

.­ 50..6---f

-

270.91 270.62 27.33 270.03

-

-

-

.ll~l

-0.03500 -0.02594 -0.019315 -001228

.13568

0.16205 .16S35 0.06579 0.05635

0.08174 0.08805 0.09441 0.10082

0.07369 0.12497

0.11357 0.11975

0.i.Ea

0.03287 0.134024

0.18440 0.26871

-

0uU02

U.4r

0.52803

-0.043134

0.57793 0.57294

-0.355552

0.48523 0.4052 -0.0SO350

0.30704 0.2023a

0.120254

0 09791i -0.00001 -0.08778 -0.033836

-0.018529

-0.22514 -0.27008 0 A t29869 -0.0815 -0.30505 -0.29977 ' = -0.32617

0.10120

-n.57061

A-16

nnv

0.52876 0.54506

0.09308 0.08339 0.07205

-0.02E327

03a 0.04445 0.02849

-.

*.5,?1

0.14255 0:16592 0.26662

-0.00611 -0.02385

-0.977535

0.57313 0.55683

-

0.12286

0*00726 0.10613

-

0:42337 0.48499 "81 bisiz.000 0.56726 -10080fln .S~ .555 0.59439

-0.3740

-0.00364

0.008611

97015ci

0.11340

"00.04919 -6S- -

0.602J90

-6.0578 -0.05536

-

0.130g9

0.21820

008654 0.75583 '.OOrib 0-44987 0.16013 0.06131

OAC 0.04243 0.04916 CE6ECT.564 . 0:86250 0.06902

I.-~It71

1.12079 .1.07400

0.01774 U~4.~3V.41 0.02941

-

1.202750

Aj,..

0.0,44

0.13552

0.636106

0.81508 0.94199 1:04055 1.10501

-001215

0.05170

-0.10611 -0.00165 0.09510 0.19280 br 0e42259 0.53952-

-0.015539

0.00239 0.00503 0n 9C1

js57A

-0.103832

-0.30e95 -0.070177

0.06862 -0.05667

V.U*t'40

0

-1.175265

-1.97036 -1.66687 -1363528

-0.088406

-0.1440

* 750426

7904A&

-1.81630 -2.1621C

-0.71838. 0.88934 -1.06849

0.339438

0.113043

-0.366160

-1 4yl -1.38464 -1.499e3 -0.05O253

e1.61627 -1.61133

-0.634598

PAGE IS ORIGINAL OF POOR QUALITY

ORIGINAL PAGE IS

OF QUA p()F

HHMM

233

GEOS-3 SUBSATELLITE POINT

OBSERVATION TIME WYMMDD

ITYREVOLUTION

SEC

LAT

E LONG

69

SMOOTHED RESIDUAL

SYNTHETIC RESIDUAL

OBSERVED ACCELERATION

CM/SEC

CM/SEC

CMISEC

MGAL

-0

16803

-0

05802

1037

15.

C.SS

750426 750426 7 et ebC 750426 750426

1037 1037 .... = 1038 1038

'-Zzb2 7504z6

104b 1058

35. 5. .5. S. 15. a5. 3G5

7.63 U.17 B .7 9,24 9:78 2031 10 85

267.10 266.80 266.51 266.21 265.91 265:61 2f5,31

-0.L3302 -0.15506 4 2 -- 0. -. -0.17160 -0.05520 -0.12911 -0.17350

750426

1038

55.

11.92

264.71

-0.21489

-0.14137

750426 750426

1039 1039

25. 35.

13.53 14.07

263.80 263.49

-5.14584 -0.0989g9

-0.13706 -0.13408

750426

1039

55.

15.14

262.88

-5.09441

-0.12719

750426 751426 75a e6 750426 75042&

15. 25. as. 45. 55.

750426

ID40 1040 io 1040 1040 lu.1 1041

15.

16.21 16.74 i; G a;, 17.81 18.34 aUA o~of 29.40

262.25 261.94 26i .C 261.31 26 O.99 eou.01 260.35

-0.16275 -0.20931 a E643 -0.04523 -0.03493 -.. Jo~uzul -0.09006

-0.120A5 -0.11762 a10go ... -0.113e5 -0.023647 -0.11302 A.L-UjUoln --0.11353

750426 750426

1041 1041

05. 45.

20.46 20.99

259.71 259.38

-0.10242 -0.17414

-0.21656 .­ 0.11672

-0.21328 -0.23400

750426 750426

la@z 1042

5. 15.

22.05 22.58

25a.T2 258.39

-0+11789 -G.14387

-0.12370 -0015627

-0. 2995 -0.21876

750426

2042

35.

23.63

257.71

-0.12677

-0.15117

750426 750426

1042 1043

56. 6.

24.69 25.21

257.03 2566

-0.04017 -0.15451

-0.13546 -0.13717

7504Z6 .75042:

1043 10 3

26. 36,

26.26 26.78

255.99 "255,64

-0.10280 -0.08891

-0.13909 -0.13883

750426 750 26 750.2,; 750426

1045 10 104 1044

56: 61 5L. 26.

ii,83 28:5 fBo87 29.39

254.9z 154mE6 254.2?, Z5".E3

-D.L'9735 =2:013756 _G L HE2 -0.11902

-0.13460 -01013 0. 1370113 0115

750426 750426

1044 1044

46. 56.

30.42 30.94

253.08 252.70

-0.16217 -0.10840

-0.09235 -0.07803

16. 26 1

31.97 32+12

-0.08738 0 124348

(16.

33.51

251.54 251.55 25'A00,11 250.76

-0004511 -0,02733 -0091,1 a6u 130 0.00ca52

6. 16.

-0.01016 0.17079

109

750426 1045 7504 1 :5 750-2 4 5 750426 1045

S.

12.46

264.41

-0.08813 -0.100g4 l -o-B G -0.12131 -0.12575 -0.1341, -0.1Z826

-0o.14094

-o.L3671

0.08242



-1.19842 -1.03927 -, -0.71342 -0.55431 -0.39923. -0. 4888

03 3

0.02359

-0.090762

0.1342a

-0.05980

"

0.635435

0.2e746 0.24747 ia 0.12491 0.04555-

0.516688

-0.11107

-0.19873 0.02038g

-0.17941 -0.16049"

0.027075

0.2nR2a 0.4245a

0.021269

1.20245 1.37377

1.41005e 1,3lOlE

0,08556 0 .1Z 02 1 -1 .11035 0.02l1z8 0.12997 .. ......... 0.15714 0.17069

1.1,510 41 4 9 879 1; 1.15621 . 1.2000E 1.20614

7504E6 5 755 4.6 750426 - O. A 750426 750426

B6,0-5 1069 3, 1 654 4 6 , 3 6 .5 6 70 0 6: Z* 7.56 1047 1. ....... 1047 26. 36.56 1047 36. 39.06

248:,71 2 8 28 27 247.42 246.53 246.$5

0.06405 0 06 9 4 00.0927b 0.04355 ...... 0.L2462 0.24407

71014

10

56.

40.06

245.16

0;2662

0.170

0.144466

1.1477Z

7E50 26 750426 750426 750426 750426

10.8 1048 1048 1048 1048

.6. 26:. 365 46. 56.

10 4 1.52 42.01 42.50' 42.98

244o2 243.74 243.25' 242.76 242.25

0,1868 0.2500g 0.22448 0.12016 0.3645e

0.220v30+010 0.22999 0.237.79 0.24332 0.24624

" 0,IE4036

0e53152 0.05516 0.4135 0.19128

750426 750416 750426 7504a6

1049

L6. 3 5. 46.

241.23 207 No92, 240:1-' .239.63

0.23979 160T5R. 0. 0.z5515 0.21854

0.24.

1049 1049

43.94 .2 4e90 45.37

go287 0.21703

8 77 .I -­ 0m9 57 -I.19384

750426 750426

1050 1050

6. 16.

46.32

23853

0.17925

0.I10546

-1.57526

46.,78

237.96

0.17154

0.16836

750+25

1050

556

47*110

236,60

0.05308

0.12,951

1050 7H0UM 7542 LI

56.

41.62 49.07

235, 61 234.99

6 0,i150 0.05650

0,208653 0.06454

0 #6:

4.7 60.41

257 233.09

0.00656 0.11299

0.02241-Ie15 0.002Z1

5

9 1:,29 51 _73 52:1 52.58

221:75 231+05 3,5 229.69

0.05809 -0:14240 -,109 -0.22400

-0.03433-0.05011 -,b -0.740a

750426 75 62

1052 10 a 1052 1052

46. 56.

53.43 53.84

228.24 227.49

-0,1S96e -0*12533

-0.08787 -0.009a4*

750q2& 750426 750 26 750426

16. 1053 1053 16. 1033*.5+6 46. 1D53

54.2. 54.66 55.85

225.73 225.96 243 223.55

-0.13522 -0.13622 -07 0.00580

-0.081 -0,0791 0 1 -0.06253

750426 750426

1054 1054

6. 16.

56,.2 57.00

22, 221.00

.001936 -0.04325 -0.03521 -0.00005

A-17

'

1

75026 750426

0.002867

1.60546 I= -2018 06 1.59500

0.04284 0.050llz

6. 16: 26+

-0.049676

0.50850

249.95 249.54

i651 1052

0.239837

-0.07259 0.00771

34.S3 35.04

752;6 750426

0.297313

R0.a3274

1046 1046

750426-15 75042 L01

-3= - - -- -

0,a8324 0.32038

750426 750426

7

SYNTHETIC ACCELERATION MGAL

-147001 -t

75U426

75042

267

RANGE RATE RESIDUAL

1.005Z50

0.894333

-6.

437169

-1.70363 , -0.0121517

-1*"401a -ISET113 -1.87477

-1.747534

-1.75499 -0,0g3449

-0.094e54

-1.53092 -1.35715 -1*1 077 -0 8647 -0.30283 -0.00328 0*.21503 0*738 0.72317 0.92836 0.87676 0.77:364

-0.738719

0.567570,

REVOLUTION 233

OBSERVATION TIME SEC

GEOS-3 SUBSATELLITE POINT E. LONG

RANGE RATE RESIDUAL

SMOOTHED RESIDUAL

SYNTHETIC RESIDUAL

OBSERVED ACCELERATION

SYNTHETIC

ACCELERATION

CM/SEC

CM/SEC

CMISEC

MGAL

MGAL

YYMMDD

' HHMM

750426 750426 750426 75D426

1054 1054 1054 1055

36. 46. 56. 6.

57.73 58.09 58.44 5a79

219.21 218.30 217.46 216.41

-0.00291 0.04882 0.01960 -000417

-0.02143 -0.01676 -0.01371 -0.01227

750426 750426 ...... 750426. 750,26

1055 1055 .... 10551056

26. 36. .. -1 56. 6.

59. 4 6 59.79 60.tl 60.42 60.73 61.02

214.4S 213.44 ete.42 211.37 210,31 209.22

208.12

-0.03570 -0.08017 0.*; 0 0.02057 -2025281 0.03604

• 0.04950

-0.01410 -0.017-32 0.02215 .- C0.02873 -0.03727 -004802

750426 75042

1056 1056

46. 56.

61.86 62.12

205.86 204.70

-0.02177 -0.04036

-0.09317 -0.11166

-1.60917

-1.77232

75026 1057 750426 1057 75026 l~.' 750426 1057

16. 26.

62.62 62.85

202.32 201.10

-0,14405 -0.22794

-0.15073 -0.17009

-1.89500

-1.3e48

-0.20906

-0.20556

75426 * 750426

1056 1056

16. 26.

3

46.

LAT

61.31

Z36.0?

v I044~

63.29

1~d

198.61

-0.06101

0v.lI~b

-0.Ol0tZ

0.47915 0.31794 0.10399 0.02413

0.b'4278

-O.2148e

-0.32734

0 ..... 0.012498

-0.56934 ".75638 -0:95329

-0.061103.

-1.17401

-1.70a.

-1.5055e

ORIGINAL PAGE IS OF POOR QUALIY

A-18

GEOS-3 Revolution No. 239

h 18

April 26, 1975, 21

A-19

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 239

0.4

SST RESIDUALS

-0-0 . of C)I

-0.2!

S

• •

0.2

o

o



TIM

IN

MNTS

FRMARL2,17,1a8

OO.

a ~TIME

9

non

20

2

IN MINUTES FROM APRIL 26, 1975,

30 2 1 h 18 m

3

4a

GEOS-3/ATS-6 SST RLange Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 239

U>

SYNTHETIC RESIDUALS

0.1

LU co

-0.0 •

H

OBSERVED RESIDUALS -0.1

-

E.J 2

I 0

I I 5

I I

I I I I t0

t5

II

I I I I I I I. I 20

I I I I I I I I I

25

TIME IN MINUTES FROM APRIL 26, 1975,

30 2 1 h 18 m

35

I

I 40

I I I I

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 239

SYNTHETIC ACCELERATION

1.5



a .

C.,

-

-

S.

-

SMOOTHED RESIDUALS

TIME IN MINUTES FROM APRIL 26, 1975,

2 2 h 5 6m

GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 240

U-2

SYNTHETIC RESIDUALS

0.1

U

-0.0

-0.1 -­

13"

--

10

OBSERVED RESIDUALS

15

20

25

M0

m h TIME IN MINUTES FROM APRIL 26, 1975, 22 56

40

5

GEOS-3/ATS-6,

SST Range Rate Residuals

Computed Using the POS-110 Gravity Model Coefficients to (12, 12)

Revolution 240

3.0

1.5

SYNTHETIC ACCELERATION

OBSERVED ACCELERATION -1.5

-3.0

I 0

5

10

15

20

25

30

TIME IN MINUTES FROM APRIL 26, 1875, 22?

56m

35

40

45

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 240

3.C

Sx

2-

X

x

CD

z

-

x

x

C.)C

-J

Xxx *


I

1.5 SYNTHETIC ACCELE RATION

-1.5

OBSERVED ACCELERATION

-3. (3

a

5

10

15

213

25

0354 TIME INMINUTES FROM APRIL 27,1975, 2h 4 2m

45

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 254

3.

2.

-4

o z

0

XX

x

1

x

Sxcx

X

o-

x

X

-1.

X

- .I

-3.

-

-2.

I

- II

-i.

o.

1.

..

3

OBSERVED ACCELERATION (M GALS)

A-45

Cs

REVOLUTION 254 OBSERVATION TIME YYMMDD

E LONG

AT

SEC

-HMM

61.49 61.21 60.92 60.62'

14. 24. 34. 44.

330.65 32953 328.44 327.36

RANGE RATE RESIDUAL

SMOOTHED RESIDUAL

SYNTHETIC RESIDUAL

OBSERVED ACCELERATION

SYNTHETIC ACCELERATION

CMiSEC

CM/SEC

CM/SEC

MGAL

MGAL

0.o7E77 29 .013660 - -0.05589 -­008394 0.10841

.... 0.02975 0.02654 0.0225 0.01989

-0.005337

2242 2242 2242 2242

750427 750427

2243 2243

4. 14.

60.00 59.68

325.26 324.25

-0.08619 -0.00526

0.01310 0.00957

-0.28461 -0.27523

7504!27 750027 750427

2243 224-3 2243

34. 44 54;

59.01 5867 58.32

767427 rC--r 750437 750427

2244

322.26 321430 320.45 310.43

0.01509 004555 0.09307 -040467

0.00200 -0-00219 -0.006(0 -0.01154

-0.30415 -0.34688 -0.415 -0.45747

-..

-

-~

54

4.

.S7.)7

-

K

--

-l

A

AOll

-flflA6

I.

.1

2244 2244

24. 34.

57.24 56.86

317.62 316.75

0.05365 -0.07210

-0.02185 -0.026e3

750427 750427

2244 2245

54. 4.

56.10 55..71

315.04 314.22

-0.05037 -0.25190

-0.03490 -0.03736

750427

2Z45

14.

5*.3

3.4

750427

2245

24.

54.9

312.61

-0.01127

-0.03814

750427 750427

2245 2245

44. 54.

54.11 53.70

311.06 - 310.30

-0.10363 -0.29301

-0.032i4 -0.02836

750427 75D427

2246 2246

14. 24.

52.86 52.44

308.24 308.12

0.07218 0.02117

-0.017A7 -0.1170

z4O

.4.

b4.01

jol.

0- UB

'104ZI

750427 71-pr

750427 750427 750427

t

2246 -.

44.

1A

750427 750427-

4. 14. Z. 34. 44. 54.

CO

51.58

..

2247 2247 22t 2247 2247

-I

.C

50.71 ,50.27 '530'1 49.37 48.92

306.74 qfl

fl

305.40 304.74 303.47 302.85

46.4r

304.44

48.01

301.64

0.00p61 0

AIO

2248 99.91

IA -fiA

750427 750427

2248 2248

24. 34.

47.09 46.63

300.47 299.90

750427 750427

2248 2249

54. 4.

45.69 45.2Z

298.79' 298.24

750427

2249

24-

44.27

297.18

0.02753

flA

47t70 *A

296.14 295.64 29i ;4 294.65 294.16

-0.00698 -0.04326 0 o11S, 0.069a7 0.09496

?

760g24t

750427 150427

DAS1

2249, 2249 325 2250 2250

r50427 750427 r50D427 750427 -~~' --750427 150427

2250 2250 2251 2251 --2251 2251

'50427 ?50427 p50427 '-042z T504 7

225k 2952 2252 2252 2'S, 2252

'50427 "50427 '50427 '50427

22.35 2253 2253 2253

D50427 '50427

44. 54.

43.31 42.83 '2 .. 41.86 41.37

14. 24. 0 34 ..

44. 54. 4.. 14. -' 34. 44. 4. 1424. 34. A, 54.

.

0pp.

40.39 39.90 39.41 38.91 -9 .. 37.91 37.41 36.41

Q

D0405V

0.08367 0.04075. 0.02404

0.4)360 n.10087

0.20313 0.1056 0002 -0.02539 -0906009

017

87

0.04281 -0.05183

-0.08354 -A

-

0.017974

I'-

0.01296 0.01496 * 1 0.01917 0.021-5

09vpc9C

-0.014757

0.024.

-0.03918 0.01765 .a-002217 0.12817 0 a . -0.00179 0.09420

0.02563 0.02793 009u5 0.03147 0 0-1 0.03319 '0.03289 0.0298 0.02558 0.02042 0.01506 0 0017 0.00125

-0.04824

-0.00634

34.: 44. 54.

31.83 31:42 30.80

286.39 286E01 285.2 285.24

0.00174 -0.05036 -0.1001 -0.11702

-0.02147 -0:02849 -0.03453 -0.04072

2254 2254

14. 24.

29.77 29.25

284.49 284.12

0.03496 0.02706

-0.05003 -0.05336

150427 750.27 r50427 '50427 F5042-/ '50427 F50427

2254 2254 2255 2255 2255 2255 2255

44. 54. 4. 14. 24, 34. 44.

28.22_ 27.70 27.17 26.65 26.13 25.61 25.08

283.39 283.03 282.68 282.32 281.97 281.62 281.28

-0*07224 -.0.09901 -0.05621 -0.03572 -0.14475 -.0.07189 -0.07552

-0.05712 -0.05743 -0.05659 -0.054t4 -0.05126 -0.046134 -0.04139

50427 ,o 7 F50427 '50427

2256 BS" 2256 2256

4* 4. 24. 34.

24.03 23.51 22.98 22.45

_280.59 280.25 279.92 279.58

-0.04969 0.07203 0 -02254 -0.10212

-0.02818 -0.02088 -0.01342 -0.0606

'50427 r50427

2256 2257

54. 4.

21.40 20.87

278.92 270.59

150427 750427 750427 150427

2257 22572257 2257

24.

19.81 "90.98

277.94 977.69

0.09177 0.09344

44. 54.

18.75 18.22

277.30 276.98

-0.04505 0.05997

750427 F50427.

2258 2258

14. 24.

17.16 16.62

276.35 276.04

0.03064 0.07173

0.05181 -0.07065

0.02310 5*5712

- ------

-0.012163

0.14400 fl.1Anfl 0.17798 0.18535 0 IVosa n.18796 0.18742

-0.600430

-0.370503

0.19284 0.19330 0.18446 0.16075 0 HA?0.05613 -0.02616

amrIO

-0.248W6 "0*37002 -0.48781 -0.58990 .gas q -0.70829

0.215785

-0.71903 -0.005189

-0.021019 -

*

-0.033105

-0.019595

-4.66173 -0.60448 -0*3019 -0.46411 -0.32850 -0.26212

-0.081045

-0.334404

-0.10206 -000205 0.10950 0.22817 0.34797 0.46061 0.55697 0.67459 0.69105. 0.6823 0.65344

-0.001417

0.35302

0.314145

Q.20884

0.304952

0.25288 0.2267C 0.018125

(.22210 0.23927

SORIGINAL

A-46

0.022565

0.55056 0.48590

0.03066 0.03381' 0.03958 0.04249

.

0.189.

0.00740 0.01330 "

-0.074487

0.03281 0.07417

0.00955 A-l1All

l7R*70

-0.06393 -0.03947

0.042178

0.006t8 0.00730

287.18"

24.

0.402385

-:4--11-v

0.00692 0.00653

33.37

4.

0.50730 0.56261

-9.003479

fl.A...

0.0389t -0:2'0052 0.17970 0.05179 0 007,12 -0.06500

2253

0.019119

0.39833 0.50287

0.00824

a

...

289.65 2840 22 288.81 a50427 288.39 234 99 287.58.

'50427

0.1176

fS

35.40 34.89 9 23.88

25.91

-0.016181

62454 5

0pfl0

nO0'AV

293.21 292.75 292.29 291.83 " 290.04 290.E1

-,0.234912

00084

.414

-n

AA'

-0.33262 -0.19503

"0.00560 0.00773 0COi 0.00953 0100944

tJ..b0

lbU4.f

4

A

-0.517e8 -0.49815

-0.0E855

-0.00143

0.08939 0.06936 009 -0.06494 -0.04354

7RM407

4.

0.0

0.129950

-A11

0.005

0.062

750427

750427 150427

I

-. 30712 -0.32259 -0.32416 -0.31571

750427 750427 750427 75042?

224

I

0GEOS-3 SUBSATELLITE POINT

0.335772

PAGE IS OF POOR QUALM

REVOLUTION 254 OBSERVATION TIME

RANGE RATE RESIDUAL

SMOOTHED RESIDUAL CM/SEC

CM/SEC

SYNTHETIC RESIDUAL CM/SEC

OBSERVED ACCELERATION MGAL

YYPMDD

I4HMM

SEC

LAT

E LONG

750427 750427

2258

44.

15.56

275.42

0.05356

0.04897

0.29896

15.03 14.49 13.96 - Q2 12.89

275.11 274.80 274.49 27q a 273.88

-0.02211 V0.3426 0.06622 0 '.2­ -0.03858

0.05261 0.05648 0.06052 -0.06870

'0.33382 0.36422 0.38384 - 1I*! 0.3770f

12.35

273.58

0.07345

0.07244

54. 4. 14. 'ar 35.

750427 750427 ;iDqnq 750427

2256 2250 2259 ing9 2259

750427

2259

45.

750427 750427 750427 750427

23 23 23 23

0 0 0 0

5. 15. 25. 35.

11.28 10.75 10.21 9.67

272.98 272.68 272.38 272.08

0.11725 0.02851 0.06554 0.17164

0.07809 0.C7954 0.07974 0.07851

750 427 750427

23 0 23 1

56. 5.

8.60 8.06

271.48 271.19

0.01248 0.09291

0o07129 0.06514

1 1

25. 35. 45. 55.

6.99 6.45 5.91 5.38

270.60 270.30 270.01 269.71

0.15421 0.07420 -0.04336 -0.01049

4.C4809 0.03757 0.02602 0.01365

23 2 23 2

15. 25.

4.3Q 3.76

269.13 268.84

-0.01876

S.Z

685

750427 750427 750427 750427

7501427 750427 TZ50.27 750427 750427 750427 750427 750427 750427

23 '23 23 23

1

1

LZ aZZ. 23 23 23 23

~7s497 750427

7504Z27 752 37 750427 750427 l~..CJ

-001.0

1 -0.02609

-0.05057

0.06C893

0.008232

-1.17834 -1.17529

35. 46.

-0.00 -0.54

266.80 266.51

-0.16281 -0.09963

-0.11451 -0.12416 a.ZT 0.2ea7 -0.13852 -0.14260 -0.14444 -0.143R24 -. l.7.C

-0.952e1 -0.83226

25.

Z3 4 13

A

23 4

23 5 24 23 5 23 5

35.

41,

265.93 265.63 465,34 2655C0

-0.12098 -0.09531 -0.17999 -0.17223

-1.77

584.78

..

264.47

-0.13642

-4.85 39 -5.92

264.17 a3 E8 263.50

-0.12159 12730a -0.14742

'-0.13303 -0.123E5 0 11212 -0.00840

35.

-6.46

263.29

-0.11493

-0.08297

43.

t1.V.

e04vUU

-V.11...

6

a3 6

as.

9.6

750%2!7

6

l.1043

-4.31

5. 25.

-7.54 -8.07 -8.61 -9.15

5 6

0-259:

-1.62 -2.16 2Z.70 -3.23

55. S. 15. 25.

23 13 23 23

P

15 is

55.

-0.08720 -0.03891

262.11

-0.01637

261.82

0.50512

-0.00138

261.52

0.OSie

*loi4 §A1207

261.22 260.92 260.32

0.01704 0.00749 -0.0400 0800 006 0.11426

704,7

11

7

750427

23

7

750427

23 7

m ;So 750427 750427

2 23 8 23 8

. 5. 15.

'3L'4LI

ZS C

43

23 8 23 8 23 8 23 9 13 9 23 9 23 9

35. 45. 55. 5. 11 25. 35.

-16.10 -16.63 -17.17 -17.70 1, 27 -18.76 -19.29

257.67 257.56 257.24 256.93 1 2.6 256.29 255.97

0.09533 0.16114 0.1107e 0.16527 0 en? 0.12638 0.04247

g.

-iv.pe

433.03

V..bJet

u.uitV0U

23

y

1,-

..

35.

-12.90

-13.43

259.41

13 2' -14.50 -15.03

259.11 258.60 258.49

13

,33

259.71

dSkld

255.33

0.02461 0.03521 0.05223 .0O R 0.06514

0.04860

0.04291 0.05766 0.05725 L*00004

-0.066143

0.94776 iAT 1.36627

1.246552

0.019840

1.5083 1.3fl 1.60692 _I-q927 1.44043 1.28229

1.216737

0f59

0.43415

Q90752 0.07993 0.08380

')*0122 0.37539 0.33711

U00

.

0.938E6 0.79249 0.58368 .28 0.4695S

0.07059

0.027000

0.21269 0.12316 0.02027 -0.002e 0 156 -0.28889 -0.36836

23 9 2310 2310 2310 2310 2310

55. S. 15. 26. 36. 46.

-20.35 -20.88 -21.41 -21.94 -22.46 -22.99

255.00 254.67 254.34 254.01 253.68

0.01467 0.1412E 0.11713 0,05120 0.08716 -0.03637

0.07469 0.06932 0.06372 .0.05807 0.052 0.04714

750427 750427

2311 2311

6. 16.

-24.04 -24.57

253.00 252.66

0.05304 -0.00672

0.03710 0.03240

-0.39040 -0.36379

750427 750427 751 27 750427

2311 2311 213 2312

36. 46. 56. 6.

-25.62 -26.14 -26.66 -27.18

251.97 261.62 251.27 250.92

-0.00351 -0.04122 0.16975 0.14474

0.02298 0.01789 0.01234 0.00628

-0.37141 -0.41235 -0.41t*l -0.55082

750427 750427

2312 2312

26. 36.

-28.22 -28.74

250.20 249.84

-0.07880 -0.11034

-0.00747 -0.01516

750427 753427

2312 2313

566 6.

-29.78 -20.30

249.10 248.73

-0.05;5 0.12193

-­ 00315M4 -0.039i4

5042,7 750427

2313 2313

16. 26.

-30.81 -31.33

248.25 247.97

0.01724 .. 11531

-0.04756 -0.05475

AA

AIC

-32.35 -32.87

247.20 246.El

-0.07230 -0.12160

23.33

..

~S

750427 750427

2313 2313

723tR7

ZJiA

0.

2t0. 1

3.lZieal

750427 750s427 750427 750427

2314 2314 2314 2314

16. 26. 36. 46.

-33.89 -34.40 -34.90 -35.41

246.01 245.61 245.20 244.79

-0.21159 -0.01322 -0.00575 0.05803

46. 56.

-.

2315

6.

-36.42

243.95

-0.15713

2315

16.

-36.92

243.52

-0.06900

-0.04963

750427 750427

231S 2315 2313

36. 46. 30.

-37.92 -35.42 -jd.,e -39.41

242.65 242.21

-0.13075 -0.06705 0U.J064 0.06240

-0.03229 -0.02298 -0.i0t -0.00497

2316

6.

241.31

-0.05704

A-47

-0.47601 -0.60661 -0.521S7 -0.52033 -0.50156 -0.46860

-0.68173 -0.72033

-0.103950

-0.325607

-0.74567 -0.73535 -0.023041

-0.70474 -0.64729 -.

-­ 0.258160

00

-0.44767 -0.31364

0.07507

750427

441.t

-0.003700

-0.06642 -0.07045

750427

(5U42e 750427

0.016436

.. I"

-0.07419 -0.07380 -0.071l4 -0.06832

-0.237338

-0.440

750427 750427 750427 750427 750427 750427

70047-121

l0A~

C1~U30'

UU,02

0.08948 0.09106 0.09167 0.09125 0 O0.8727 0.08364

0V.01'L64

0.69847

-0.01r44

23 6 23 6 23 7

45.

-0.Luidlb

-0.04943 -0.0358

750427 750427 750427

-10.22 -10.76 -11.83

-1.245814

9.313e -0.50194 -0.29657 -U.90b,, 0.17994

0.00.

262.71 262.41

45. 55. 15.

.

-0.067950;zes0

23 3 23 3

23 4

-0.375221

-0.00622 -1.01674 -1.966 -1.14669

-1.16012 -1.15091 -1.13432 -1.10059

5. 16.

0.242302

-0.45997 -0.61964

-0.0!311 -0.066413 -. 07940 -0.09186

23 4 23 4

1' 7?95

0.21880 Al.t1960 -0.00204 -0.14357

"0.10150 0.06193 0.00475 -0.09254

750427 750427 750427 750427

,soge,

0.058320

268.25 267.96 267.67 267.38

iL0fl6Z

SYNTHETIC ACCELERATION MGAL

0.34676

2.69 2.15 1.&i 1.07

C3

750427 750427 750D427 750427 7SV4'7 750427 [ 750427

I.

45. 55. 5. 15.

35 5 5.

750427 750S427 750427 750427

~I

2 2 3 3

ne--...Z

I

GEOS-3 SUBSATELLITE POINT

x69 -0.030228

-0.01766 0.12483

0.25607

0.37193 0.60878

0.71414

0.86832 0.89558 V*0,f137 0.81377

0.031847

REVOLUTION 254

OBSERVATION TIME

GEOS-3 SSATELLITE POINT

56. 6.

-41.87 -42.35

.26.

-43.32

W

230.95 238.45

23"b'

~ 2317

16--&I

MGAL

0.005419

0.56905 0.41644

0.13354 0.11879 I77s 0.0'6058 -0.03054

2316 2317, 2317

MGAL

222 .4

'C6

7

CM/SEC

240.38 2390.91

26. 36.

2Z15

Z7. 7Wt

CM/SEC

A0

2316 2316

750427 =r 4 7 750427 750427 75011 750427 750427

SYNTHETIC ACCELERATION

-40.40 -40.09

1664P?



OBSERVED ACCELERATION

CM/SEC

SEC

750427 750427

SYNTHETIC RESIDUAL

E.LONG

HHMM

750427

SMOOTHED RESIDUAL

LAT "

VYMMfD

-;5G-4pT

RANGE RATE RESIDUAL

4.LC*'S

0.04157 0.-n -0.00322 -C.07939 0 .0220 -0.05131 0.0938a.

plA.4

750427 q9ICU7 750427 750427

2318 231" 2319 231 P21 2319 2319

46. qS. 6. 16. 2C 36. 46,

-47.10 43 -48.02 -45.47 0 3 -49.38 -49.82

233.12 MI 231.95 231.35 230.12 229.49

0.05586 0-04449 -0.04339 0.06392 017'7 0.02234 -0.03022

750427 750427 750427 750427

2320 2320 2320 2320

-50.71 -1.15 .26. -51.58 36. -52.01

228.20 27.54 226.8E6 226.18

-0.06216 0.04093 -0.03503 -0.13280

-0.01125 -. 0168 -0.02124 -0.02523

750427 760427

2320 2321

56. 6.

-52.86 -53.28

224.76 224.04

-0.01261 -0'.14156

-0.03017 -0.03082

750427 750427 750427 750427

2321 2321 23 2321

26. 36. 46. -56.

-54.11 -54.52 -54.92 -65.32

222.55 221.78 221.00. 220.20

-0.04912 0.03720 -0.01755 -0.06S6

-0.02824 -0.12499

2322 2322

'16. 26.

-S6.10 -56.48

211.56 217.72

0.02257 -0.0095

-0.00167 0.00566

750427 750427 750427 750427

2322 2322 2324 2323

46. 56. ;. 16.

-57.23 -57.60 -57.96 -58.32

216.90 215.09 214.19 213.26

-0.08278 0.02598 0.07238 0.15184

750427 750427

2323 2323

36. 46.

-59.01 -59.34

211.35 210.37

0'.08e54 0.01514

0.0198 0.02617 0.0312?5 0.034S5 0 0.037E.2 0.0362

2324 7.3 2324. 2324 2324 2324 2325

6, " ,7 .­ 26. 36. 46. 56. 6.

-59.99 6.,0 ,.fll -60.61 -60.91 -61.20 -61 48 -61.76

208.36 07T0 206.27 205.19 204410 202s98 201.e5

-0.03766 2 0.00772 0.041-14 0.02892 0.02612 -0.06723

l3C3

lo.-

.pc~U4

6. 36. 46.

cuu.,u

-UDJ~vu

2325 2325 2325

750427 7rfl4'7 750427

7504Z7 '750427

1755027 750427 750427 750427 750427 '750427 ".i~

750427 7 1027 750427

-

6.

'6.

-62-28 -62.52 -62.76

199.53" 198.34 197.13

-

-

0.010437

-0.03416

0.009791

0.001912

-0,01to58 0.00396 O.Ozozo 0.)16E2 -0.00973

-0.605924

.0en__________

23Y7 zpi 2318 2318

236.42 235-.89Z 234.81 234.25

0.14215 0.04861

U. 0.0266

46. -44.28 56; -44.475 C. .... z .16.. -45.70 26. -46.16

=

0.391408

-

0.02276 0,02466

Q.U.'

237.45

-A~n

0.00988 0.01547

0.02608 0.02599" 0.02se . 0.02557 0.02505 0.02278 fl.Oflf 0.01793 0.01434 0 01o:" 0.00515 -0.00017

-

?.MC

-C.053487

-0.I2782 .0.,posfl -0.28395 -0.35906 0wa a3~ -0.47845 -0.51396 -0.52011 -. 45607 -0.42650 -0.34334

0222Zn6a

0.349350

-. 12701 -0.00444 -0.004349

-0.0203 -0.01502 0.057078

0.24014 ".3524 10!45619 " 0.54772 0.67692 0.7302

1.083892

0.843326

0.65396 0.57111 0.4560 0.29351 -I0------

-19 --.. 05868 -0.22562

0.02877

-0.49340

0.01637 0.00911 0.00159 -0.00587 -0.01304

-0.65547 -0.69558 -0.70761 -0.69162 -0.64947

Ubu~r

5?,91559 -0.11081 -000098

AOF

-0.02575 -Z073099 -0.03541

-0.59709 -. 42171 -0.33597

PAGE IS ORIGI1AL pOO QUALITY'



-

GEOS-3 Revolution No. 268 April 28, 1975, 22h 27m

A-49

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 268

03.4

SST RESIDUALS

0-2

.

0



0



o

-2

SMOOTHED RESIDUALS

-'1 4I I I I I I I I I1I I I I I I I I I I I I I I I I I I I I I I I I | I I I I I I I I I I

a

5

10

15

20

25

TIME IN MINUTES FROM APRIL 28, 1975, 22 h

350 27

m

40

45

GEOS.3/ATS.6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 268

0-2

SYNTHETIC RESIDUALS

0.1

U -

-0.0

OBSERVED RESIDUALS -01.1-

-0.2 0

5

10

15

20

25

TIME IN MINUTES FROM APRIL 28, 1975,

]35 2 2 h 27m

40

45

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 268

3.0

-

SYNTHETIC ACCELERATION

~II LID

Cn

-0.0

Si-.0

-1.5 OBSERVED ACCELERATION

0

5

to

15

2-0

25

TIME IN MINUTES FROM APRIL 28, 1975,

30 2 2h

2m

35

401

45

GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 268

3.

2.­

['C
a


C o

-

SYNTHETIC ACCELERATION

j

-

0.

-

7-1.5

",

-

OBSERVED ACCELERATION

- 3.0

I I I I I 0

5

I I 10

I I I I I I I I I I I I I I I I I I 30 20 25 15 TIME IN MINUTES FROM MAY 13, 1975, 0 h 3 m

I I I 35

I I I I 40

I I I I 45

GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 467

3.

2.

X $1..

S=96 -0* 5=s5 -fin')9 t ,0zb9s -O.1229C "'.tl6b7 k'.19975 .- 6C47 -. 6C7C - .. -.­ 4Z52 -0.C8 94 -r.34 38 .I6seb .CtS n2.232,l 7 n*IS145, t . aIV7 -:oZE5 1. 4987 -:*C929I

57

=,

7 2

SYNTHETIC ACCELERATION MEAL 079

C.11610 f.1a(,30 -1,69718

C,106Et3

0*186854

c0ZSr39 0.35511 -

.

734

t,o,)25e5S

11-59 06 f-71842 ".E.743 Q.86Sa? 1.9277b .93493 C.97"4 1.° )228 1. 26C7 I,593 p3e3a

,).9t2506

1.73897d

..q3eS8 ,357q

q.C34277

*24-97 '.67347 ¢3 7 I C.177d9 --o344? -r.C5e10 -­'.12111

C.C2F11l

-C.442023

-0.25e a

246 246 247 2:47 247

75('531 75 53i 7EQ5a1 75C53, 760*,31 50531 75S31 750531 750531 750531 75rt531 7505Z1 75D531 750531 75OZ21 750531 75C-Ea1 7505 31 75-D531 75n5l1 75CEI1 75CI331

ACCELERATION MGAL

,13--297 r.ln737

2A6

0.

OBSERVED

RESIDUAL CM/SEC -.

',037,2 C.C.85a

7S5251 75C531 75CZ31 750531

3

SYNTHETIC

RESIDUAL ,CM/SEC

-I

5

, -C9 r.013"9 r14E1Z62 I*L2717 -Ipg5a

-M.23257

-C.$1436 *

-,51

-*33 - ,.z35ee -1.1224 -1.15256 -1,2 134 -1°15e4l I 5

-0.1101413

-,

-. ,69599 -. 55731 - .49140 -r.51427 - .61568

-0.312757

-t.039155

-O.Z79672

-C,67C9 -­ 0E39

-

o 3 74-

-,I9a68 cl - ,rS743 ',*-1259 ,17 -. 21465 .10 *72 C,4o459

0.114258

0,24416E

(.54302

-0,C14264

0.,q13473

7.

41263

C. 3 62 (,-.?3527 C. 3716 .P3549 s.'42Z9 C2529 e4 3 C.4523T C.55497 .:5624 CS8 -­ ,(2 O.Z5338 .°46 -. L-257 C. 34.1 C*S'5-T.97663 ¢ .­'513

A-151

15) -l~r-454 -1.02 41 -0.94421 -C.81441

-0.365867

4. E5406 .755-95 4. 81014 e.8 075 C.94731 0.963c1 C.95262 1.60.42. ' o46277 0,32sie ,2=22 -7.15276 Q.35S512235 C.12426 D.24432 n.17345 , $ 212,6 Q,.5~a .Z65559 1.36988 10 7672 .31593 .17033 4 -P-.91 -Z, 73 6 -'.Sbl g -. ,77C74 -G.91202 -n.97727

0.3.6T43

*.67C321

C.146315

-,57 -0.37753

-0.113533

PRE

OMNG PAGE BEANI

NOT VMD

GEOS-3 Revolution No. 724 m 3h 49 May 31, 1975,

A-153

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-I 10 Gravity Model Coefficients to (12, 12)

Revolution 724

0.14

SST RESIDUALS S. S"

*S ­

a

a

-

SMOOTHED RESIDUALS

1

S

tO5

20

25

30

TIME IN MINUTES FROM MAY 31,1975, 0 3 h 4 9 m

35

40

45

GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 724

0.2

SYNTHETIC RESIDUALS

0. 1

r

0.0•

OBSERVED RESIDUALS

-0. I

1

-0.2 0

5

0

15

20

25

TIME IN MINUTES FROM MAY 31,1975,

30 0 3 h 4 9m

35

40

45

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity,Model Coefficients to (12, 12)

Revolution 724

3.0

1.5

SYNTHETIC ACCELERATION

c-f

c -0.0

" ­

(0

OBSERVED ACCELERATION

-3.0 0

5

10

15

2)

25

30

TIME IN MINUTES FROM MAY 31,1975, 0 3 h 49 r

35

40

45

GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-1io Gravity Model Coefficients to (12, 12) Revolution 724

3.

2.

-J

e

x

x

z

X~

o3 LU

*XX cx


4CqS5 00221

0.294z 0.1117

00959

0Sae OII-.SAL PAGE1 .~:2115 ~4PO0l O QULIT

REVOLUTION 724

GEOS-3 SUBSATE WLTE POINT

OBSERVATION TIME

RANGE RATE RESIDUAL CMSEC 3.12419 ° 4d~c

SMOOTHED RSIDUAL CM/SEC CoCT 4e 07jla5

YYMMDD 7505 1l 750531

HHMM SEC 25. 4 7 35. 4 7

ILAT 47.1. .

E. LONG 27k.ot 27-l. S

750531 7b05 1 -7-.D-S1

47

.5. b. IS-

.. 72 4 .Z5 44.76

7eot7 P7k.--3 e779=

-0.0217¢ 0.1476a O.C755

5. d aI 4b.

3 . o .2.3

E75.,o 74..i

-O. 751 ).o01az

52.

q7.tc

L74.72

-O.iI4E

J-

270-.2

-O.O10l

C.,1,.3

-0322 -. 14200

. W- E

750531 750531

4

7505:31

41 4 I-

,

7551

E;.­

.5

750531 750531

4I

1E.

43,40

27.77

41 9

5.

41.35

Z72.24

750531

41 S

5.

41,55

o S. 15. t .

30.-4 2a..1 3 . 5

Z71.j9 a7C.-

. 45. 66..

37.95 2-7.4 S ..S

zos.-C2 26t; Poa° 0

J5. 5,

36.. Z .14

e6 77 67.j-5

37-7 Z4.55 55,04" ;13.91 2-1.4 20.69 -23.38 -1.*8 19I.35 iGo79

5E.E7 2&C.47 25.9 257..& 2 7,C6 25c..6 Z5EA 24.CS a2.70 2c53 z.2

7505'I1 750S51 7505a i 750531 750531 7605U31

41 -10 -. 1rd 41035 .1c 410

7150531 7553

411 11

5. 4115 35. 411 5-41 ----415 75 S5. 12 750551 5. I'53 '-l21 . 41r 7505-41 2 . 750521 4 5. 412 7 50521_ 41 3e. 7505i1

7505wl -75057553

413 15, 750551 Z. 41'3 750531 -17 3=. -'75053-Z 4b. 417 750531 = . _17 -7"13 414 75053l 15. 414 7650531 51 4 T50b a: J5. 414 750531 414 45. 7605--l -41,-.. 75 05H3. 115 -­50531. 41-' I. 7505-1 20. 41. 750531 3 . 415 750531 5. 410 7505m1 S. 416 750531 15. "553 WI6 4162E 5. 760EZI

41 417

35. 'E. ES. -b. 15o 3. 45. 55.

5231

41d --­ 41)

55. 5.

750531

416

7S05.31750531 7-S551 -750531 "-5U1 750531 -75 31 760531

7

-

416 4216 41. 4 1417 -

3

.

750521

2t.-b

-0.0 4

C.¢7a7o G.C7082 C.Ce 5 2

q

-0°167I5 0.317 9.4 -0.20-9 1 -e I -0.1027 -0,C 371.5 -0.1!552 -0.0445o -C -0.---gg.7

-0oc&37 -Q.cllj3 -C.1!328 -01394

4Z..t 17..8 2 5.I I9.%79 16.1577 el.47 16.00 2ti.11 I7.¢7 25.27 272145 2,195 2,690 2cC.05 -­ I ' ,17 251.70 12b.. 28G.25 6124 Z51.Cl 14.60 23C,75 40.7? 250.-5 1j.ss z5.7e257¢.1; 257.. Z.19 257.cc 21.44 4.,7 27.9t

0O.IzI44 0 -0.2t .1ew 06.12723 J .142P -O.G192 0.lq915 -0°.O715 0.07151 -1.2"483 0. 127ez 0.0523 O].Oe4 7 -O.05354 0C.1001 0.i32-O.C]L

-C.145C5 -0.1-91 CC54 1-317 -C.12572

856.!4 .a.02

-0.3157 5 O.CC

-C.

12.40 41a4E.

.

1

3 125 -i.15ic? -1.475 -^C4ES

-. 2C, -C055I

-C.1242061

5524 -CC200.9S797 -0.33951 -1.1414E - .01174 -0.41a12 0.146E ,31; 0.12 .012E4 0. 165 01.3172 0..517.33 0.41a2d -0.0c2e4 1593 n.'34Z-°25 1..?01 ).3075

0.582 0727

-071931 .07e

-0.277496

0.73Eqi7

0156

0.2t775 0113194

.')5.

C.OE5 0,0A717 0 820

-0.071i4

-0.t27

-c°2 Ccso17-0

CQ.1C113 0.C1

.16578 -0.CG172 .06458

2bl,26

-0.751919

0*0A181 -0.9 36 -3.9e02P

-C.075C5 -,o 120 -c.05es?

1.925.1Z=0e 7 H49 -­ 6.66 24a l-1.56

12.q3

-0.7115

° .9R6

Gc_19e7 0°5 .o O ,07g56 C,;Z45i O.C=b67

-C.0252 -0.019i2

196

1.2151S 1.6313 1.3 o231.

0,119e75 9.0137 0.025E 0.01357 0. 3055

Z51.13 254..7

-0.O342

-0.21051 -1.5a8&6 0.76E22 .145;0 0.S72 1,415

2Z5.70 2E=.-.a 2 -. Cc ?S., 2.75 2--4. 3

-J.17 -­ 4.00

172

'3.9213 -C13A082

13

C.-C.10oiE2 Glt 230 -O,3Z45 C.C057S t22 C -C.C 200 -. C711

-1.114E2 -. 12 -a.30,3-6

-0.6475?

-0131 -C.12155 -,)CE16 .c10t -OoL G97 -O.Iccl2

SYNTHETIC ACCELERATION MGAL -0.24 9 6

-1.0553

-C.IC057 -0.12592

OBSERVED ACCELERATION MGAL 0.09235 4 44 a

-I.E37G6

do.55

-0.12s90 -C,0c27 -C.C1423 -0.C165t1 0o-75

19.52 i.79 16.,0 17 17.10

372

-0.C11 e--41

-0°03Z4 -0.12251 -0.ICc23 -3.103L0 -0.17bZ6 -OiZP-1-716 -.

3.39 19.1a

SYNTHETIC RESIDUAL CM/SEC C.C ¢I 5

-°C -C.01d0 -Ce0

50

.,19ZIA-15 5

-07S4

-. 03A4 ¢I579

.CC5

-. Oa27-1 -21084 -0.Z2172 217 -0,? -0.6725 -,1.7;542Z551 -015S - .oza9? -0.16331

-1.2e 3 -n.0,57

-.

4

q

REVOLUTION 724 GEOS-3 SUBSATELLITE POINT

OBSERVATION Time YYMMDD 750.

HHMM

1

7bORZ1 750531

7505Z1 750531 7 331

750"Ji 750 zl

24b -et

750.31 7535.-l 75.0ZJ1 750531

50O 32

4 4. 7 147 1 7 4Z7

7 5 750

-27 447

1 -31

ACCELERATION MGAL

-I.CLt7

-Cocq277 5

-C.02Z741

C

240.7S 240.tC

"OC(.4 -P. -ODd1 -ColI140

-1.14404 -o.Ct g -C.CE876

-0'5 -1 oG9

221! .49.01

-3,3 483 -G. " i73

-SCCC73 -3G€00.30721

1.22iss

-1

S2E.ll 2 7-. EZ,7

-0o30 0.)))7d

-C*Oceg sq -Sn57

0.35.1a 36219;o817

4*01 -?. 7 -11.01

2L.

t. 3 o ¢ bc. 3.. .

750b23 : 7505 1 750 -l 7505-1

753t521 7b501l

SbYN'THETIC

ACCELERATION MGAL

zc. ... to.

2cL-

750%31

OBSERVED

RESIDUAL CM/SEC

-.

0,

42t 4 7

SYNTHETIC

RESIDUAL CM/SEC

¢

o9

-ld01b

2J.-7.-

-.. 1 -14..3 -14..7

--=1,oz

2oo " ,t;3 J, : EZ7l z3zoq

0G 1 0 ;7S4 0. 4 19 OOq: -0 )o

¢I

-c-C[ 5 .02 9 -0.93175 -C.00C7

-34 ---J.Oq

231.-5 1.1

-3o3 n - 01.i;

-c0430 -JnOC b70

-,

-¢,0C5

-

c,

-7,0 :1 :7 -Z71 -S . -. 17 -Ioa

°

,

75063,Jl

2.9

750 jj 75Oo31

4j3, -J3

I..

-,°7

7505--l

=3

D

-3oC

7 5

al

:

l

•RESIDUAL ELONG CMI EC

L.AT

4..

2Qb~

3

.-- S

-E d-, :°4:2. a3d;.lo .3:Z 7e

l7

,

1

;7cS

-,c2 0 3:014Z -o50.2

E

0.-a. P

.

RANGERATE

SMOOTHED

SEC

24c.-1 Z50.43° 2 3

3jcb.0 .

.c

-3043

C029 3o23q2

72

O.Z~S7

0.3145

-0°1317e

-0..e5g

-0.5=134

-06i17 -04536

.411 oeg&

OC53

.555

-3°0245

-3O736

C.S1C7

3.02334 2,E1

'1.ICdg6

0. 5,47 -004715e

0.405494

-0.6104,

-3.44A65

0-.117

oC

c 0127 ¢M 17 ¢° 2712 0.1371 O,.occa -C7C37

-1.63159

-O.0C7Eg -C.)C751

-O.CO

.OC?9A0160e

0. 2591 Os-.265e2 -0.11254

-0.3717

-n 0o 4S6

-0.2E340717

d

--o.22e35

5

.0l3401

-0.1456S

,la)--35316 -0.Z537

-. 293

GEOS-3 Revolution No. 730 m

h 55

May 31, 1975, 14

A-161

, GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (.12, 12)

Revolution 730

SST RESIDUALS

0.2"

a

.

aIM

SMOOTHED RESIDUALS

MI

20

23 1

TIME IN MINUTES FROM MAY 31, 1975,

4 14 h 5 5m

33

40

43

GEOS-3/ATS,6 SST Range Rate Residuals

Computed Usihg the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 730

SYNTHETIC RESIDUALS

1.0

C)

-1.1

OBSERVED RESIDUALS

-0.2

1

0

5

t1

15

20

25

30

TIME IN MINUTES FROM MAY 31, 1975 14h 5 5 m

35

40

45

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 730

3.0

SYNTHETIC ACCELERATION

,.

< -0.0-• -1

-

3.0I 0

OBSERVED ACCELERATION

I I I 5

I I 10

I I I I I 15

I I I I I I 20

I

I I I

I I I I

I I

35

30

25

TIME IN MINUTES FROM MAY 31, 1975, 14

h

55

m

I

I

I I IIII 40

45

GEOS-3/ATS.6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 730

3.

x xx

x

(9

z

x

0

X 4 xX X x

c F9X.

i>

x 3

-1.

X

x X

C

o-

x

x

x x

) x

-x

-2.,-

X

-3. - . -3.

-2.

I

I

-1.

0.

1.

OBSERVED ACCELERATION (M GALS)

, t

t;

7

A-165

2.

REVOLUTION 730 GEOs-3 SUBSATELLITE POINT

OBSERVATION TIME YYMMDD

SEC

HHmm

RANGS RATE

SMOOTHED

SYNTHETIC

OBSERVED

SYNTHETIC

RESIDUAL CU/SEC

RESIDUAL CMISEC

RESIDUAL CM/SEC

ACCELERATION MGAL

ACCELERATION MEAL

E. LONG

LAT

145L

44.

- t J.7

-1co C

-I)

7:9 z

7505j!

4&6

14.

-63.67

17o

-).!

j57

7505al1 750.-1

4I5t 14b,

---. 14.

.o? - =4.1 t

E5.19 1-

7505 l1 7505,11

I. 7 1 57

, I..

-e

11 .G¢ ;.?c

1..7 1457 14S75

34. , 4.

. ,a1 S -4.16°7

-15 53 1 5 7505Ll1!458 750E21 14 6

. Z4. 4o

-L3.07 -c .Jj -6C.14

I., 5i*si 5t. 7

7505-1 55I 7505-L

4. 14.

-Cbo12 -C5,10 cob

35Z.17 35Z.74 31J

-t.

3istll-.00

0

.C3201 3-.

-oCe 54

C.oCe0E1 00

-C.

7bo

-1

7505--1 75--05-1 "750d31

-750o3

75)5;1 -71505 1 7505i1

7531.3 -750-5s: 750

31

-750531

1459 1-53 l 5 b

I' 15

°

.5s

2

4*

-53°0

3E*t

0 0

14. *. ,

-Q..5t --

34". C*17 t°17

3'44 .z0 .

15 C

Z..

15

C

4o

,Sl -L-,

15 15

0

o

1t 15

D

5

.

14.

.- =3.79

750531

15 1

.3 .

-C-34

4.

750521

15- 1

--

53 I 7-- S31 750E31 750b3l 7505-1

1 I 1Z 15 - " 4. It Z 14. It 2 4 It

--55oE2 °0 -.

75&&;it-2, 75031~ lb 7.505.31 it -750521 15 75052 5 _755 1 75053l1 t56

7505=1

15

"750=-l

I5

2 2 73 7

4. 4. o . 14. 4. 4.

1'-g

14.

lb

7505 i 750531

.

t51 i

15 u 15 6 151 C

*

34. 54. 5 ,

.

&. 60E5 . --41I -st

Z4, .4. 5. .

D

C .c5

b

a .12 ;CC7

-;0c72t

.;z

5 I.3 I, ).:1374

,

i0.7S

-37.0-o* -3 o7 -2.41

7so 7UA 243CI-

3~ ~~

-)..+144

15

l

3.+

i71

9.)E

27

gCC 99 -0.05421

-0.15 ,2

z7

C 5

0.lt532

012o=

0.iz57

0.6q1651

t.2115, io?77901 1.1- 4c

1).E5p

0C

3°O.7

o1e75

1- Zll

.3

,1.,3 9

1-344-

005 :

C5

r1.F .-1 771

3*4I

I,1 .g

1o ] 0.27 .3157P

2 .C; t O

C017 C. 27=

:; 10 0.911 I 1.217 l° Z

0,7C

.2411~

-C.103I

515

.

2 C4

OCt33

-n 91517

|0537

cc,1!

-^C .

C

15t

0.,0 035;

C. ¢. 1

0.5S

).2 379

0

1 -Coccae7

Oo

57

1162

11.22ee -n.21;12

-o 1 -0.050C1 -1 -I.P1E5 -. 2

-. 5ee80g

-.1. 6917

-0.6

-0.,1

e7

- .0?2 -t) 2121

-n.

36

fCH411;

C.1-773

-O* 79el 0.114SE

. 1. Ee17

J..14g

C.1C C 0.:7-E4

).121 346

0o.,)ZE73 -, .7 50 0.t711

;OO

1,c

17

0.1

3

-0.115242

o7aI -°3

-0

03

.5e 1.3-14"1 1.5ii5i

.1 4 0.10 17 -4 C

-),oel ob 2 30 ,15

~

.04S'5e

.O3tS4 Q..2791 O 1c c,1717 -1.0t7t17 *I C 0.1599

-0.ca.-I

43 6.007

-

0,1a41 0.1236S

29!1e3

1.2697i,3

.3°3.3c E3.006 E

01.2t' 2;3 C74

15 -:

7

151 7

-0oC.2t O.GC -CI0 0 -3.I01 5

C 1204 J

4.

7505341 -750 -'-;

0 3 -30,1224

-0.

I.IZ751 n.122ai

1s2

19'Z 0 *7.10637 0i.1 +10%

4

7b.)531

-C.1300c -r.,E5CE -C. 7135

b c1 -5b -t7.94

15

L51

-0,I1453 -4. 157 Z -0.01773

-0.)75ol

7505 .1 5il 7505 1 I1- z

750b'l1 750551

-ColE;22 -C,14t i -;13.593.5i

2 5.t2

750531

151 15b E

-3.21105 -I.11 2( -).311i0

.0 e ?

.7

~

-0.16Z64

-t9.3,

34.

31,

1 .13 3,2GC.a? 33'Zct0 -C..275

7 02(, o,0 3?E.14 P)2. l 3 z0 ,to C.,-, 0.11 .+. .t4

IoG1 G

I -O,¢ZS

-0.cc,5A -C. C.C5

-0.1.44 -0*171tt0e33 - .171¢

51

3 14. 24°

753

23 -3!i°:

II

-

0o29I72

4

1ol

.t

1 7

-C .. C

-. 1 zO,!946

1.t7 --

315 4

"Is 3

1

j

i

-Co. C F0

-Cot-0t17 1D.I ;-7'

-4.* o

15

750531

341.

.­ 0.24;77 -r.17777

54.

750551l

1

-a..7t -. 1.,7 ° - 0 . o -- I o3 -11 -3O1E=

J5 34,

4

2,4

-

-22o. E

-o 4.im,7 ° -64.Io -.

It 1 19 L

7505

7,EcS tvI~

145 1

750 7505i1

7505 Il

1

o

1

-)°3500

,C

l

Z.1 J 2 0.140Z

* 3

;

C.0177 0.171b 3CI6z-q7

OC ~ 'CL1a ~ ~ olrl C1.

44

.14 -°6

7.02-P,61.031

C. Co I 4)4 +C~l 0.17335

-o

o0.34

9.a

n99

227

t

77 3,&

0. 421

-9 114

O.7

q

25

317

-qo 4 -0. 212 -3.537CE

~ . ~~~OIIA 70529

-. a OP

PA1

I5S1.-.9

RLEVOLUTION 730 GEOSSUBSATEL-LITE POINT

OBSERVATION TIME HHMM

YYMMOID

SEC

LAT

-1.373 g

-1.I377

E7. 1 27 .- 0

-0.1;3. -0.,,.L52

44E -QIz79 "C.15E1-0

-O..BIZ 75 3

-- Ioi5 -Z,.47

z7s.-E d7S.C0

-0.1761--1).1=32

-O.it572 -C.1CE4

-'J,7? V£.7, -t-, .5 -2. .1 -ZL.I. -i -I, .12 - I t15 -4..c7 -1ts3 -1,03

7E.tS 277.o 277 2771ot 27c.tC d776.41 27,.C L7E, 27toI7! 27t.,5 27E-to

-0-819e -0,1iC2¢ -]IC2 l ?c 4zO i -0.214 7 -9.19.z - .9a1ae -,771 -9s3cJe 52C -15 -,)oG=3B

- .C152 - .12 '40 -. - 9'2 -3.1354-0i79 -­ 4 C -0.I 2b -C.16758 -0.1t714 -L.1t572 -C.i134

-1,.t8 -!Z.GI

274.-4 3¢7-.E

3 --n.11975

3

-2.5 -3o

1512 1515

l5c. t5.

-Z..1 ---,.-C

I=. Lb

3:. 1514 750t-! It17 LI* 750 -1 7505ZI 1 7535-4= 1 t1 7505 lIbl 25. 1517s 7t931~ jt. IBI 7o5J! E lz1=750531 S;. I151I 7E,05,i 5. Itt -7505 1 Io° 161. 7do3l Lb. 151, 7541

7505 1 7o5 31

151o 75j6 1 1 I17b053

7 0 -1 7b-3531

, 1519 15 1I.

-11.29 I--I0 1 5. 15 i 750 Zi -2e.3; Igb lI7 75,0531 5, 7505I 15 It -. Z. Jb, 517i 7bJ5,1 -1.;d .= 151I 7505,1 -5, 1517 7.03 1 L£21. -4.7; ln5==!tl °t -59.l 12tl 753331 7053

7505zi 15I. 7t05;1 7505-11

151a idlo

7.€5s 7 7. C

-C.1112e -0.OI 72

1513 -

. 54.

2I, 7.---S 27-z7 Z5,t

705 ;2 .-271. ; 71 .67 17E.30 71.02

-0.I02 7 -O.05lq7 -0. odl! -a.C52j7 -0.12711 -0.19= 4 -0.09140

,I5E

, c

. .C 04

2b1.75 E zt 44

21C.) at-.1c 85.z5c.z 2675A

-.

.jdg

-0 13 -3.1tU57

151. 75J5jI I ti 2 753o31 15 F3 7.0.31 1511 75).31 162 759531 1 51 , 7t0-31 lt'e 750t2l 1520 750531 t, 750321I 21 7505Jl jt5 750b-1 15--l 7305 1 1E.1 7t0531 It 1 7to FS

-17.39 " l .

. Ia.d8 l -5o. 3.E 6. 14 S !2.3s S. -1 2.26 -1.71 I . t55I. -1.20 1 -1. =, -1 .V 5. - *34 It.

15 1 750s31 15Z 750 'L1 1 547 75053 " Ic7537 'I 750 21 f-27593311 -.tzz 750b i 1527 750= l I b, = ?S0511

-0.351727 t4.C

-o. 7.;e 525 3 .29 21--7.44 -5.0 0.12 S52 0.C7;6 264.70 -. SL * f i-J 91 4n7 20 5 lO.7 -1,3o c4= EdA.S2 -.. 7 ;.C1762 2.2°7C ?1,l 0L1 1 4 .13 0.0 25E o7 5

i0 13, t31;3 -. 35°8 -0o5 St. -0.13cs: ZtElC l. c4. 1*7 -0.2I-57a 2cc m .°ib I .6I 5.o 7 0o31~C045 -0.01769 51o;5 -0 o2

ib loa 750531 1.2 7 0521 lI~ 15 a 7D5 76.1 31 7505Ji

1524

75935 750331 759.31 7531

1524 152* 152= lba

=5

~

- .57

25 .7Z ae5€° 2C7 a 5775 t7.47 Z-e.la

-0 12 -0.01708 -- ,.LQ2742 -. odb1e 05.C .33214 -).,676E -0.5314 -a0 3¢a72 -0.1.05 7 5 - 05

55. 5. 1-, 'E. t.' 40* 5t. 1I.E

.0, t.

.6. 7505-

2 .2t 2uI.bo 17. 8 4,15

25 9 P56. t E5,.3 a, 1 50e

S 27.t6C~t

Itz

-15C7-77 -. =b -

-t6

E7-

-7.7I

-'.

,-=.7 --It.2I1 -17.1 4z.

2o.

OBSERVED ACCELERATION MGAL

-0.132E7 -1.1 34

-253

1

0.11171

SYNTHETIC RESIDUAL CMISEC

-0.9 930

2..

750',31 75053%

1. 9

SMOOTHED RESIDUAL CM/SEC -o'coC39

lb13'

"-752tal

E. LONG

RANGE RATE RESIDUAL CM/SEC

0-11 14 ),','3S4 0.jlg1 397

-r.olE963

1

-,

2

-C14 67 -I.Ec

-1.37;29 -01.2 72 -1.12026 -,152 0 975@ce 1B.75535 .S392­ -0.2737E 1.008E3 0.p714s 1.o7e2 0.3719 1 0.3E359

0.52 H9

*57

-o011

-2033859

.

2

-0.91119739

0.7510

0,

0.152R0

.I4570

-Q.CIBt 411 -3 o42 -C.15399 -3.153S4 -)01 C.58 -C.1455 C

1391G60 01.335--e

SYNTHETIC ACCELERATION MGAL

-C.00

542

-o11 2QI

0.0236S

-0.,1753¢ -0o17P90

-0.12172

-0.0152s

-0.09127

0157 0.4232

1.-0,25 7

R

14476

1C.507e8

- ,E -C.C5415 -0.12,4

1.06

3.312 0.714t!9

00290

0.70719 0.7941 e 0.75 ).6971e°753 0.7024 1.75aC7 iI0312

1,05459

1.4&73a

0.3217 0°7149

0.1576

-1.16da

-C.121b -0.llj74 -¢,C2900 -O.C 252 -.)o02375 -0c1ct? 2 -O.C*749 E5

-O.BO -C.B19 5 -040 33 -Z.34260¢5 -O.C 723 -0 )12 -0.'7422-.

C025

.0.454 C£50

0.CE15 -C.7 ,0.123

-101ias) -C.0 k1E2 -C.crt 70 0.I35 3 -C.1C~ e 0.1032a -C0,135I.O 3 °I 0.2 90 0C.1J10 -O.Ct- -0.0tIE4 -1.C4'l 51 -0.O1 *95 -. 0-337

5

0.cce C.*OSC O.0 0l2 OC409Q5

2cA06716

7 1

-*.l$5

.57e

0.21E

-0726

-0

842

055

-0o315E

-0.31I052

-I.12441 1. 15 -. -0.024

-07115

41

12 -0

0.27482

06E00

-0.0335

0.a9gt

0.194w3

0.37124

001C

059 .7S3 370.4505

-. -9"3i91

- *1435

-0.1!I41 -0.7124

REVOLUTION VIO3 OBSERVATION TIME

GEO$-3 SUSSATE LLITE POINT •RESIDUAL LAT E. LONG

RANGE RATE C JSEC

SMOOTHED RESIDUAL CMISEC

-7 6a .--I O 750531 1-30 7505 1Ina53

I.. 2,° 3..

1 .4z 1-,G5 0D.4.

2.9*z 24;.C2 2 671

0.JE232 9.C7713 3. 222

C.CGS0" C°C9=01 G, sIg

760531 7.0531 ---. 0-*31 750521

15za 1531 " 131 1 31

5.. 6. 16-

I1.ts 2.0 2z!-59 zjo,

2.2oC4 2 7°7! 17.-'e iJ4 £7.C4

3.oz#s5 0o! 9546 O.13 a 0,197C7

o.CqtZ? CC46 0.093Lt 0.0"DT

750531

1531

Z4E°Z7

0.ln4-1

0.cease

1531

b, 5..

24.17

750531

t.°O 2

24c63

5.CA7€c

0°07,302

750531

1532

1..

25.7b

750531

1532

26.

Z3.27

24t.-12 244£Se

0.125)3 -3.9216G

O,C675 U°CtZ4

1532 7051 -mobal1.,1534 153J 750531 750531 1533

4..

77.:32

6. 16.

2J°3 'jded

1 .442 Z4--*5 .92 24!*ee 243.1;

0.122bi 0.=5IeI4 -0.1033S 1.0349C

C.3t,125 0,0 G,14 . 0.0 22

YYMMDD

750531

HHMM

SEC

C*05C57c

- .Oc5s7 0.04"10 0.06444

C.027191

).0220,6 -0.oe3il - 11sq2 -07 ;

-C.CI4530

-C.042142

-).3?36% -A,67 -9 11 -*m6

O 1.. E'. 3..

53.0J

7535---

l53E

C.

j4,E3

2

d.95

D.14277

0,0297

-23

750531

15 5 46. 53 3o° 1535 ' b. 1.3-- 56.

-5.5

-3c.12

0.03254

0.12146

Z5.0= 5 -7,c

zi7.71 .37.7 23ed~5

)0,0546, -0.1715 0*1.,48C

0.314 I 0.014E2 -Q,5C767

-0.54112 -).17738 -i!*5ea -1.221;

1,° 0b J.. 4 . b..

2 0 3o°= 39.56

23E°Se 2 ,. 4 235.03 Z9*m 4.t2 2;4.17

4,03

23-Z 2

C*.)CGEC-59 -0.O3506 -C.CbtE7 -I.C7t3l) -o.C 564-19)5 -C.L1162 -C.135;I -C015t25 - C¢1CC24

7 -1.7734c -1.aE4 4

lb.

-0.,8612 O* Ia -0.14207 -0.ces.2 -0.182;e -0° 0422 -).1--222

-O.21,3E -'3*EAE2 -01 2

-0.21990 -C.2-11-1 -C.Z4ci

-1.13641 -0.96239 -0.181'a

-. 1la -0.337--7

-c.aE3e1

-0.41 02

750531

.2 L 750532 750531

3*J.4J

750531 760531 -75 -T 750531 5--/

153. 153o 1536 15ZG .5

750631

1537

750531

1537

-7.J53T -E37 75J531 1536

-

310.95 .104z

4-3.05 4 0.54

3m.70

So. o

-12.98 4 .4D

2 1.Z8 20C.15

ZQDJ5 1,

15ja

Ia.

4- . 4

4S0.,4

750531 750i33

1536 1536

3c. 46.

4 *J,

4.bq

2a*1 .2E.64

0,03619

-).S032" -n,4z3e3

5L.

1533

C,0

2-1

0.C315s 0.0iot1 0.02s76 ,0E, 2s1

--. 035388

0.020-

-0.2570b

A-168

SYNTHETIC ACCELERATION MEAL -0. 12

192

-0.61781

-0°47 ei -I.E2426

15a3 153 _1534 153 1534

7,30531 -1 0631 750531

74.9

OBSERVED ACCELERATION MGAL

2.2-°5 0.07176. 20.0-.22q 241i* l.cal¢5 Z41.-Z 3.00C27 24g5 0.a3 -).C57EE 24&C.5 -.­ 1-11 .15 -0.6931

750 531 73 531-

15-3

SY'NTHETIC RESIDUAL CM/SEC

-I.Z7110 -'.15!7 -5*T8--12 -A.I ° 9 -0.310S4 1.07664

-0.613442

-0.16297q

0.3300j97

1.13125 3

-1.91613 -I°a 11 -1*726e

4

9

0.06e246

0.003193

GEOS-3 Revolution No. 737 June 1, 1975,

m 1 h 5 9 x

A-169

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 737

0.4

SST RESIDUALS

0.2

-0-0 ,

101

!a ­

SMOOTHED RESIDUALS

-

0

5

11520

25 TIME IN MINUTES FRlOM JUNE 1,1975,

03

o1 9m

i40

.45

GEOS-3/ATS-6 SST Range Rate Residukis

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 737

0.2

SYNTHETIC RESIDUALS

--

0.1

_

-0.0

-

OBSERVED RESIDUALS

0

5

10

15

20

25

30

TIME IN MINUTES FROM JUNE i,1975, 0 1 h 5 9m

35

40

45

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS.110 Gravity Model Coefficients to (12, 12)

Revolution 737

3.0

SYNTHETIC ACCELERATION

1-5

OBSERVED ACCELERATION

-3 .0 -1 I 2

5

III IIIIIIIIIIIIIIIIIIIIIIIII IIIII I 10 15 20 25 30 35 40 TIME IN MINUTES FROM JUNE 1, 1975, 0 1 h 5 9 m

45

GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 737

3.

2.

x

1.

xx z

X

-J .-­

0.

xXXXx

0°X

X X Xx Y

x

x

zx

XX

X

X

xx

x x

-.

-3.

-2.

'

-1.

0.

OBSERVED ACCELERATION (M GALS)

A-173

2.

3.

REVOLUTION 727-

YYMMOD

HHMM

750601 750601 750601 750601

159 159 159 159

.

SYNTHETIC RESIDUAL

O8SERVED ACCELERATION

SEC

LAt

E LONG

CMJSEC

CM/SEC

CM/SEC

MGAL

0.1921 0.00867 -0.0366 -012817

-0.0021 -0.01077 -0.01901 -0.02686

14 24. 34. 44.

64.85 64.93 65.00 65.05

21.58 20.17 18.75 17.33

-0.79076 -081730 -0.8023 -0.74706

0.017773'

2 0

4.

65.12

14.46

0.00545

-0.04066

2 9

24.

65.14

11.59

-0.16143

,0.05058

750601 75060! 750601 750601

2 0 2 0 2 1 2 1

44. 54. 4. 14.

65.1! 65.07 65.02 64.96

8.72 7.29 5.86 4.44

-0.0098 .10.136 -0.50994 -0.05556

-005652 -0.05611 -0.055 7

-0.06180 0.02761 .10Z70

-0.05439

t.16498

750601 750601

2 2 1

34. 44.

64.80 64.70

1.62 0.22

-0.0400a -0.04902

-0.04975 -0.04659

0.25989 0.29926

750601 750601 750601 750601

2 2 2 2 2 2 2 2

4. 14. 24. 34.

64.47 64.33 64.19 64.03

357.46 356.10 4.1.15 353.42

-0.54Ze

-0.03886 -0.03444 -002973 -0.02475 0fl lO, 7 -0.013

-0.28706

0.010440

750601 750601

2 2 2 3

54. 4.

63.68 63.48

350.79 349.51

750601 750601 750601 750601

2 2 3 2 4 2 4

24. 54. 4. 14.

63.07 62.37 6211 61.85

346.98 343.34 342.16 341.00

-0.19494 -0.06241 0.05848 0.05077

0.00469 0.02407 0.03120 0.03694

750601 750601 -060i 750601 750601 75.01 750601

2 4 34. 61.30 33a.74 0.03179 2 4 44. 61.01 337.64 0.24768 24.....................................?6 2 5 4. 60.41 335.49 0.13868 2 5 14. 60.10 334.45 -0.07430

0.04543 0.04774 a04373 0.04865 0.04750

Z4.

b9.1f

44J.4.

2 5

34.

59.46

332.41

-0.06787

0.04307

:0.28813

750601 750601

2 6 2 6

4.,' 14.

58.4 58.08

329.51 328 67

-0:06689 0.33427

0.03480 0.03240

-0.19962 -0.17F14

750601 750601 75D3o1 750601 -75lfft 750601 750601 7S003 750601 750601

2 6 2 6

34. 44.

57.36 56.99

326.76 325.88

-0.08180 0.00614

0.02879 0.02739

-0.1355 -0.11P46

z

*4.

bo.o-.

J.ze.0

56.23

324.16

Z

b

b

2 7

4.

I7'

2 2 2 2 2

..

.1

55.45 5505 5.65 54.a5 53.84

322.51 321.71 SEE 92 320.15 319.39

9f

z6 Cbbv

14 *

84.t

31d~3

1J.VUdrfl

Q.UCIIJO

750601

Z

8

24.

53.90

317.92

0.14478

0.01996

150601 750601

2 2

8 8

44. 54.

52.16 51.12

316.90 315.81

0.04708 70.11101

0.01708 0.01532

750601 ?50601

2 2

9 9

14. 24.

50.85 50.41

314.46 313.80

0.09712 0.12831

0*011e1 0.00984

750601

-2 9

44.

49.52

312.52

0.09783

0.00792

1r50601 150601 59690 150601 '50601

210 210 ale 210 210

4. 14. il 34. _44.

48.62 48.16 47.31 47.24 46.78

311.29 310.68 Z19,09 305.51 308.54

0.02254 0.06756 03t 0.0±848 0.04071

0.00826 0.00929 2.01021 0.01296 0.01522

50v.0,

"50601 '50601 0.. 750601 '50601

I50501

...

211 2SOAt 211 21 211 2.. .. -211 212

D.'t

4. 14. 24. 34.

...

0.014U

Ip0.32

54. 4.

45.85 4 4.90 44.43 42 OR . 43.47 42.99

307.61 ,38 307.27 306.73 306.20 ZOE 305.16 304.65

0.23~

.41

0.01958 0.02132 0.02276 0.02380 Q 5 0.02495 0.02503

0.30572 0.15339' a seeee -0.13828 -0.23343 .4013

-_0p~

-0,037220

-0.03202 -0.02212 9.0195 -002065 -0.04781

-0.06r55

-0.10640

-0.054719

-0.18167 -0.16720

0a.99178i1

0.08666 0.15889 a-20qq 0.23665 0.2306e *..t

0.051759

42.02

.03.66

4,05357

0.02434

'50601 '50601 750601

213 213 213

41.05 40.56 40.06 39.57 39.07

302.69 302.21 301.75 301.28 300.83

0.07614 0:97740 0.03536 -. 07429 -0.02479

0.02232 -02059 0.01824 0.01513 0.01110

213

44..

38.08

299.93

0.04826

0.00022

-0.556a3

214 214 2;1

4. 14. 21

37.08 36.56 I6O9

299.06 298.63 291.n 2

0.06985 -0.04857 9 1;1 lQI2

-0.01408 -0.02219

-0.72107 -0377507 aO2cop"

A-174OF

:0Zee3Z

0.18889 0.14545 0.09798 0.05390 ....... 0.00224 .­ 0.00807

44. 54. 4. 14. 24.

'50601

0.639524

-0.07558

212

50601 * '50601 -69601

-0.214301

-0.16157 0'.17700

21Z, ?4,

212

-0.656948

1.0tfl

'50601

5060!

01Q41

-0.06574

J

0.05957 -0-03769 Q.10109 0.19683 -. g . q -0.08594 -0.00534

0.385177

.lpl

0.02528 0.02399 0.02355 0.22313 0.02-56 0.02191

0.55753 0.61915 0.59288 0.53182 -

Afloasa

0.03814 -0.07522 0.03713 0.14366 -6.02010

0.074991

0.49866 -0.001458

o09et

-0.04144

"

-0.017478

-0.00812

0.04534

0.u.i'0. 1

gO

7, 24. 34. 7 7 ai 7 54. 8 '4.

0.010tj

-

-0.351722

0.37276 0.40F5 0.43472 0.45556 0.4293

.­ 0.04948 -0.1415 -000567 0.01070 -0f 0582e 0.07461 0.11961

AA

SYNTHETIC ACCELERATION MGAL

-0.002981

750601

'50601

I

SMOOTHED RESIDUAL

750601

20 0S60

-

RANGE RATE RESIDUAL

GEOS-3 POINT SUBSATELLITE

OBSERVATION TIME

0.571843

0.063060

0.030668

0 0"1fl0O

-0.251558 -0.09763 -0.15055 -0.21506 -0.28897 -0.37184

-0.620160

0TO7;tT

OO

REVOLUTION 737 OBSERVATION TIME

GEOS-3 SUBSATELLITE POINT

SEC

LWT

E LONG

RANGE RATE RESIDUAL

SMOOTHED RESIDUAL

SYNTHETIC RESIDUAL

OBSERVED ACCELERATION

SYNTHETIC ACCELERATION

CM/SEC

CM/SEC

CMtSEC

MEAL

MEAL

YYMMDD

HHMM

750601 750601

214 214

34. 44.

35.57 35.06

297.79 297.38

-0.2240a 0.00251

-0.03903 -0.04715

150601 liMM1 750601 150601

215 15 915 215

4. 14. 24. 34.

34.05 33.54 03.03 32.52

296.56 296,16 Z95.76 295.37

-0.06874 -0.05011 -0.06451 -0.08068

-0.06091 -­ 00A8 -0.06917 -0.07072

50601 50601

215 215

54. 4.-

31.49 30.98

294.60 294.2a

-0.016eg 0.00542

-0.06891

216 216, 216 216

24. 35: 3g 55.

,29:94 3 22al 1 28.39

293.46 23c 93 C9D 927 a00979 292.36

-0.05857 -­ -0.07356

-0.06717 -0.05235 5o~7 0,4 -0.04407

755127 760601 217

5 25.

735 26.63

291.64 291.29

0.03676 -0.17477

-0.03947 -0.03883

750601

217

45.

25.78

290.59

-0.03601

-0.04066

-0.21478

7561 IS0601

2115 21s

, 15.

25.7.1 24.21

2211:4 289.55

:o006147 -0.22705

-90*0420 -0.04692

-BM'7 -7,23708

750601 50601

218 218

35. 45.

23.16 22.63

28E.E8 28e.54

0.07670 -0.25234

-0.04981 -0.04955

-*.083e7 0.02727

219

50601

'19 1561 219

5. 5 25, 35.

21.58 10 fll 19.99

287.88 8,5 4 715 1572 286.90

-0,23 0 00 8 0:1 1 -0.04040

-0.04613 31 -,48 S11U -0.0 -0.*03185

150601 150601

219 2z0

55. 5.

18.93 18.40

286.26 205.94

-0*08se7 -0.03723

-0.01703 -0.00e37

25, 356 45, '55.

1734 16.81 16.27 15.74

285.31 284.99 284.68 284.37

-0.01282 -0.*055 .01!67, 0.0857.

0.01048 0 1, .Q0029NSAZ9 0.0 8ej

-­ 0028222 0.05362

'0.25371 0.05517 0o08Z97. 0.O0E21 84R .063" 0, e119

o078­ -0.08022 3 -0 37414 -0.47607 -0.44746

50601 1506011 601 '50601

'50601 -1501501 -

M561 2 220 220, 220

; 5 001 1500601

2221 221

18. 25.

154.867 14.14

283,.15" 283.44

-50601 :50601

13.07 154

'50601

221 45. 22., SS, 22 az0z0 425.

L1.47

282.E3 2: ,53 "1.0 222 281.93

0.0730E 0*07235 0.1 a 7 0.43962

15OF601 150601

222 222

35. 45,

10.40 9.86

281.33 281.03

-0O.055E4 -0.11251

0.405351 0.04912

1,50601 I5b01 750601

23?551 5. 223 15. ezj 25° 223 35,

8.25 ?.,I 7.18

P.7 .3 280.14 219.E4 279.54

-0.:01T3219 89 0.01878 OOfb2O 0 06472

0004410 5 0.03788 O,054S 0 03367

F50601 ?5D501

223 224

55. 5.

6.10 5.56

278.96 276.66

0.05706 0.11196

0t031e4 0.031-46

750601 750601

224 224

25. 35.

4.49 3.95

278.08 277.79

0.00530 0.09462

00066 0.02974

750601

224

55.

2.88

277.20

012439

0 057

750601 750601

225 225

15. 25.

1.80 1.26

275.oz 276.33

0.09645 0.09243

0.017tZ 0.01150

750601 750601

225 "225

45. 55.

0.19 -0.35

275.75 275.46

-0 02920 -0,04288

-0.00431 -0,013q2

750 01

226

15

-1.43

274 a7

0.01024

750601 750601 5......... 60 750601 75306,1

226 226

35. 46.

227 5: 227 '1 5

-2.50 -3.04 5.8 -4:12 -4 65

274.29 274.00. e7a.71 273.42 273.13

750601 750601 750601

Z27 35, 227 '45. 227 55.

-5.73 -6.27 -6.60-

272.54 272.25 271.95

780601 S750601

228 a28

15. 2S.

-7.68 -8.41

274.36 271.07

750601 7506 01

228 P26

45. 55.

750601

229 75001

750601

Z29

46.

-12.70

•750601 750601

230 230

6. 16.

-13.77 -14.30

16. -11.09 ~g25.-1163

Q.000913

-­ 0 55154 -1.407F' -,,.24002 -0.05790

0.40401 0.022626

0.50573 0.48824

1.036065

-

026353

0.09410 -0.02879

(1.27099 0 ,82 .17870 0.567G?

-0,051L40

-0.6i9954

0,89SS6 9945

-0.463421

D.80448 -O*08ecal

-0.0

192b

no: 5 8 ,01 0.440415

-053046 -1).22433 -1:152 1 -0 09370

-0.034305

Qt925b7

-0.01991 -0.00137 9.019330

-. ).0074e -0.04503

0.!55149S

'-0.205$7 0.034405

-0.45615 -0*592a5

-0.110028

-0.82941 -0.01664

-0.03556

0-,0300 -1.03819 -1.00E 4 P.93364 -0.83127 -0.69772

-0.07686 -0.21375 -0.14219

-0.1091O -0.11177 -0.11225

-0'.123451 -0.12631

-0. L0631 -0.09992

270.47 270.18

-0D.09148 -0.07520

-0.08097 -0.06881

265.58 25_28,50

-0.0S627 -­

-0.04037 10.',

268.67

0.00177

0.00773

1.46300

268.06 267.76

0.09955 0.07219

0.03966 0.05482

1.37576 1.30065

A-175

-0o040161

0.73422 0.80641

-0.05647 -0.06958 a 96095 ,-0.08956 -0.09777

"

0.395969

0.33907

0.04961 -0.13129 0. 07:5 "-0.11802 -0.09770

,

0.213802

n.28313

-0.06591

150621 7506, 1 'r5O601

-9.49 -10.02

-0.790aZ -6.74530

• -

-0.014270

-0.35379 0.D15474 0.05305 0.4667S 0.66831

0.173552

1.0 2517 1.17083 OOD2S7g

1.37822 1,03712

0.388032

REVOLUTION 737

OBSERVATION TIME YYMMDD

HAMM

75D601 750601 50601

230 230 230

GEOS-3 SUBSATELLITE POINT

RANGE RATE RESIDUAL

SMOOTHED RESIDUAL

SYNTHETIC RESIDUAL

OBSERVED ACCELERATION

SYNTHETIC ACCELERATION

CMISEC

CM/SEC

MGAL

MGAL

SEC

LAT

E LONG

CM/SEC

36. 46.

-15.37 -15.90 -16.43

267.14 266.W3 266. 2

0.21800 0.04012

231

56. 6.

266.21

0.09803 0.05841

750601 750601

231 231

36. 46.

-16.56 -19.09

265.28 2e4.94

0.09226 0.26333

750601 750601 750601

6. 16. 26. 36.

-20.15 -20.68 -21.21 -21.73

263.97 263.64 263.32

-S-0 750601 750601

232 232 232 232 2' 232 233

.

-23.31

750601

750601

5.

-16.97

~ -22.79

264.30

fa~l

262.5 262.32

0 510672 0.2034 0.23976 0.19043 0 0LtO [l 0.18259 0.12133

0.08268 0.09571 0.1q772

1.12806 1.0480 0.97880

0.11890

0.91740

0.14672 0.15T67

0.058212

0.1630Z 0.16497 0.16490 W.16276

0.057902

0.15224 0.14403

750601 750601

233 233

26. 36.

-24.37 -24.69

261.64 261.30

0.18724 0.10656

0.12218 0.10893

750V60I 750601

244

233

46. 56.

2b.401 -25.94

260,S6 260.60

0.10b36 0.00694

0. 09449 0.07871

750601 750601

234 234

16. 26.

-26.98 -27.50

259.90 259.55

0.16989 0.04994

0.0448 0.02718

750601 75061 75

234 234

-2.54 -29.06 -­ 9.58 -20.9

258.83 258.46 259.09 257.2

-,0.05129 -0.1364 -­0.08781 -0.03539

000795 -0.02480 -0=0400 -0.05548

256.57 256.59 25 46 255.801 255.42

-0.0234 -0.20537 9.0481 3

-0.08032 -0.09015 -0404

-0.03970 -0.07003

-0.90440

0.69772 0.58650

0.211686

0.29282 0.11374 -0.08063 -0.28209

-0.239203

-0.66616 -0032-4 0.030479

-­ 4.10678 -1.22274

0.036570

-1.56326 -1.59860

235

750601 750601 750601 750601 750601

235 235 34

36. 456. 56.

-31.12 -31,6 -490.6

236 236

6. 16.'

-32.66

750601

236

36.

-34.19

254.6

-0.25852

-0.011237

750601 759601

235 ,~iou 237 Ca

56. 4. C.

-35.20 -35.71 p'

253.80 25359 255OA.4d

-0.11760 -0.03694 -0.0

-0.11020 -0.10737 tO.UOYM

750601 750601

237 237

26. 36.

-36.72 -37.22

26254 252.11

-009534 -0.02793

"-0.00933 -0.09456

750601 7Sc01 750601 750601

237 23; 236 238

56. tC2 6 -. 156. 26.

-3822 -3.7 C6 -39.21 -39.70

251.24 25.E4 250.34 249.88

-0.12227

-0.0107

0.46003

-0.00501 -0.0 -0.0

-00.22o.4S -0.0245 -0.06-0. -. 02498

0.42 64 0.53638

750601 750601

238 238

46. 56.

-40.69 -41.1

24.15 24.48

-0.10733 -0.04141

-0.05122 -0.04270

0.45350 0.77439

750601

239

16.

-42.1

247.51

0.04614

-0.02346

0.9248

750601 750601

239 239

36. 46.

-43.12 -43.60

246.51 246.00

-0.01058 -0.03500

-0.00324 0.00653

0.96254 0.91433

750601 ..J52fl1 750601

240 P19 240

6. -44.65 *6,-4.464-45.02 16.

244.56 247.71 244.43

9.05700

0.2364

-0.0050 009815

-0.8013 003011

750601 -,Z209401 750601

240

36.

-4597

241 29

26. 56.

-48.28 -46.90

243.34 -:6240.46 24221

0.16735 047197 -0.157 0.02509

0.03787 090ia 0.0203D -0.032878

0.03706

-0.726

750601

241

36.

-48.73

239.5

0.08232

0.02546

-0.44003

750601

241

56.

-40.63

238.62

0.99233

0.01495

-0.48640

750601 760601 750601 750601 750601

242 242 242 242 242

16. 26. 36. 46. 26.

-5052 -50.96 -51.3 -51.83 -52.25

237.33 236.68 236.01 235.62 234.63

0.00846 0.00590 -0.02776 -0.04405 -0.18742

0.00416 -0.00099 -0.00581 -0.01022 -0.01411

-0.48854 -0.46620

750601

243

16.

-53.1

200.00

0.0065

750651

239

6.

T. 22

-47.3

24.6

0669 tlb~1

-0.00940

-1.93372 -0.77074 -.04140 -0542748 -0.29131

gp1

-0.10877

0.0203

-0.604410

-1.55899 -1.49149 ,12376J9 4004 -,

750601

-

-0.594996

"0 -0.4'065

46. 56. 6. 16.

33.17

00 .046

0.00619 0.2860 -0.33528 -0.29131

-0.038212

0611 -"

0.435l 7 0.45357

0.68607 -0.q0174 0.52068

0.17655

0.765 0.332564

17171

0.1535 0 431 680.4138 0.16166

-0.42602

-0.37685 -0.31732 -0.9640Z

ORIGINAL DAGE IS

A-lP

-

Q

"

GEOS-3 Revolution No. 738 3h 35

June 1, 1975,

A-177

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-I10 Gravity Model Coefficients to (12, 12)

Revolution 738

G3.1

SST RESIDUALS

0.2

*

SMOOTHED RESIDUALS

t-

0

-

IL1

13

2

1

m h TIME IN MINUTES FROM JUNE 1, 1975,03 35

1

40

43

GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 738

0.2:

0.1

--

SYNTHETIC RESIDUALS

,-/ 0.0

-0. 1

'

OBSERVED RESIDUALS

-0.2

0

5

0

15

20

25

TIME IN MINUTES FROM JUNE 1, 1975,

30 0 3h3 5m

35

40

45

GEOS-3/ATS-6 SST Range Rate Residuals

Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)

Revolution 738

3.0

SYNTHETIC ACCELERATION

1.5

CD

Co

S

, -1.5

OBSERVED ACCELERATION

3.

i I I I I I I 0

5

I I I I I I 10

I I I 15

I I I

I i

20

25

I I I

TIME IN MINUTES FROM JUNE 1, 1975,

I I I

30 03 h3 5m

I I I I

I I I I II 35

40

45

GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 738

3.

2.