The Synergy Effect of Ni-M (M = Mo, Fe, Co, Mn or Cr ... - MDPI

2 downloads 0 Views 8MB Size Report
Feb 8, 2017 - combination was applied to produce synthetic natural gas (SNG) from coal [1]. ... Generally, purified biomass gas passes through an integrated unit ... The feed gas is an authentic, but more complex simulation of biomass.
catalysts Article

The Synergy Effect of Ni-M (M = Mo, Fe, Co, Mn or Cr) Bicomponent Catalysts on Partial Methanation Coupling with Water Gas Shift under Low H2/CO Conditions Xinxin Dong, Min Song, Baosheng Jin *, Zheng Zhou and Xu Yang Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing 210096, Jiangsu, China; [email protected] (X.D.); [email protected] (M.S.); [email protected] (Z.Z.); [email protected] (X.Y.) * Correspondence: [email protected]; Tel.: +86-25-8379-4744 Academic Editors: Benoît Louis, Qiang Wang and Marcelo Maciel Pereira Received: 6 January 2017; Accepted: 3 February 2017; Published: 8 February 2017

Abstract: Ni-M (M = Mo, Fe, Co, Mn or Cr) bicomponent catalysts were prepared through the co-impregnation method for upgrading low H2 /CO ratio biomass gas into urban gas through partial methanation coupling with water gas shift (WGS). The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction (XRD), H2 temperature programmed reduction (H2 -TPR), H2 temperature programmed desorption (H2 -TPD), scanning electron microscopy (SEM) and thermogravimetry (TG). The catalytic performances demonstrated that Mn and Cr were superior to the other three elements due to the increased fraction of reducible NiO particles, promoted dispersion of Ni nanoparticles and enhanced H2 chemisorption ability. The comparative study on Mn and Cr showed that Mn was more suitable due to its smaller carbon deposition rate and wider adaptability to various H2 /CO and H2 O/CO conditions, indicating its better synergy effect with Ni. A nearly 100 h, the lifetime test and start/stop cycle test further implied that 15Ni-3Mn was stable for industrial application. Keywords: bicomponent catalyst; partial methanation; water gas shift; low H2 /CO ratio; biomass gas; urban gas

1. Introduction With the rapid development of China’s urbanization, centralized utilization of energy becomes increasingly essential. Biomass gas generated by means of gasification from organic materials, such as agricultural and forestry residues, which exist abundantly in rural places, might be one potential solution to the problem of central gas supply [1]. However, due to assorted biomass resources, as well as gasification conditions and agents [2–6], the H2 /CO ratio of acquired biomass gas varies greatly, and particularly, low H2 /CO ratio biomass gas (H2 /CO < 1) cannot be applied directly by urban residents because of its dreadful toxicity and relatively low heating value. Hence, from the standpoint of safety and efficiency, a series of requisite processing technologies has to be employed in order to eliminate the above two drawbacks before it is transported through a pipeline to downstream users. As is well known, water gas shift (WGS) (Equation (1)) is highly efficient to adjust the H2 /CO ratio by converting CO with H2 O to CO2 and H2 [7]. In addition, methanation (Equation (2)) as one type of CO hydrogenation reaction is capable of reducing CO content and in the meantime generating CH4 that is of high heating value and innocuity. Therefore, a proper connection of these two methods could be theoretically feasible to upgrade low H2 /CO ratio biomass gas into urban gas.

Catalysts 2017, 7, 51; doi:10.3390/catal7020051

www.mdpi.com/journal/catalysts

Catalysts 2017, 7, 51

Catalysts 2017, 7, 51 

2 of 18

CO + H2 O → CO2 + H2 ∆H 0 = −40.6 kJ/mol 0 CO +CO 3H2 H →OCH −206.1 kJ/mol 2 O∆∆H = 40.6 4 + HH → CO kJ/mol 

2 of 19 

(1)

(1) 

(2)

(2)  and In reality, from a great deal exposed the206.1 collocation CO of3H → CH literature, H O∆ kJ/mol  of a separate WGS unit methanation unit is frequently mentioned or even has been put in practice. Earlier, this kind of In reality, from a great deal of exposed literature, the collocation of a separate WGS unit and  combination was applied to produce synthetic natural (SNG) coalEarlier,  [1]. Recently, it of  is also methanation  unit  is  frequently  mentioned  or  even  has gas been  put  in from practice.  this  kind  reported that GoBiGas (Gothenburg Biomass Gasification) biomass to the SNG process contains combination was applied to produce synthetic natural gas (SNG) from coal [1]. Recently, it is also  the same cooperation, adjusting the H2 /CO ratio in a WGS reactor and yielding CH4 in another reported that GoBiGas (Gothenburg Biomass Gasification)   biomass to the SNG process contains the  same cooperation, adjusting the H /CO ratio in a WGS reactor and yielding CH 4 in another reactor  reactor [8]. Nevertheless, the entire 2production process from biomass gas into urban gas would be [8].  Nevertheless,  production  process iffrom  biomass  into merely urban  sequentially gas  would  be connected very  very complicated and the  thusentire  difficult to manipulate the two unitsgas  were complicated and thus difficult to manipulate if the two units were merely sequentially connected and  and run independently. Moreover, two individual units without integration would be considered to be run independently. Moreover, two individual units without integration would be considered to be  not optimal economically. In other words, appropriate compression of WGS and methanation into one not optimal economically. In other words, appropriate compression of WGS and methanation into  unit would be very advantageous on account of its convenient operability, desirable stability and low one unit would be very advantageous on account of its convenient operability, desirable stability and  maintenance cost for the entire system. As a result, a reasonable concept is proposed to compress the low maintenance cost for the entire system. As a result, a reasonable concept is proposed to compress  two units into one unit, and a general scheme of the process chain from low H2 /CO ratio biomass gas the two units into one unit, and a general scheme of the process chain from low H 2/CO ratio biomass  to urban gas is depicted in Figure 1. Generally, purified biomass gas passes through an integrated unit gas to urban gas is depicted in Figure 1. Generally, purified biomass gas passes through an integrated  containing WGS and methanation to decrease CO content together with synthesized CH 4 , which is unit containing WGS and methanation to decrease CO content together with synthesized CH 4, which  moreis more compact than the conventional process. Subsequently, the gas upgrading unit removes part  compact than the conventional process. Subsequently, the gas upgrading unit removes part of the CO the heating value. of the CO 2 to increase the heating value.  2 to increase

  Figure 1. General scheme of the process chain from biomass gas to urban gas. WGS, water gas shift.  Figure 1. General scheme of the process chain from biomass gas to urban gas. WGS, water gas shift.

For the integrated unit, the core part is the catalyst. Single methanation and WGS catalyst have 

For the integrated unit, the core part is the catalyst. Single methanation and WGS catalyst been extensively investigated during the last few decades. It is reported that a variety of transition  have metals has exhibited their distinct methanation activity, such as Ni, Ru, Rh, Pd and Pt [9]. Meanwhile,  been extensively investigated during the last few decades. It is reported that a variety of transition metals has distinct methanation activity, suchMo  as Ni, Pt  [9]. another  group  of exhibited transition  their metals  performs  well  in  WGS,  including  [10], Ru, Fe  Rh, [11], Pd Co and [12],  Meanwhile, another group of transition metals performs wellmethanation  in WGS, including [10], Fe Mn  [13,14]  and  Cr  [15].  However,  for  the  specific  WGS  plus  unit,  it  is  Mo necessary  to  [11], develop  a  novel and catalyst,  which  can  simultaneously  catalyze  the  methanation  Co [12], Mn [13,14] Cr [15]. However, for the specific WGSWGS  plusand  methanation unit, itreaction.  is necessary Scilicet, this novel catalyst is supposed to have both catalytic characteristics and inherently display a  to develop a novel catalyst, which can simultaneously catalyze WGS and the methanation reaction. desirable synergy effect. In theory, if this desired bifunctional catalyst were developed, the catalyzed  Scilicet, this novel catalyst is supposed to have both catalytic characteristics and inherently display a WGS could provide additional H 2 for hydrogenation of CO and, further, increase the CO conversion  desirable synergy effect. In theory, if this desired bifunctional catalyst were developed, the catalyzed degree.  Several  creative  researchers  provided  meaningful  inspirations.  Ma  reported  that  Co3O4  WGS could provide additional H2 for hydrogenation of CO and, further, increase the CO conversion modified nanorod‐NiO/γ‐Al2O3 catalyst exhibited good activity for WGS coupling with methanation  degree. Several creative researchers provided meaningful inspirations. Ma reported that Co3 O4 at  conditions  of  CO/H2/H2O  =  3:1:1,  593  K  and  atmospheric  pressure  [16].  Mei  also  found  that  modified nanorod-NiO/γ-Al O catalyst exhibited good activity for WGS coupling with methanation Co/RuO 2/Al2O3  (Ru/Co  =  21)  3catalyst  calcined  at  350  °C  owns  a  unique  bimetallic  nanoparticle  at conditions of CO/H /H O = 3:1:1, 593 K and atmospheric pressure [16]. also found structure,  which  led 2to  a 2high  CO  conversion  in  fuel  cell  techniques  due  to  the Mei co‐occurrence  of  that ◦ Co/RuO (Ru/Co 1) catalyst we  calcined at to  350combine  C owns unique bimetallic 2 /Al2 O3[17].  methanation  As  a  = consequence,  propose  two a different  components nanoparticle on  one  structure, which led to a high CO conversion in fuel cell techniques due to the co-occurrence of support in order to catalyze WGS and methanation simultaneously. However, it should be noted that  this work is different from the research above, which specifically focuses on upgrading low H methanation [17]. As a consequence, we propose to combine two different components on one2/CO  support ratio  biomass  gas  into  urban  gas.  The  feed  gas  is  an  authentic,  but  more  complex  simulation  of  this in order to catalyze WGS and methanation simultaneously. However, it should be noted that work is different from the research above, which specifically focuses on upgrading low H2 /CO ratio

Catalysts 2017, 7, 51

3 of 18

biomass gas into urban gas. The feed gas is an authentic, but more complex simulation of biomass gas comprised of CO, H2 , N2 , CO2 and H2 O. Furthermore, unlike the fuel cell system, the contained CO in the biomass gas is not strictly required to be removed as thoroughly as possible. This is where the concept of partial methanation emerges. Therefore, it is essential to develop a novel, but also potentially industrial catalyst that is in good agreement with the biomass gas system. Among the above-mentioned metals, Ni is considered as the most practical choice due to its relatively high methanation activity and comparatively low cost [18]. With respect to the second component M (M = Mo, Fe, Co, Mn and Cr), it is essential to research the discrepancy when synergized with Ni and choose the best fitted one. At last, γ-Al2 O3 material is adopted as the catalyst support due to its abundance and various advantages, such as high specific surface area, favorable mechanical property and satisfactory thermal stability. Particularly, from plentiful exposed literature [19–21], the majority of the researchers utilized powder catalysts (micrometer scale), and the employed reaction tube was comparatively small. It is well known that an inevitable drawback of massive powder catalyst is its induced problems of pressure drop. Arbeláez suggested that pelletized catalysts could solve the problem, as well as reduce the total catalyst volume and eliminate the formation of hotspots [22]. Inspired from that and considering approaching industrial application, the granular support and reaction tube with a larger size were employed in this work. For all that is stated above, in order to investigate the feasibility of integrated methanation coupling with the WGS unit under the catalysis of Ni-M catalysts, the commercial granular-shaped γ-Al2 O3 was adopted as the support and impregnated with Ni and a second metal M, resulting in the expected bicomponent catalysts. The obtained catalysts were characterized using N2 physisorption, XRD, H2 -temperature programmed reduction (TPR), H2 -temperature programmed desorption (TPD) and SEM. The effects of reaction temperature, H2 /CO ratio and H2 O/CO ratio on its activity were investigated aiming to select the best fitted catalyst, which is expected to provide a meaningful strategy for upgrading low H2 /CO ratio biomass gas into urban gas and to show potential for industrial application. 2. Results and Discussion 2.1. Characterization Analysis 2.1.1. Physico-Chemical Analysis Table 1 compiles the surface areas and pore volumes of the support and as-prepared catalysts derived from N2 adsorption analysis (Figure S2). It can be seen expressly that the surface area shrinks after the addition of Ni and/or second metal species, possibly due to the blockage of a few micropores (smaller than 2 nm) in the support framework. Even so, the catalyst samples still possess considerable surface areas (higher than 150 m2 ·g−1 ) and pore volumes, which provide adequate conditions to facilitate the catalytic reactions. Besides, with the addition of Ni and/or the second metal, the average pore size shifts to higher values, indicating increased mesoporous size (2–50 nm) due to surface reconstruction after metal addition. Table 1. Physical and chemical properties of the support and catalysts. Samples

Ni wt % a

M wt % a

SBET (m2 ·g−1 ) b

Vp (cm3 ·g−1 ) c

(nm) d

Average Pore Size (nm) e

γ-Al2 O3 15Ni 15Ni-3Mo 15Ni-3Fe 15Ni-3Co 15Ni-3Mn 15Ni-3Cr

14.6 13.7 14.4 13.8 14.7 15.5

2.7 3.2 2.5 3.1 3.1

241.46 179.15 167.07 162.18 160.13 159.01 179.96

0.34 0.31 0.27 0.29 0.28 0.28 0.27

3.82 3.72 3.79 3.68 3.68 3.68 3.79

6.62 7.02 6.35 7.26 7.06 7.03 7.10

a

dp,peak

Ni Size (nm) f Reduced 17.0 16.5 22.6 22.8 13.2 12.1

Spent 18.3 17.1 23.3 23.8 13.4 13.7

H2 Uptake (µmol·g−1 ) 385.0 294.5 235.1 342.3 416.8 395.5

D (%) g

TOFCO (s−1 ) h

36.1 31.2 21.2 27.1 41.0 42.8

0.0025 0.0024 0.0020 0.0023 0.0040 0.0031

Metal loading of as-prepared catalysts determined by inductively-coupled plasma (ICP). b Surface area of the support and as-prepared catalysts calculated using the BET (Brunauer-Emmett-Teller) method. c Pore volume of the support and as-prepared catalysts obtained from the volume of nitrogen adsorbed at relative pressure of 0.99. d Peak value of the pore size distribution (PSD) curves in Figure S2B. e Average pore size of the support and as-prepared catalysts derived from the PSD curves in Figure S2B. f Crystal size of Ni (111) derived from the Debye–Scherrer equation. g Ni dispersion calculated based on the H2 -temperature programmed reduction (TPR) and H2 -temperature programmed desorption (TPD) results. h Calculated based on the reaction condition of T = 350 ◦ C, H2 /CO = 0.8 and H2 O/CO = 1.

S2B.  e Average pore size of the support and as‐prepared catalysts derived from the PSD curves in  Figure  S2B.  f  Crystal  size  of  Ni  (111)  derived  from  the  Debye–Scherrer  equation.  g  Ni  dispersion  calculated  based  on  the  H2‐temperature  programmed  reduction  (TPR)  and  H2‐temperature  programmed desorption (TPD) results.  h Calculated based on the reaction condition of T = 350 °C,  /CO = 0.8 and H 2O/CO = 1.    H22017, Catalysts 7, 51 4 of 18

2.1.2. XRD Analysis  2.1.2. XRD Analysis Figure 2A shows the X‐ray diffraction patterns of the as‐prepared 15Ni catalyst and promoted  Figure 2A shows the X-ray diffraction patterns the 15Ni catalystadditionally  and promoted 15Ni‐3M  bicomponent  catalysts  (XRD  patterns  of  of γ‐Al 2Oas-prepared 3  support  are  discussed  in  15Ni-3M bicomponent catalysts (XRD patterns of γ-Al O support are discussed additionally in 2 3 Figure S3). The results of Figure 2A reveal that all of the catalysts show two major crystallite phases  Figure S3). The results of Figure 2A reveal that all of the catalysts show two major crystallite phases belonging to γ‐Al 2O3  and NiO, which can be indicated with diffraction peaks at 2θ = 37.4, 45.8 and  belonging to γ-Al2 O3 and which can be indicated at 2θ =(PDF#47‐1049),  37.4, 45.8 and 67.3°  (PDF#04‐0880)  and NiO, diffraction  peaks  at  2θ  =  with 43.2, diffraction 62.8,  75.4 peaks and  79.4°  ◦ (PDF#04-0880) and diffraction peaks at 2θ = 43.2, 62.8, 75.4 and 79.4◦ (PDF#47-1049), respectively. 67.3 respectively.  However,  it  can  be  carefully  noticed  that  the  XRD  patterns  vary  greatly  with  the  However, it can be carefully noticed that the XRD patterns vary greatly with the addition of the addition of the second metal, and they can be briefly classified into three types: (1) spinel structure  second they can be briefly classified three types: (1) spinel (b and c); oxide (b  and metal, c);  (2) and oxide  structure  (d  and  e);  and  into (3)  invisible  structure  (f). structure To  be  specific,  in  (2) terms  of    structure (d and e); and (3) invisible structure (f). To be specific, in terms of 15Ni-3Mo and 15Ni-3Fe, 15Ni‐3Mo  and  15Ni‐3Fe,  the  observed  peaks  at  2θ  =  26.5,  28.5  and  33.0°  are  related  to  NiMoO4  the observed peaks at 2θ = 26.5, 28.5 and 33.0◦ are related to NiMoO4 (PDF#12-0348), and the peaks at (PDF#12‐0348), and the peaks at 2θ = 35.6, 62.9 and 75.5° belong to NiFe 2O4 (PDF#10‐0325). In those  ◦ 2θ = 35.6, 62.9 and 75.5 belong to NiFe2 O4 (PDF#10-0325). In those two XRD patterns, no separate two XRD patterns, no separate crystalline phase corresponding to FeO x  and MoOx  can be observed,  crystalline phase corresponding to FeO and MoO can be observed, further confirming that the iron x x further confirming that the iron and molybdenum in these two catalysts mainly existed in the form  and molybdenum in these two catalysts mainly existed in the form of spinel [23]. As for3O15Ni-3Co and of spinel [23]. As for 15Ni‐3Co and 15Ni‐3Mn, oxide phases are clearly labeled as Co 4 at 2θ = 31.2,  ◦ and Mn O /Mn O 15Ni-3Mn, oxide phases are clearly labeled as Co O at 2θ = 31.2, 36.8, 44.8, 59.3 3 4 3 4 2 3 36.8, 44.8, 59.3° and Mn3O4/Mn2O3 at 2θ = 65.2° (PDF#43‐1003) plus 34.0°/55.1° (PDF#04‐0732/41‐1442),  ◦ (PDF#43-1003) plus 34.0◦ /55.1◦ (PDF#04-0732/41-1442), respectively. Such an appearance at 2θ = 65.2 respectively.  Such  an  appearance  of  CoOx  and  MnOx  in  the  XRD  patterns  may  be  due  to  the  of CoOx and MnOx in the XRD patterns may be due to the aggregation of oxide particles, which aggregation of oxide particles, which interacted weakly with the support. However, for 15Ni‐3Cr, no  interacted weakly with the support. However, for 15Ni-3Cr, no signs of Cr species are displayed in its signs of Cr species are displayed in its XRD pattern. Liu [24] suggested that the disappearance of the  XRD pattern. Liu [24] suggested thatmay be  the disappearance of the diffractioninto  peaks of the Cr species may diffraction  peaks  of  the  Cr  species  due  to  their incorporation  the support  skeleton  or  be due to their incorporation into the support skeleton or inferior crystallinity. High dispersion may inferior  crystallinity.  High  dispersion  may  also  account  for  that  according  to  some    also account for that according to some other authors [25,26]. other authors [25,26].    γ-Al2O3NiO NiMoO4  NiFe2O4 Co3O4

Mn3O4



(f) (e)



 



(d) (c) (b)

(A)























(a) 20

 γ-Al2O3  Ni



 





Mn2O3



(f) Intensity (a.u.)

Intensity (a.u.)



(B)

(111) 

(200)



(220)





(e) (d) (c) (b) (a)

30

40 50 60 2 Theta (degree)

70

80

20

30

40 50 60 2 Theta (degree)

70

80

 

Figure 2. XRD patterns of the as‐prepared catalysts (A) and reduced catalysts (B): (a) 15Ni, (b) 15Ni‐ Figure 2. XRD patterns of the as-prepared catalysts (A) and reduced catalysts (B): (a) 15Ni, 3Mo, (c) 15Ni‐3Fe, (d) 15Ni‐3Co, (e) 15Ni‐3Mn and (f) 15Ni‐3Cr.  (b) 15Ni-3Mo, (c) 15Ni-3Fe, (d) 15Ni-3Co, (e) 15Ni-3Mn and (f) 15Ni-3Cr.

Compared to the as‐prepared catalysts, the XRD patterns of the reduced catalysts in Figure 2B  Compared to the as-prepared catalysts, the XRD patterns of the reduced catalysts in Figure 2B seem more similar to each other. As can be seen, apart from the distinct diffraction peaks attributed  seem more similar to each other. As can be seen, apart from the distinct diffraction peaks attributed to the γ‐Al2O3 support, the orderly diffraction peaks of elemental Ni can be explicitly observed at    to the γ-Al2 O3 support, the orderly diffraction peaks of elemental Ni can be explicitly observed 2θ = 44.5, 51.8 and 76.3°, which are correspondingly ascribed to its (111), (200) and (220) crystal plane  at 2θ = 44.5, 51.8 and 76.3◦ , which are correspondingly ascribed to its (111), (200) and (220) crystal (PDF#04‐0850). In spite of the similarity, some discrepancy still can be traced concerning Ni crystal  plane (PDF#04-0850). In spite of the similarity, some discrepancy still can be traced concerning Ni size  (Table  1)  after  reduction.  Among  them,  we  can  find  that  15Ni‐3Mn  and  15Ni‐3Cr  have  the  crystal size (Table 1) after reduction. Among them, we can find that 15Ni-3Mn and 15Ni-3Cr have the smallest Ni crystal size, indicating that the addition of the appropriate amount of Mn or Cr species  smallest Ni crystal size, indicating that the addition of the appropriate amount of Mn or Cr species can greatly decrease the size of reduced Ni nanoparticles in 15Ni, whereas other species, like Fe and  can greatly decrease the size of reduced Ni nanoparticles in 15Ni, whereas other species, like Fe and Co, function in an opposite way. Besides, it seems that the second metal species shows no prominent  Co, function in an opposite way. Besides, it seems that the second metal species shows no prominent diffraction peaks in all reduced catalysts. Considering the comparatively low content of the second  diffraction peaks in all reduced catalysts. Considering the comparatively low content of the second metal species, their interaction with coordinated sites of the γ-Al2 O3 support may cause them to be below the detection limit of XRD measurements [27]. Another reason may be that the reduced second metal species is highly dispersed on the surface of catalysts by forming small particles [28].

Catalysts 2017, 7, 51 

5 of 19 

metal species, their interaction with coordinated sites of the γ‐Al2O3 support may cause them to be  below the detection limit of XRD measurements [27]. Another reason may be that the reduced second  Catalysts 2017, 7, 51 5 of 18 metal species is highly dispersed on the surface of catalysts by forming small particles [28].  2.1.3. H22-TPR and H22‐TPD Analysis  -TPD Analysis 2.1.3. H ‐TPR and H

15Ni-3Fe

15Ni-3Mo

α

α

15Ni 200

γ

β

α

γ

β

β

400 600 Temperature (℃)

(B)

(A) H2 TPR signal (a.u.)

H2 TPR signal (a.u.)

The TPR technique not only renders us the ability to differentiate the complicated metal-support The TPR technique not only renders us the ability to differentiate the complicated metal‐support  interactions, but also provides us with a unique perspective, which elucidates the role of the second interactions, but also provides us with a unique perspective, which elucidates the role of the second  metal as additives in the reduction period and the influence of one or more phases on the reducibility metal as additives in the reduction period and the influence of one or more phases on the reducibility  of a specific compound in a multi-component system [28,29]. Figure 3 displays the TPR results of of a specific compound in a multi‐component system [28,29]. Figure 3 displays the TPR results of the  the as-prepared catalysts. The overlapped peaks are deconvolved into several elementary peaks as‐prepared catalysts. The overlapped peaks are deconvolved into several elementary peaks using  2  >  using Gaussian-type functions on basis  the basis R20.990,  > 0.990, which are plottedwith  witha a dashed  dashed line  line for Gaussian‐type  functions  on  the  of  Rof which  are  plotted  for  differentiation. As can be seen expressly in both Figure 3A,B, the addition of the second component differentiation. As can be seen expressly in both Figure 3A,B, the addition of the second component  can greatly change the reduction characteristics of monometallic Ni-based catalyst. Judging from can greatly change the reduction characteristics of monometallic Ni‐based catalyst. Judging from the  the peak temperatures in the TPR profiles and referring to relevant reported literature, the reducible peak temperatures in the TPR profiles and referring to relevant reported literature, the reducible NiO  NiO species could be sorted into three categories: α-type,free  freenickel  nickeloxide  oxidespecies  species [30]  [30] or species  could  be  sorted  into  three  categories:  (1) (1) α‐type,  or  bulk bulk    NiO [28], which interact weakly with the support; (2) β-type, Ni-rich phases, which have medium NiO [28], which interact weakly with the support; (2) β‐type, Ni‐rich phases, which have medium  interaction with the support; (3) γ-type, Al-rich phases, which interact strongly with the support. interaction with the support; (3) γ‐type, Al‐rich phases, which interact strongly with the support. In  In Figure 3A, for 15Ni-3Mo and 15Ni-3Fe, there is no distinct reduction peak ascribed to the NiMoO44  Figure 3A, for 15Ni‐3Mo and 15Ni‐3Fe, there is no distinct reduction peak ascribed to the NiMoO and Given their relatively high reduction temperature (NiMoO than 44 spinel 4 : higher and NiFe NiFe2 O 2O spinel structure. structure.  Given  their  relatively  high  reduction  temperature  (NiMoO 4:  higher  ◦ C [31]; and NiFe O : 402–715 ◦ C [32]), their reduction process may be overlapped by that of NiO. 500 2 4 than 500 °C [31]; and NiFe2O4: 402–715 °C [32]), their reduction process may be overlapped by that of  However, in Figure there exists anexists  individual peak labelled I. According to the XRDto  analysis in NiO.  However,  in  3B, Figure  3B,  there  an  individual  peak aslabelled  as  І.  According  the  XRD  Figure 2A, it can be deduced that the individual peak I for 15Ni-3Co is ascribed to Co3 O4 reduction analysis in Figure 2A, it can be deduced that the individual peak І for 15Ni‐3Co is ascribed to Co3O4  (Co3 O4 → CoO → Co0 ) [33],0 and for 15Ni-3Mn, it corresponds to Mn2 O3 reduction reduction (Co3O4  →  CoO  →  Co ) [33], and for 15Ni‐3Mn, it corresponds to Mn2O3 reduction (Mn2O3  (Mn2 O3 → Mn3 O4 ) [30]. For 15Ni-3Cr, the individual peak I is attributed to the reduction of Cr →   Mn3O4)  [30].  For  15Ni‐3Cr,  the  individual  peak  І  is  attributed  to  the  reduction  of  Cr    species [24]. High dispersion and the small particle size (Table 1) may account for its low reduction species [24]. High dispersion and the small particle size (Table 1) may account for its low reduction  temperature and invisible structure in the XRD patterns in Figure 2A. temperature and invisible structure in the XRD patterns in Figure 2A. 

γ 800

α β



α

Ⅰ Ⅰ

200

α

15Ni-3Cr γ

β

15Ni-3Mn γ

β

15Ni-3Co γ

400 600 Temperature (℃)

800

 

Figure 3. TPR profiles of the as-prepared catalysts (A) and (B).   Figure 3. TPR profiles of the as‐prepared catalysts (A) and (B).

Considering the the much much lower lower loading loading of of second second component component species, species, we we mainly mainly focus focus on on the the  Considering reduction on NiO. For comparison, the corresponding peak temperatures and proportions of every  reduction on NiO. For comparison, the corresponding peak temperatures and proportions of every type type  are  Table  The  quantitative  results  that addition with  the  of component, the  second  are shownshown  in Tablein S1. The S1.  quantitative results show thatshow  with the of addition  the second all  reducible  NiO  precursors  except  15Ni‐3Mo  component,  the  fraction  of  γ‐type  in  the fraction of γ-type in all reducible NiO precursors except 15Ni-3Mo decreased, suggestingdecreased,  a general suggesting a general weaker interaction between NiO and alumina support and an increased amount  weaker interaction between NiO and alumina support and an increased amount of easily reducible of easily reducible NiO. Moreover, according to the exposed literature [28,29], the reduction of α‐type  NiO. Moreover, according to the exposed literature [28,29], the reduction of α-type and β-type would ◦ C). On and  β‐type  favor  the  low  temperature  reaction  (lower  than  450 the °C).  On  the  favor the lowwould  temperature methanation reactionmethanation  (lower than 450 the contrary, γ-type is ◦ contrary, the γ‐type is beneficial to high temperature methanation (600–700 °C) due to the formation  beneficial to high temperature methanation (600–700 C) due to the formation of small Ni particles. of small Ni particles.  Figure 4 presents the H2 -TPD curves of the reduced catalysts, and the calculated hydrogen uptakes Figure  4  presents  H2‐TPD  curves  the desorption reduced  catalysts,  and  the  calculated  hydrogen  are listed in Table 1. Forthe  15Ni, there are two of  main peaks, which are located at ca. 288 ◦ C ◦ uptakes are listed in Table 1. For 15Ni, there are two main desorption peaks, which are located at  and 553 C, respectively. However, for 15Ni-3M catalysts, the temperature of the second peak differs   from that of 15Ni, implying that the Ni dispersion in the bicomponent catalysts is distinct from that in ca. 288 °C and 553 °C, respectively. However, for 15Ni‐3M catalysts, the temperature of the second  the single-component 15Ni catalyst. In accordance with others [24,30], the former peak is attributed to the chemisorbed hydrogen on the highly dispersed Ni nanoparticles with a large density of surface

Catalysts 2017, 7, 51 

6 of 19 

peak differs from that of 15Ni, implying that the Ni dispersion in the bicomponent catalysts is distinct  from that in the single‐component 15Ni catalyst. In accordance with others [24,30], the former peak  Catalysts 2017, 7, 51 6 of 18 is  attributed  to  the  chemisorbed  hydrogen  on  the  highly  dispersed  Ni  nanoparticles  with  a  large  density of surface defects, which commonly serve as capture traps for hydrogen diffusion, leading to  defects, which commonly serve as capture traps for hydrogen diffusion, leading to a capability of a capability of reducing the activation energy of hydrogen dissociation. The latter peak is supposed  reducing the activation energy of hydrogen dissociation. The latter peak is supposed to be derived to be derived from the H 2 adsorbed in bulk or on poorly‐dispersed Ni particles. Velu [34] proposed  from the H2 adsorbed in bulk or on poorly-dispersed Ni particles. Velu [34] proposed that the former that the former peak is ascribed to the H 2 desorbed from the surface Ni particles, which indicates the  peak is ascribed to the H desorbed from the surface Ni particles, which indicates the exposed fraction 2 exposed fraction of Ni atoms, and the latter one belongs to the H 2 located in the subsurface layers  of Ni atoms, and the latter one belongs to the H located in the subsurface layers and/or to spillover 2 and/or to spillover H2. Despite diverse theoretical explanations, they all disclosed the nature of two  H2 . Despite diverse theoretical explanations, they all disclosed the nature of two different forms of Ni different forms of Ni particles. Furthermore, it is seen from Table 1 that among all of the catalysts,  particles. it ishave  seencomparatively  from Table 1 that among all of the catalysts, and−115Ni-3Cr 15Ni‐3Mn Furthermore, and  15Ni‐3Cr  high  H2  uptake  of  416.8  and 15Ni-3Mn 405.5  μmol∙g   and  Ni  −1 and Ni dispersion of 41.0% and have comparatively high H uptake of 416.8 and 405.5 µmol · g 2 dispersion  of  41.0%  and  42.8%,  respectively,  indicating  that  the  addition  of  the  proper  second  42.8%, respectively, indicating that the addition of the proper second component can highly increase component can highly increase the dispersion of Ni nanoparticles, which are closely related with the  the dispersion of Ni nanoparticles, which are closely related with the H2 chemisorption ability in the H2 chemisorption ability in the process of catalytic reaction.  process of catalytic reaction. 2.2. Catalytic Performances of Catalysts  2.2. Catalytic Performances of Catalysts 2.2.1. Performance Tests  2.2.1. Performance Tests The results of partial methanation coupling with the WGS of biomass gas catalyzed by 15Ni‐3M  The results of partial methanation coupling with the WGS of biomass gas catalyzed by 15Ni-3M bicomponent catalysts are shown in Figure 5. It is clear that the combination of the second component  bicomponent catalysts are shown in Figure 5. It is clear that the combination of the second component M  with  Ni Ni  obviously obviously  influences influences  the the  catalytic catalytic  performances. performances.  As  the  M with As shown  shown in  in Figure  Figure 5A,  5A, for  for all  all of  of the catalysts, the CO conversion increases gradually with increasing reaction temperature. However, as  catalysts, the CO conversion increases gradually with increasing reaction temperature. However, the  reaction  temperature  is  over  350 350 °C, ◦ C, the the CO CO conversion  starts  to  decrease  or  or level  off off due  to  as the reaction temperature is over conversion starts to decrease level due thermodynamic  limitations,  except  for  with  to thermodynamic limitations, except for15Ni‐3Co,  15Ni-3Co,which  whichmaintains  maintainsits  its upward  upward momentum  momentum with temperature.  This  special  phenomenon  could  be  due  to  the  prevailing  performance  of  WGS  temperature. This special phenomenon could be due to the prevailing performance of WGS over  over methanation, which is verified by the ascending CO methanation, which is verified by the ascending CO22 growth rate in Figure 5C and descending CH growth rate in Figure 5C and descending CH44  selectivity in Figure 5B from 375–400 °C. Generally speaking, in contrast with monometallic Ni‐based  selectivity in Figure 5B from 375–400 ◦ C. Generally speaking, in contrast with monometallic Ni-based catalyst, 15Ni‐3Mn and 15Ni‐3Cr possess higher CO conversion, while the other three bicomponent  catalyst, 15Ni-3Mn and 15Ni-3Cr possess higher CO conversion, while the other three bicomponent catalysts,  including 15Ni-3Mo, 15Ni‐3Mo,  15Ni‐3Fe  15Ni‐3Co,  present  CO  conversion  activities,  catalysts, including 15Ni-3Fe andand  15Ni-3Co, present lowerlower  CO conversion activities, which which correspond well to the TOF CO value in Table 1.    correspond well to the TOFCO value in Table 1.

288℃ H2 TPD signal (a.u.)

506℃

50

522℃

15Ni-3Cr 15Ni-3Mn

512℃

15Ni-3Co 15Ni-3Fe

560℃ 15Ni-3Mo 553℃ 15Ni 200

350 500 650 Temperature (℃)

800

 

Figure 4. H Figure 4. H22‐TPD curves of the reduced catalysts. -TPD curves of the reduced catalysts. 

Figure  5B,C  exhibits  the  CH4  selectivity  and  CO2  growth  rate  as  a  function  of  temperature,  Figure 5B,C exhibits the CH4 selectivity and CO2 growth rate as a function of temperature, respectively. From Figure 5B, it can be seen that the CH4 selectivity of 15Ni‐3Mn within the measured  respectively. From Figure 5B, it can be seen that the CH4 selectivity of 15Ni-3Mn within the measured temperature range is the highest (68.03% on the top) compared to other catalysts. The trend for all of  temperature range is the highest (68.03% on the top) compared to other catalysts. The trend for all the catalysts remains accordant. The CH4 selectivity increases gradually with temperature and passes  of the catalysts remains accordant. The CH4 selectivity increases gradually with temperature and through a maximum at 350 °C, and beyond this temperature spot, a decrease in methanation catalytic  passes through a maximum at 350 ◦ C, and beyond this temperature spot, a decrease in methanation activity is observed. This trending pattern meaningfully suggests us to take 350 °C as the optimum  catalytic activity is observed. This trending pattern meaningfully suggests us to take 350 ◦ C as the optimum operation temperature. Different from Figure 5B,C, a less universal trending pattern of CO2

Catalysts 2017, 7, 51

7 of 18

growth rate with temperature is displayed. This behavior may be caused by the addition of the second component, which greatly influences the WGS catalytic activity and its synergy effect [17,35,36] with Ni methanation catalytic activity. However, it can still be apparently perceived that 15Ni-3Mn and 15Ni-3Cr have overall higher CO2 growth rates than the other catalysts. Through comprehensive comparison, 15Ni-3Mo, 15Ni-3Fe and 15Ni-3Co generally present lower CO conversion, CH4 selectivity and CO2 growth rate than the monometallic 15Ni catalyst, possibly owing to their larger Ni particle size and lower Ni dispersion (Table 1) with the addition of the second component Mo, Fe or Co species. Their low activities, including the capability to catalyze methanation and WGS reaction, are undesirable for further industrial application. On the contrary, 15Ni-3Mn and 15Ni-3Cr seemingly are agreeable for our purposes. Their superior performance is not only on account of the relatively small Ni particles and high Ni dispersion, but also due to large proportions of α-type and β-type NiO (Table S1) in their matching as-prepared catalysts. Further comparison of these two catalysts would be continued in the following sections to select the best candidate for our use. 2.2.2. XRD and TG Analysis after Performance Tests Figure 6A shows the XRD patterns of spent catalysts after performance tests. As is shown, the diffraction peaks of γ-Al2 O3 support and active metal Ni still can be noted clearly compared with the XRD patterns of the reduced catalysts in Figure 2B. The crystal size of Ni (111) in the spent catalysts is calculated and listed in Table 1. By referring to the reduced catalysts, the Ni crystal size of all catalysts increases to various extents after performance tests, and particularly, there is almost no change in the size of Ni particles in the 15Ni-3Mn catalyst, indicating the slightest sintering degree of Ni particles and the best thermal stability. In addition to the Ni crystal size changes, some phases that did not exist in the reduced catalysts have newly emerged in the spent catalysts. Specifically, for 15Ni-3Fe, 15Ni-3Co and 15Ni-3Cr, the phases with the spinel structure (NiFe2 O4 , NiCr2 O4 and NiCo2 O4 ) are newly formed after the performance test. This type of spinel structure not only consumes part of the exposed Ni atoms, which would debase the H2 chemisorption ability in methanation, but also could enhance high temperature shift (HTS) [37]. As is proven by Figure 5B,C, the CH4 selectivity decreases while the CO2 growth rate remains at a relatively high level within the range of 350–400 ◦ C Catalysts 2017, 7, 51  8 of 19  for 15Ni-3Fe, 15Ni-3Co and 15Ni-3Cr.

CH4 selectivity SCH4 (%)

70

(A)

80 70

15Ni 15Ni-3Mo 15Ni-3Fe 15Ni-3Co 15Ni-3Mn 15Ni-3Cr

60 50

300

(B)

325 350 375 Temperature (℃) 90 CO2 growth rate RCO2 (%)

CO conversion XCO (%)

90

60 15Ni 15Ni-3Mo 15Ni-3Fe 15Ni-3Co 15Ni-3Mn 15Ni-3Cr

50

40

300

325 350 375 Temperature (℃)

400

400

(C)

80 70 15Ni 15Ni-3Mo 15Ni-3Fe 15Ni-3Co 15Ni-3Mn 15Ni-3Cr

60 50 40

300

325 350 375 Temperature (℃)

400

 

Figure 5. Catalytic performances of the reduced catalysts for partial methanation coupling with WGS  Figure 5. Catalytic performances of the reduced catalysts for partial methanation coupling with WGS at H2/CO = 0.8 and H2O/CO = 1: (A) CO conversion; (B) CH4 selectivity; and (C) CO2 growth rate.  at H2 /CO = 0.8 and H2 O/CO = 1: (A) CO conversion; (B) CH4 selectivity; and (C) CO2 growth rate.  γ-Al2O3  Ni

(f)





(A)

NiFe2O4 NiCr2O4 HNiCo O 2 4  (200) (220) 



100 Ⅰ



(e) (d)

95 H

H

H

(%)

(a.u.)

(111) 







(B)

300

C

C

15Ni-3Mn 15Ni-3Cr

40

325 350 375 Temperature (℃)

40

400

15Ni-3Mn 15Ni-3Cr

300

325 350 375 Temperature (℃)

400

 

Figure 5. Catalytic performances of the reduced catalysts for partial methanation coupling with WGS  at H2/CO = 0.8 and H2O/CO = 1: (A) CO conversion; (B) CH4 selectivity; and (C) CO2 growth rate.  8 of 18

Catalysts 2017, 7, 51

 γ-Al2O3  Ni





(f)



(A)

NiFe2O4 NiCr2O4 HNiCo O 2 4  (200) (220) 



100



(c) (b) (a)

20





(B)



(e) (d)





95 H 

30

H  



H

H





40 50 60 2 Theta (degree)

Mass (%)

Intensity (a.u.)

(111)

70

80

15Ni 15Ni-3Cr 15Ni-3Mo 15Ni-3Fe 15Ni-3Mn 15Ni-3Co

90

85

0

200

CO(a) Cα(a)

Cα(a)+O(a) 4H(a) CH4(g) Cβ(s)

400 600 800 Temperature (℃)

Cc(s)

1000

 

Figure 6. XRD patterns (A) and TG curves (B) of spent catalysts after performance tests: (a) 15Ni, Figure 6. XRD patterns (A) and TG curves (B) of spent catalysts after performance tests: (a) 15Ni, (b)  (b) 15Ni-3Mo, (c) 15Ni-3Fe, (d) 15Ni-3Co, (e) 15Ni-3Mn and (f) 15Ni-3Cr. 15Ni‐3Mo, (c) 15Ni‐3Fe, (d) 15Ni‐3Co, (e) 15Ni‐3Mn and (f) 15Ni‐3Cr. 

The  quantity of  deposited carbon  spent  catalysts catalysts  was  gauged  by  TG  analysis, analysis,  and  the  The quantity of deposited carbon on  on the  the spent was gauged by TG and the obtained  results are are  depicted  Figure  Generally,  the  TG  curves  be  classified  four  obtained results depicted in in  Figure 6B. 6B.  Generally, the TG curves can be can  classified into fourinto  sections: sections: (1) Section I: the weight loss between room temperature and 280 °C mainly derived from  (1) Section I: the weight loss between room temperature and 280 ◦ C mainly derived from absorbed absorbed surface water and volatiles compound; (2) Section II: weight gain between 280 and 450 °C  surface water and volatiles compound; (2) Section II: weight gain between 280 and 450 ◦ C due to the due to the oxidation of Ni particles [30]; (3) Section III: weight loss originated from the oxidation of  oxidation of Ni particles [30]; (3) Section III: weight loss originated from the oxidation of deposited deposited α‐type carbon (C α-type carbon (Cα ) betweenα) between 450 and 670 °C; and (4) Section IV: weight loss ascribed to the  450 and 670 ◦ C; and (4) Section IV: weight loss ascribed to the oxidation ◦ C [24]. oxidation  of  β‐type  (Cβ)  plus  graphitic  carbon  above  670  °C  [24].  to  the  of β-type carbon (Cβ )carbon  plus graphitic carbon (Cc) above 670(Cc)  According to theAccording  literature [24,38], literature  [24,38],  Cα  formed is  the  active  species  formed  by  dissociation,  which  for is  the the formation essential  Cα is the active species by CO dissociation, which is CO  the essential intermediate of methane, and Cβ is one kind of polymeric carbon species that can be produced by Cα reacting. intermediate for the formation of methane, and C β is one kind of polymeric carbon species that can  Cc is normally generated at high temperatures that can be transformed from Cβ , whereas it is be produced by C α reacting. Cc is normally generated at high temperatures that can be transformed  responsible for the deactivation of catalysts. Relevant simplified formulas are inserted in Figure 6B. from C β, whereas it is responsible for the deactivation of catalysts. Relevant simplified formulas are  The carbon deposition rate is also compiled in Table 2. As is shown, except for 15Ni-3Mn and 15Ni-3Cr, inserted in Figure 6B. The carbon deposition rate is also compiled in Table 2. As is shown, except for  the other four catalysts have less carbon deposition and smaller carbon deposition rates. This may be due to their low activity as analyzed above. In terms of 15Ni-3Mn and 15Ni-3Cr catalysts with high activity, the former has less carbon deposition, as well as a lower carbon deposition rate than the latter, indicating better resistance of carbon formation for 15Ni-3Mn. Nevertheless, there is no diffraction peak in Figure 6A attributed to deposited carbon for all of the catalysts, probably owing to the limited amount of deposited carbon, which is below the detection limit or in the amorphous state. Table 2. Carbon deposition data of spent catalysts after performance tests. Samples

Carbon Deposition Rate a (mmol·min−1 )

Carbon Deposition b (wt %)

15Ni 15Ni-3Mo 15Ni-3Fe 15Ni-3Co 15Ni-3Mn 15Ni-3Cr

4.882 6.425 3.870 4.212 5.305 7.450

1.82 1.95 1.54 1.69 2.40 3.06

a

Average value of carbon deposition rates at five temperature spots in performance tests based on the carbon balance between inlet and outlet species. b Obtained from Section III and Section IV in the TG curves.

2.3. Comparative Study on 15Ni-3Mn and 15Ni-3Cr From the above analysis, we preliminarily concluded that both 15Ni-3Mn and 15Ni-3Cr have better activity than the other four catalysts for partial methanation coupling with WGS of biomass gas. In order to filter out the best candidate for industrial application, we carried out a series of comparative investigations on 15Ni-3Mn and 15Ni-3Cr.

Catalysts 2017, 7, 51

9 of 18

2.3.1. Effect of H2 /CO The effect of H2 /CO on partial methanation coupling with WGS of biomass gas is summarized in Figure 7. As can be seen, for both 15Ni-3Mn and 15Ni-3Cr, the CH4 selectivity in Figure 7B is promoted while the CO2 growth rate in Figure 7C is impeded with increasing H2 /CO. This is mainly due to increased H2 concentration that the larger H2 /CO incurs, which is favorable for methanation, whereas detrimental for WGS. However, the changing trend of CO conversion for 15Ni-3Mn and 15Ni-3Cr exhibits an adverse pattern. As Figure 7A shows, it is obvious that CO conversion for 15Ni-3Mn first decreases and then increases with further increasing H2 /CO, of which 91.7% CO conversion is obtained at H2 /CO = 0.8. While for 15Ni-3Cr, CO conversion increases firstly and then decreases with H2 /CO, along with the highest 94.3% CO conversion at H2 /CO = 0.8. Considering that these two catalysts have same upward trend of CH4 selectivity and downward trend of the CO2 growth rate with H2 /CO, we can safely conclude that for 15Ni-3Mn, methanation prevails over WGS, while for 15Ni-3Cr WGS surpasses methanation in the H2 /CO range of 0.8–1.0. This adverse pattern may be caused by the difference of the synergy effect, as well as Ni dispersion and its interaction with the 10 of 19  supportCatalysts 2017, 7, 51  between Ni-Mn and Ni-Cr.

90

80 15Ni-3Mn 15Ni-3Cr 70

CH4 selectivity SCH4 (%)

(A)

0.6

(B)

15Ni-3Mn 15Ni-3Cr

75

0.7

65 60 55 0.7

0.8 H2/CO

0.9

1.0

110

15Ni-3Mn 15Ni-3Cr

100

70

0.6

0.8 H2/CO

CO2 growth rate RCO2 (%)

CO conversion XCO (%)

100

0.9

1.0

(C)

90 80 70 60 50

0.6

0.7

0.8 H2/CO

0.9

1.0

 

◦CH Figure  7.  Effect  H2/CO  partial  methanation  coupling  WGS  at  350  °C  and  2O/CO  =  1:    = 1: Figure 7. Effect of H2of  /CO on on  partial methanation couplingwith  with WGS at 350 and H2 O/CO (A) CO conversion; (B) CH4 selectivity; and (C) CO2 growth rate.  (A) CO conversion; (B) CH4 selectivity; and (C) CO2 growth rate.

2.3.2. Effect of H2O/CO 

Besides, according to Table 1, the Ni dispersion of 15Ni-3Mn is comparable with that of 15Ni-3Cr, H2O plays an important role in the partial methanation coupling with WGS of biomass gas since  but the it is not only the reactant of WGS reaction, but also serves as the product of methanation. Its dual  H2 chemisorption ability of 15Ni-3Mn is larger than 15Ni-3Cr, which may account for the constantly higher CH4 selectivity of 15Ni-3Mn than2O/CO on catalytic performance, and the results  that of 15Ni-3Cr in the whole range of H2 /CO, identity makes it worthwhile to probe the effect of H further are shown in Figure 8. As displayed in Figure 8B and Figure 8C, both 15Ni‐3Mn and 15Ni‐3Cr show  indicating that the former catalyst has better adaptability to various H2 /CO conditions and is a downward trend of CH 4 selectivity, while an upward tendency of the CO2 growth rate as a function  more eligible for industrial application. of  H2O/CO.  Hence,  we  can  conclude  that  H2O  could  inhibit  partial  methanation,  but  otherwise 

promote the WGS reaction. As for its integrated influence on catalytic performance, it can be explicitly  2.3.2. Effect of H2 O/CO

seen in Figure 8A that the CO conversion increases with H2O/CO, indicating that H2O favors WGS 

H2reaction over methanation. In addition, despite the comparable CO O plays an important role in the partial methanation coupling with WGS of biomass gas since it 2 growth rate and CO conversion  at high water content (1.0–1.5 H 2 O/CO) for both catalysts, 15Ni‐3Mn presents better CH 4 selectivity  is not only the reactant of WGS reaction, but also serves as the product of methanation. Its dual identity than 15Ni‐3Cr, implying that the Mn species is more competent than Cr as the second component in  makes it worthwhile to probe the effect of H2 O/CO on catalytic performance, and the results are the Ni‐M bicomponent catalyst since the former is more efficient in converting CO to CH4.  shown in Figure 8. As displayed in Figure 8B,C, both 15Ni-3Mn and 15Ni-3Cr show a downward trend of CH4 selectivity, while an upward tendency of the CO2 growth rate as a function of H2 O/CO. Hence, 2.3.3. Heating Value Analysis  we can conclude that H2 O could inhibit partial methanation, but otherwise promote the WGS reaction. The  urban  gas  has  to  be  of  a  certain  heating  value  before  it  is  transported  in  a  pipeline  to  downstream  residents.  As  mentioned  previously,  biomass  gas  after  partial  methanation  coupling  with WGS needs subsequent removal of CO2 in order to satisfy the heating value standard of urban  gas.  Apart  from  traditional  upgrading  technologies  (e.g.,  water  scrubbing,  chemical  and  physical  scrubbing and membrane adsorption), there are plentiful reported literature works concerning CO2  removal, such as the low‐temperature CO2 removal process [39], pressure/vacuum swing adsorption 

Catalysts 2017, 7, 51

10 of 18

As for itsCatalysts 2017, 7, 51  integrated influence on catalytic performance, it can be explicitly seen in Figure11 of 19  8A that the Catalysts 2017, 7, 51  11 of 19  CO conversion increases with H2 O/CO, indicating that H2 O favors WGS reaction over methanation. −3, which completely reaches the Type II standard  heating value for both catalysts is beyond 10 MJ∙Nm In addition, despite the comparable CO2 growth −3rate and CO conversion at high water content heating value for both catalysts is beyond 10 MJ∙Nm , which completely reaches the Type II standard  of the Chinese National Standard GB/T 13612‐2006 corresponding to manufactured gas (dotted line  (1.0–1.5 of the Chinese National Standard GB/T 13612‐2006 corresponding to manufactured gas (dotted line  H2 O/CO) for both catalysts, 15Ni-3Mn presents better CH4 selectivity than 15Ni-3Cr, implying in Figure 9). Moreover, biomass gas catalyzed by 15Ni‐3Mn steadily presents a higher heating value  that thein Figure 9). Moreover, biomass gas catalyzed by 15Ni‐3Mn steadily presents a higher heating value  Mn species is more competent than Cr as the second component in the Ni-M bicomponent than 15Ni‐3Cr, suggesting that 15Ni‐3Mn is more suited for industrial application in converting low  than 15Ni‐3Cr, suggesting that 15Ni‐3Mn is more suited for industrial application in converting low  catalyst H since the former is more efficient  in converting CO to CH4 . 2/CO ratio biomass gas to urban gas.

CO conversion XCO (%) CO conversion XCO (%)

H2/CO ratio biomass gas to urban gas. 

65 65 60 60 55 55 0.50 0.50

(A) (A)

15Ni-3Mn 15Ni-3Mn 15Ni-3Cr 15Ni-3Cr

93 93 90 90 87 87 0.50 0.50

0.75 1.00 1.25 1.50 0.75 H21.00 1.50 O/CO 1.25 H2O/CO 100 (B) 100 15Ni-3Mn (B) 15Ni-3Mn 15Ni-3Cr 95 15Ni-3Mn 15Ni-3Cr 95 15Ni-3Cr 15Ni-3Mn 90 15Ni-3Cr 90 85 85 80 80 75 75 70 0.75 1.00 1.25 1.50 0.75 1.00 1.25 70 0.50 0.75 H21.00 1.50 0.50 0.75 H21.00 O/CO 1.25 O/CO 1.25 H2O/CO H2O/CO

CO growth rate R RCO2 (%) CO (%) 2 2 growth rateCO2

CH selectivity S SCH4 (%) CH (%) 4 4 selectivityCH4

70 70

96 96

(C) (C)

1.50 1.50

   

-3

-3 Lower Lowerheating heatingvalue value(MJ (MJNm Nm) )

2O/CO on partial methanation coupling with WGS at 350 °C and H 2/CO = 0.8:    Figure 8.Figure 8. Effect of H Effect of H2 O/CO on partial methanation coupling with WGS at 350 ◦ C and H2 /CO = 0.8: Figure 8. Effect of H 2O/CO on partial methanation coupling with WGS at 350 °C and H2/CO = 0.8:    4 selectivity; and (C) CO2 growth rate.  (A) CO conversion; (B) CH (A) CO conversion; (B) CH selectivity; and (C) CO growth rate. 4 2 (A) CO conversion; (B) CH4 selectivity; and (C) CO2 growth rate. 

14 14

15Ni-3Mn 15Ni-3Mn 15Ni-3Cr 15Ni-3Cr

12 12 10 10 8 8 0 0

1 1

2 3 2Condition3 Condition

4 4

   

Figure 9. Lower heating value of biomass gas under different conditions. Condition 1 refers to the 

Figure 9. Lower heating value of biomass gas under different conditions. Condition 1 refers to the  Figure 9. Lower value of biomass gas under different Condition 1 refers outlet  state heating after  partial  methanation  coupling  with  WGS at  350 conditions. °C,  H2/CO  =  0.8  and H2O/CO  =  1.  to the outlet  state  after  partial  methanation  coupling  with  WGS at  350  °C,  2/CO  =  0.8  and H2O/CO  =  1.   is removed, respectively.    = 1. Conditions 2–4 refer to the assumed state, for which 30%, 40% and 50% CO outlet state after partial methanation coupling with WGS at 350 ◦ C,HH = 0.8 and H2 O/CO 22/CO Conditions 2–4 refer to the assumed state, for which 30%, 40% and 50% CO2 is removed, respectively.    Conditions 2–4 refer to the assumed state, for which 30%, 40% and 50% CO2 is removed, respectively.

2.3.4. SEM Analysis after Comparative Study  2.3.4. SEM Analysis after Comparative Study 

2.3.3. Heating Value Analysis The urban gas has to be of a certain heating value before it is transported in a pipeline to downstream residents. As mentioned previously, biomass gas after partial methanation coupling with WGS needs subsequent removal of CO2 in order to satisfy the heating value standard of urban gas. Apart from traditional upgrading technologies (e.g., water scrubbing, chemical and physical scrubbing

Catalysts 2017, 7, 51

11 of 18

and membrane adsorption), there are plentiful reported literature works concerning CO2 removal, such as the low-temperature CO2 removal process [39], pressure/vacuum swing adsorption using improved 13X zeolite [40] and using activated carbon as the adsorption bed layer in the pressure swing adsorption (PSA) unit [41]. Thus, it is practical to construct a CO2 removal unit as the gas upgrading segment with WGS plus the methanation unit as portrayed in Figure 1. Figure 9 displays the lower heating value of biomass gas under different conditions. It can be seen that the lower heating value increased after removing part of the CO2 due to the enhanced concentration of combustible components, such as H2 , CO and CH4 . Besides, after removing 30% CO2 , the lower heating value for both catalysts is beyond 10 MJ·Nm−3 , which completely reaches the Type II standard of the Chinese National Standard GB/T 13612-2006 corresponding to manufactured gas (dotted line in Figure 9). Moreover, biomass gas catalyzed by 15Ni-3Mn steadily presents a higher heating value than 15Ni-3Cr, suggesting that 15Ni-3Mn is more suited for industrial application in converting low H2 /CO ratio biomass gas to urban gas. 2.3.4. SEM Analysis after Comparative Study Catalysts 2017, 7, 51 

12 of 19 

The structures of the two compared catalysts were further analyzed by SEM and EDS analysis. The structures of the two compared catalysts were further analyzed by SEM and EDS analysis.  As Figure 10A,C presents, both reduced catalysts display a porous structure belonging to the Al2 O3 As Figure 10A,C presents, both reduced catalysts display a porous structure belonging to the Al 2O3  support with a large specific surface area, which provides prerequisites for highly dispersed Ni support  with  a  large component. specific  surface  area,  which  provides  prerequisites  for Ni highly  dispersed  Ni  particles and the second Besides, it can be clearly seen that nanoparticles (possibly mixed particles and the second component. Besides, it can be clearly seen that Ni nanoparticles (possibly  with the second component) are distributed on the support surface without showing large mixed  with  the  second  component)  are  distributed on  the  support  surface  without  showing  large  aggregations, indicating the high dispersion that is consistent with the H2 -TPD results in Table 1. aggregations,  indicating  the  high  dispersion  that  is  consistent  with  the  H2‐TPD  results  in  Table  1.  Figure 11 displays the total elemental mapping images and corresponding EDS analysis of the two Figure 11 displays the total elemental mapping images and corresponding EDS analysis of the two  catalysts. As can be seen in Figure 11E,F, the Ni content of both catalysts is higher than the prepared catalysts. As can be seen in Figure 11E,F, the Ni content of both catalysts is higher than the prepared  contentcontent due to the limitation of EDS as a surface analysis technology instead of bulk analysis. The  due to the limitation of EDS as a surface analysis technology instead of bulk analysis. The bulk contentbulk  is listed inis  Table based ICP detection. Moreover, according to the elemental mapping content  listed 1in  Table on 1  based  on  ICP  detection.  Moreover,  according  to  the  elemental  imagesmapping  in Figure S4, for 15Ni-3Mn and 15Ni-3Cr, Al, Ni and Mn/Cr species are all in a homogeneous images  in  Figure  S4,  for  15Ni‐3Mn  and  15Ni‐3Cr,  Al,  Ni  and  Mn/Cr  species  are  all  in  a  distribution, which distribution,  is consistent withis both a smaller particles size derivedsize  from XRD from  analysis and homogeneous  which  consistent  with Ni both  a  smaller  Ni  particles  derived  XRD  and  the  larger  H 2   adsorption  amount  in  Table  1,  further  conforming  their  high  the larger Hanalysis  adsorption amount in Table 1, further conforming their high dispersion on the support. 2 dispersion on the support. The relative amount can be judged from their density in mapping images  The relative amount can be judged from their density in mapping images with a sequence of Al > Ni > with a sequence of Al > Ni > Mn ≈ Cr, which is in accordance with the prepared content.    Mn ≈ Cr, which is in accordance with the prepared content.

(A)

Ni particles

(B)

Deposited carbon Porous structure

(C)

(D) Porous structure

Ni particles Deposited carbon

  FigureFigure 10. SEM (scanning electron microscope) images of reduced catalysts: (A) 15Ni‐3Mn; (C) 15Ni‐ 10. SEM (scanning electron microscope) images of reduced catalysts: (A) 15Ni-3Mn; 3Cr; and spent catalysts: (B) 15Ni‐3Mn; (D) 15Ni‐3Cr.  (C) 15Ni-3Cr; and spent catalysts: (B) 15Ni-3Mn; (D) 15Ni-3Cr. After the comparative study, carbon filaments and whiskers can be observed on the surface of  both catalysts (Figure 10B,D). However, the amount of deposited carbon for 15Ni‐3Cr is apparently  larger than that for 15Ni‐3Mn, which could be proven by TG analysis in Table 2. As is well known,  deposited carbon is responsible for blocking support pores and covering active components, leading  to a decreased  catalytic activity.  Thus, due to  more deposited  carbon, 15Ni‐3Cr is  less active  than  15Ni‐3Mn during the comparative study.   

Catalysts 2017, 7, 51 Catalysts 2017, 7, 51 

12 of 18 13 of 19 

(A)

(B)

(C)

(D)

Al+Ni+Mn

Al+Ni+Cr

Au O Ni 0.0

Mn 2.5

Ni

5.0 7.5 Energy (keV)

Ni

Au 10.0

(F)

Al

(E) cps (eV)

cps (eV)

Al

Au O Ni 0.0

Cr 2.5

Ni

5.0 7.5 Energy (keV)

Ni

Au 10.0

 

Figure 11. SEM images (A,B), corresponding total elemental mapping images (C,D) and EDS Figure  11.  SEM  images  (A,B),  corresponding  total  elemental  mapping  images  (C,D)  and  EDS  (energy  (energy dispersive spectroscopy) analysis (E,F) of reduced catalysts. ((A,C,E) for 15Ni-3Mn and dispersive spectroscopy) analysis (E,F) of reduced catalysts. ((A,C,E) for 15Ni‐3Mn and (B,D,F) for 15Ni‐ (B,D,F) for 15Ni-3Cr). 3Cr).   

After the comparative study, carbon filaments and whiskers can be observed on the surface of 2.4. Stability of 15Ni‐3Mn Catalyst  both catalysts (Figure 10B,D). However, the amount of deposited carbon for 15Ni-3Cr is apparently Through the comparative study, we found out that 15Ni‐3Mn performs better than 15Ni‐3Cr  larger than that for 15Ni-3Mn, which could be proven by TG analysis in Table 2. As is well known, over a wide range of H 2/CO and H2O/CO, impelling us to select 15Ni‐3Mn as the best candidate for  deposited carbon is responsible for blocking support pores and covering active components, leading partial methanation coupling with WGS of low H 2/CO ratio biomass gas into urban gas. However,  to a decreased catalytic activity. Thus, due to more deposited carbon, 15Ni-3Cr is less active than from the industrial and engineering perspective, the catalyst must withstand start/stop cycles and  15Ni-3Mn during the comparative study. have a desirable lifetime. As a result, in this section, we designed a start/stop cycle test and a lifetime  2.4. Stability of 15Ni-3Mn Catalyst test on the 15Ni‐3Mn catalyst with the purpose of examining its performance in practical occasions.  In the start/stop cycle test, the 15Ni‐3Mn catalyst is confronted with continuous start‐up/cessations  Through the comparative study, we found out that 15Ni-3Mn performs better than 15Ni-3Cr of  the  engine.  The  cycles  were  realized  cooling  the  as system  down  to  room  over a wide range of series  H2 /COof and H2 O/CO, impellingby  us firstly  to select 15Ni-3Mn the best candidate for temperature  and  then  passing  the  reaction  feed  gas  including  steam  through  the  catalyst  bed  for  partial methanation coupling with WGS of low H2 /CO ratio biomass gas into urban gas. However,   30 min. Finally, the system was reheated to the chosen temperature of 350 °C [22]. The condensed  from the industrial and engineering perspective, the catalyst must withstand start/stop cycles and water,  which  is lifetime. located  As in  the  pore inof  catalyst,  considered  one  of  the  harshest  have a desirable a result, this section,is we designed aas  start/stop cycle test andconditions  a lifetime   for catalysts.  test on the 15Ni-3Mn catalyst with the purpose of examining its performance in practical occasions. In theThe heating value of urban gas is closely associated with the content of combustible components,  start/stop cycle test, the 15Ni-3Mn catalyst is confronted with continuous start-up/cessations of such as H 2, CO and CH4; thus, we concentrate on their content in the outlet. The experimental result  the engine. The series of cycles were realized by firstly cooling the system down to room temperature in Figure 12A revealed that during the former two stop/cycles (Stop/Cycles 1 and 2), the content of  and then passing the reaction feed gas including steam through the catalyst bed for 30 min. Finally, H2,  CO  and  CH4  remained  as  the  state  without  shutdown  (Stop/Cycle  0),  indicating  that  the    15Ni‐3Mn  catalyst  is  robust  to  some  extent.  However,  in  Stop/Cycles  3  and  4,  the  content  of  CH4 

Catalysts 2017, 7, 51

13 of 18

the system was reheated to the chosen temperature of 350 ◦ C [22]. The condensed water, which is located in the pore of catalyst, is considered as one of the harshest conditions for catalysts. The heating value of urban gas is closely associated with the content of combustible components, such as H2 , CO and CH4 ; thus, we concentrate on their content in the outlet. The experimental result in Figure 12A revealed that during the former two stop/cycles (Stop/Cycles 1 and 2), the content of H2 , Catalysts 2017, 7, 51  14 of 19  CO and CH4 remained as the state without shutdown (Stop/Cycle 0), indicating that the 15Ni-3Mn catalyst is robust to some extent. However, in Stop/Cycles 3 and 4, the content of CH4 decreased and decreased and CO increased, suggesting a deactivation in the 15Ni‐3Mn catalyst. This may be due to  CO increased, suggesting a deactivation in the 15Ni-3Mn catalyst. This may be due to destruction in destruction in the porous structure of the support and a wastage of active components caused by  the porous structure of the support and a wastage of active components caused by excessive condensed excessive  condensed  water.  Nevertheless,  this  start/stop  cycle  test  demonstrated  indirectly  that  water. Nevertheless, this start/stop cycle test demonstrated indirectly that frequent shutdowns have frequent  shutdowns  have  a  negative  effect  on  the  performance  of  catalyst,  and  we  should  keep  a negative effect on the performance of catalyst, and we should keep systematic continuity as much systematic continuity as much as possible.  as possible. 50

H2

CO

CH4

30

(A) Content (%)

Content (%)

30 20 10 0

CH4

25

40

(B)

H2 CO

20 15 10 5

0

1 2 3 Start/stop cycle

4

0

0

20

40 60 Time (h)

80

100

 

Figure 12. Start/stop cycle test (A) and lifetime test (B) of 15Ni-3Mn catalyst at 350 ◦ C, H2 /CO = 0.8 Figure 12. Start/stop cycle test (A) and lifetime test (B) of 15Ni‐3Mn catalyst at 350 °C, H 2/CO = 0.8  and H O/CO = 1. and H22O/CO = 1. 

The  lifetime lifetime  test test  is is considerably considerably  critical critical  in in  the the appraisal appraisal  of of catalyst, catalyst,  and and  aa catalyst catalyst  with with good good  The stability isis crucial crucial  industrial  processes.  Figure  12B  presents  the  lifetime  test  of  the    stability forfor  industrial processes. Figure 12B presents the lifetime test results of results  the 15Ni-3Mn 15Ni‐3Mn catalyst carried out at 350 °C, H catalyst carried out at 350 ◦ C, H2 /CO = 0.82/CO = 0.8 and H and H2 O/CO =2O/CO = 1. It can be seen that during the  1. It can be seen that during the nearly nearly 100‐h lifetime test, the content of H , CO and CH 4 in the outlet gas remains relatively stable  100-h lifetime test, the content of H2 , CO 2and CH4 in the outlet gas remains relatively stable and and  basically  fluctuates  over  the  average  value  (dashed  line  in  Figure  12B),  suggesting  that  the    basically fluctuates over the average value (dashed line in Figure 12B), suggesting that the 15Ni-3Mn 15Ni‐3Mn  catalyst  could  work  with  a  satisfying  over  an  extended  This  be  catalyst could work with a satisfying stability over anstability  extended period. This may period.  be because themay  added because  the could added  Mn  species  could  the  surface rapid  loss  specific  area  caused  by and Ni  Mn species inhibit the rapid lossinhibit  of specific areaof caused bysurface  Ni sintering (Table 1) sintering the (Table  1) carbon and  decrease  the (Table rate  of  2).  Similar  results  are  also  decrease rate of deposition 2).carbon  Similardeposition  results are(Table  also reported elsewhere [30,42,43]. The mean content of H2 is 22.07% accompanied by 19.35% CH4 and 8.37% CO on average. In addition, reported elsewhere [30,42,43]. The mean content of H 2 is 22.07% accompanied by 19.35% CH 4 and  the content of CO is below 10%, which could guarantee the safety requirements for downstream 8.37% CO on average. In addition, the content of CO is below 10%, which could guarantee the safety  residents. The coexistence of H2 and CH4 with a high concentration demonstrates that the 15Ni-3Mn requirements for downstream residents. The coexistence of H 2 and CH 4  with a high concentration  catalyst could that  splendidly catalyzecatalyst  partial methanation coupling withpartial  WGS of biomass gas, which demonstrates  the  15Ni‐3Mn  could  splendidly  catalyze  methanation  coupling  exposes its great industrial potential. with WGS of biomass gas, which exposes its great industrial potential.  2.5. Synergy Effect between Ni and MnOxx Species  Species 2.5. Synergy Effect between Ni and MnO On the basis of the above results and discussions, a process of partial methanation coupling On the basis of the above results and discussions, a process of partial methanation coupling with  with of biomass gas catalyzed by Ni-Mn bicomponent catalyst is outlined in Figure WGS WGS of  biomass  gas  catalyzed  by  Ni‐Mn  bicomponent  catalyst  is  outlined  in  Figure  13.  As 13. it  As it illustrates, highly dispersed Ni particles and MnO species serve as active sites for CO x illustrates, highly dispersed Ni particles and MnOx species serve as active sites for CO hydrogenation,  hydrogenation, as well as WGS. Compared to monometallic 15Ni catalyst, thex species on the one  addition of MnOx as well as WGS. Compared to monometallic 15Ni catalyst, the addition of MnO species on the one hand weakens the interaction between2ONiO and the Al2 O3 support, which facilitates hand weakens the interaction between NiO and the Al 3 support, which facilitates the reduction of  the reduction of NiO particles, while on the other hand increases theof  dispersion reduced well NiO  particles,  while  on  the  other  hand  increases  the  dispersion  reduced  of Ni,  as  well Ni, as as the  H2  as the H uptake, leading to an increased activity for methanation. Moreover, the addition of MnO x uptake,  2leading  to  an  increased  activity  for  methanation.  Moreover,  the  addition  of  MnOx  species  species could enhance the WGS reaction, demonstrating an outstanding synergy effect between Ni could enhance the WGS reaction, demonstrating an outstanding synergy effect between Ni and MnOx 

species.  Compared  to  CrOx  species,  MnOx  species  could also inhibit  the  rate  of  carbon  deposition,  showing  its  better  anti‐coking  ability  when  submitted  to  various  H2/CO  and  H2O/CO  situations.  Finally, the synergy effect between Ni and MnOx species presents a nonlinear relationship with the  amount of Mn addition, and there exists an optimal value, as shown in Figure S5. 

Catalysts 2017, 7, 51

14 of 18

and MnOx species. Compared to CrOx species, MnOx species could also inhibit the rate of carbon deposition, showing its better anti-coking ability when submitted to various H2 /CO and H2 O/CO situations. Finally, the synergy effect between Ni and MnOx species presents a nonlinear relationship Catalysts 2017, 7, 51  15 of 19  with the amount of Mn addition, and there exists an optimal value, as shown in Figure S5.

methanation CO

H2

CH4

H 2O

H2O

CO2

H2

WGS Ni

MnOx

deposited carbon

Ni

Al2O3 support

  Figure  13.  Schematic  between  Ni Ni  and and  MnOxx  species  partial  methanation methanation  Figure 13. Schematic of  of the  the synergy  synergy effect  effect between species for  for partial coupling with WGS.    coupling with WGS.

3. Materials and Methods  3. Materials and Methods 3.1. Catalyst Preparation  3.1. Catalyst Preparation The  incipient  wetness wetness    The supported  supported nickel‐based  nickel-based bicomponent  bicomponent catalysts  catalysts were  were prepared  prepared by  by the  the incipient co-impregnation method. The γ-Al22O O33 granular support (particle size: 2–3 mm) (Henan Chuangmei  granular support (particle size: 2–3 mm) (Henan Chuangmei co‐impregnation method. The γ‐Al Environmental Protection Co., Ltd., Gongyi, China) was first pretreated by drying in an electric oven Environmental Protection Co., Ltd., Gongyi, China) was first pretreated by drying in an electric oven  at 110 ◦ C for 12 h, so as to remove the adsorbed impurities. Then, a precalculated amount of solution at 110 °C for 12 h, so as to remove the adsorbed impurities. Then, a precalculated amount of solution  containing Ni(NO ·6H22O  O and  and the  the second asas  (NH) ·9H22O,  O, containing  Ni(NO33)22∙6H second metal metal salt, salt, such such  (NH) 4Mo 7O ∙4H22O, O, Fe(NO Fe(NO33))22∙9H 4 Mo 7O 2424·4H Co(NO33))22∙6H ·6H2O,  O, Mn(NO ) · 4H O and Cr(NO ) · 9H O, was mixed with the support material. All 2 Mn(NO3)32∙4H 2 2O  2 and  Cr(NO3)32∙9H 2 2O,  2 was  mixed  with  the  support  material.  All  chemicals mentioned above were commercially provided by Sinopharm Chemical Reagent Co., Ltd. chemicals mentioned above were commercially provided by Sinopharm Chemical Reagent Co., Ltd.  (Shanghai, China) and were of analytical purity. In order to obtain catalysts with uniformly-dispersed (Shanghai, China) and were of analytical purity. In order to obtain catalysts with uniformly‐dispersed  bicomponent Ni-M species (M = Mo, Fe, Co, Mn or Cr), the heterogeneous mixture was kept in a bicomponent Ni‐M species (M = Mo, Fe, Co, Mn or Cr), the heterogeneous mixture was kept in a  water bath at 60 ◦ C for 12 h. Later, the samples were dried at 110 ◦ C and calcined by a temperature water bath at 60 °C for 12 h. Later, the samples were dried at 110 °C and calcined by a temperature  programmed muffle furnace at 450 ◦ C for 4 h. The nominal load of nickel in each of the acquired programmed muffle furnace at 450 °C for 4 h. The nominal load of nickel in each of the acquired  catalyst is 15 wt %, and that of the second metal is 3 wt %, unless noted elsewhere. For convenience, catalyst is 15 wt %, and that of the second metal is 3 wt %, unless noted elsewhere. For convenience,  the abbreviations the catalysts in this workwork  are denoted as 15Ni-3M. 15Ni catalyst was also was  prepared the  abbreviations ofof  the  catalysts  in  this  are  denoted  as  15Ni‐3M.  15Ni  catalyst  also  in the same manner for reference. prepared in the same manner for reference.  3.2. Catalyst Characterizations 3.2. Catalyst Characterizations  Inductively-coupled plasma (ICP) atomic emission spectrometry (Optima5300DV, PerkinElmer Inductively‐coupled plasma (ICP) atomic emission spectrometry (Optima5300DV, PerkinElmer  Instrument, Waltham, MA, USA) was used to determine the real contents of loaded metal in the Instrument, Waltham, MA, USA) was used to determine the real contents of loaded metal in the as‐ as-prepared catalysts. N2 isothermal adsorption at −196 ◦ C was analyzed using an automated gas prepared  catalysts.  N2  isothermal  adsorption  at  −196  °C  was  analyzed  using  an  automated  gas  adsorption analyzer (BELSORP-Mini, Osaka, Japan) in order to calculate the specific surface area adsorption  analyzer  (BELSORP‐Mini,  Osaka,  Japan)  in  order  to  calculate  the  specific  surface  area  according to the BET method and the pore size distribution by the BJH (Barrett-Joyner-Halenda) according  to  the  BET  method  and  the  pore  size  distribution  by  the  BJH  (Barrett‐Joyner‐Halenda)  method. Powder X-ray diffraction (XRD) patterns were recorded by an X-ray diffractometer method. Powder X‐ray diffraction (XRD) patterns were recorded by an X‐ray diffractometer (Smart  (Smart Lab, Tokyo, Japan) with Cu Kα radiation under a 0.02◦ scanning step and 20◦ ·min−1 scanning Lab, Tokyo, Japan) with Cu Kα radiation under a 0.02° scanning step and 20°∙min−1 scanning speed  speed operated at 40 kV and 100 mA. The wavelength λ was 0.154 nm, and the scanning 2θ angle operated at 40 kV and 100 mA. The wavelength λ was 0.154 nm, and the scanning 2θ angle range  range was from 20◦ –80◦ . was from 20°–80°.  H2 -TPR and H 2 -TPD characterizations were carried out on an automated chemisorption analyzer H 2‐TPR and H2‐TPD characterizations were carried out on an automated chemisorption analyzer  (chemBET pulsar TPR/TPD, Quantachrome, Boynton Beach, FL, USA). For the H2 -TPR test, typically, (chemBET pulsar TPR/TPD, Quantachrome, Boynton Beach, FL, USA). For the H 2‐TPR test, typically,  a 0.10 g sample was first placed at 300 ◦ C for 1 h under Ar flow to remove moisture and impurities a 0.10 g sample was first placed at 300 °C for 1 h under Ar flow to remove moisture and impurities  as the pretreatment. Following, the sample was cooled down to room temperature and reheated as the pretreatment. Following, the sample was cooled down to room temperature and reheated to  1000 °C at 10 °C∙min−1 under the flow of a 10 vol % H2/Ar mixture gas (40 mL∙min−1). The outlet signal  was  recorded  continuously  by  a  thermal  conductivity  detector  (TCD)  detector  (Shimadzu  Corporation, Kyoto, Japan). For the H2‐TPD test, a 0.20 g sample was initially reduced in situ by H2  flow and subsequently cooled down to room temperature and saturated with H2 for 1 h. After the 

Catalysts 2017, 7, 51

15 of 18

to 1000 ◦ C at 10 ◦ C·min−1 under the flow of a 10 vol % H2 /Ar mixture gas (40 mL·min−1 ). The outlet signal was recorded continuously by a thermal conductivity detector (TCD) detector (Shimadzu Corporation, Kyoto, Japan). For the H2 -TPD test, a 0.20 g sample was initially reduced in situ by H2 flow and subsequently cooled down to room temperature and saturated with H2 for 1 h. After the physically adsorbed H2 was removed by purging with Ar for 2 h, the sample was subsequently heated to 800 ◦ C at a ramping rate of 10 ◦ C·min−1 in Ar flow (30 mL·min−1 ). Likewise, the released H2 was detected continuously as a function of increasing temperature by a TCD detector. The dispersion of Ni was calculated based on the volume of chemisorbed H2 using the simplified equation referring to the literature [44]: D (%) = 100 ×

2 × Vad × M × SF m × P × Vm × dr

(3)

where Vad (mL) is the volume of chemisorbed H2 in the TPD measurement at standard temperature and pressure (STP) conditions; M is the molecular weight of Ni (58.69 g·mol−1 ); SF is the stoichiometric factor, which originates from the assumption of adsorption stoichiometry H/Ni = 1:1; m is the mass of the sample (g); P is the weight fraction of Ni in the sample determined by ICP; Vm is the molar volume of H2 (22.4 L·mol−1 ) at STP; and dr is the reduction degree of Ni calculated on the basis of H2 -TPR. The properties and the amount of carbon deposits over spent catalysts were investigated through thermogravimetric (TG) analysis (NETZSCH STA 409 PC/PG, NETZSCH, Selb, Germany). The sample was heated in flowing air from room temperature to 1000 ◦ C at a heating rate of 10 K·min−1 . The morphology of catalyst samples was determined by a HITACHI S-4800 scanning electron microscopy (SEM) operated at 5 kV with an energy dispersive X-ray spectroscopy (EDS) detector for elemental analysis. 3.3. Catalyst Testing The catalyst testing was carried out in a continuous fixed-bed reactor equipped with a stainless steel tube (inner diameter: 50 mm, length: 1000 mm) at 0.1 MPa and a temperature range of 300–400 ◦ C. In a typical catalyst test, the reactor with 50 mL of catalysts was initially heated to 450 ◦ C (heating rate: 4 ◦ C·min−1 ) in N2 flow, and then the gas flow was switched to pure H2 (Gas Hour Space Velocity (GHSV): 1000 h−1 ) for catalyst reduction at the same temperature for 4 h. After the reduction period was finished, the reactor was cooled down to 250 ◦ C, and the feed gas was switched to dry reactant gas flow with a composition of 20% CO2 , 8% N2 and 0.6–1.0 H2 /CO (total GHSV: 2000 h−1 ); and the additional required steam is based on the molar flow ratio of H2 O and CO (0.5–1.0 H2 O/CO). The outlet gas was analyzed by a Shimadzu GC2018 gas chromatography (Shimadzu Corporation, Kyoto, Japan) equipped with a 3 m Porapak Q column and a 2 m molecular sieve column, of which helium was used as the carrier gas. The concentrations of H2 , CO2 , N2 , CH4 and CO were analyzed by a TCD, while C2 H4 and C2 H6 were analyzed by a flame ionization detector (FID, Shimadzu Corporation, Kyoto, Japan). This combination of two detectors allowed highly sensitive analysis of all components in the gas mixture. The detailed experimental setup is displayed in Figure S1. The percentage conversion of CO (XCO ) was calculated using Equation (4) to determine the overall catalytic activity. The CH4 selectivity (SCH4 ) and CO2 growth rate (RCO2 ) were determined using Equations (5) and (6) to measure the degree of methanation and WGS, respectively. XCO (%) = ([ FCO ]in − [ FCO ]out )/[ FCO ]in × 100

(4)

SCH4 (%) = [ FCH4 ]out /([ FCO ]in + [ FCO2 ]in − [ FCO ]out − [ FCO2 ]out ) × 100

(5)

RCO2 (%) = ([ FCO2 ]out − [ FCO2 ]in )/[ FCO2 ]in

(6)

where F is the molar flow of the inlet and outlet species.

Catalysts 2017, 7, 51

16 of 18

4. Conclusions Partial methanation coupling with WGS of low H2 /CO ratio biomass gas into urban gas was investigated over γ-Al2 O3 -supported Ni-M (M = Mo, Fe, Co, Mn or Cr) catalysts. The bicomponent catalysts with fixed 15 wt % Ni and 3 wt % M were prepared by the co-impregnation method and further characterized by N2 isothermal physisorption, XRD, H2 -TPR, H2 -TPD and SEM. The comprehensive results of the characterization analysis, performance tests and comparative study showed that: (1)

(2)

(3) (4)

(5)

15Ni-3Mo, 15Ni-3Fe and 15Ni-3Co catalysts present lower CO conversion, CH4 selectivity and CO2 growth rate than one-component 15Ni catalyst, mainly due to their low Ni dispersion and weak H2 chemisorption ability with the addition of the second component, indicating the deficient synergy effect between Mo/Fe/Co and active Ni particles. Though both 15Ni-3Mn and 15Ni-3Cr have relative high Ni dispersion and small Ni particle size, as well as comparable H2 chemisorption ability, 15Ni-3Mn is more suitable for our use due to its lower carbon deposition rate, smaller Ni sintering degree and wider adaptability to various H2 /CO and H2 O/CO conditions in comparison with 15Ni-3Cr. 15Ni-3Mn is robust to some extent during the start/stop cycle test and has satisfactory stability during a nearly 100-h lifetime test, showing its qualification for industrial and engineering use. The lower heating value of the low H2 /CO ratio biomass gas catalyzed by 15Ni-3Mn through partial methanation coupling with WGS could be over 10 MJ·Nm−3 , which is eligible as urban gas for downstream users. MnOx species as an additive or second component cooperate well with Ni, for increasing methanation activity, as well as enhancing WGS reaction, indicating its favorable synergy effect with active Ni particle.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/7/2/51/s1: Figure S1: Schematic diagram of catalyst testing. Figure S2: N2 adsorption isotherms (A) and PSD curves (B) of the support and as-prepared catalysts: (a) γ-Al2 O3 , (b) 15Ni, (c) 15Ni-3Mo, (d) 15Ni-3Fe, (e) 15Ni-3Co, (f) 15Ni-3Mn and (g) 15Ni-3Cr. Figure S3: XRD patterns of the γ-Al2 O3 support: (a) before calcination and (b) after calcination at 450 ◦ C for 4 h. Table S1: Detailed data of deconvolved TPR profiles. Figure S4: Elemental mapping images of reduced catalysts: (A,C,E) 15Ni-3Mn; (B,D,F) 15Ni-3Cr. Figure S5: Effect of Mn loading in 15Ni catalyst on the partial methanation coupling with WGS at 350 ◦ C, H2 /CO = 0.8 and H2 O/CO = 1. Acknowledgments: The financial support to the reported research by the International S & T Cooperation Program of China (ISTCP, 2014DFE70150) is gratefully acknowledged. Author Contributions: Baosheng Jin, Min Song and Xinxin Dong conceived of and designed the experiments. Xinxin Dong, Zheng Zhou and Xu Yang performed the experiments. Xinxin Dong analyzed the data. Zheng Zhou and Xu Yang contributed reagents/materials/analysis tools. Xinxin Dong wrote the paper. Conflicts of Interest: The authors declare no conflict of interest.

References 1. 2.

3. 4.

5. 6.

Kopyscinski, J.; Schildhauer, T.J.; Biollaz, S.M.A. Production of synthetic natural gas (SNG) from coal and dry biomass-A technology review from 1950 to 2009. Fuel 2010, 89, 1763–1783. [CrossRef] Berrueco, C.; Recari, J.; Abelló, S.; Farriol, X.; Montané, D. Experimental Investigation of Solid Recovered Fuel (SRF) Gasification: Effect of Temperature and Equivalence Ratio on Process Performance and Release of Minor Contaminants. Energy Fuels 2015, 29, 7419–7427. [CrossRef] Yu, H.; Li, Z.; Yang, X.; Jiang, L.; Zhang, Z.; Chen, D. Experimental research on oxygen-enriched gasification of straw in an entrained-flow gasifier. J. Renew. Sustain. Energy 2013, 5, 053127. [CrossRef] Kwapinska, M.; Xue, G.; Horvat, A.; Rabou, L.P.L.M.; Dooley, S.; Kwapinski, W.; Leahy, J.J. Fluidized Bed Gasification of Torrefied and Raw Grassy Biomass (Miscanthus ×gigantenus). The Effect of Operating Conditions on Process Performance. Energy Fuels 2015, 29, 7290–7300. [CrossRef] Biagini, E.; Barontini, F.; Tognotti, L. Gasification of agricultural residues in a demonstrative plant: Vine pruning and rice husks. Bioresour. Technol. 2015, 194, 36–42. [CrossRef] [PubMed] Wang, Z.; He, T.; Qin, J.; Wu, J.; Li, J.; Zi, Z.; Liu, G.; Wu, J.; Sun, L. Gasification of biomass with oxygen-enriched air in a pilot scale two-stage gasifier. Fuel 2015, 150, 386–393. [CrossRef]

Catalysts 2017, 7, 51

7. 8. 9. 10.

11. 12. 13. 14.

15.

16. 17.

18. 19.

20. 21. 22. 23. 24.

25. 26.

27. 28. 29.

17 of 18

Bukur, D.B.; Todic, B.; Elbashir, N. Role of water-gas-shift reaction in Fischer-Tropsch synthesis on iron catalysts: A review. Catal. Today 2016, 275, 66–75. [CrossRef] Haro, P.; Johnsson, F.; Thunman, H. Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment. Energy 2016, 101, 380–389. [CrossRef] Gao, J.; Qing, L.; Gu, F.; Liu, B.; Zhong, Z.; Su, F. Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv. 2015, 5, 22759–22776. [CrossRef] Sener, C.; Wesley, T.S.; Alba-Rubio, A.C.; Kumbhalkar, M.D.; Hakim, S.H.; Ribeiro, F.H.; Miller, J.T.; Dumesic, J.A. PtMo Bimetallic Catalysts Synthesized by Controlled Surface Reactions for Water Gas Shift. ACS Catal. 2016, 6, 1334–1344. [CrossRef] Zhu, M.; Wachs, I.E. Iron-Based Catalysts for the High-Temperature Water-Gas Shift (HT-WGS) Reaction: A Review. ACS Catal. 2016, 6, 722–732. [CrossRef] Ahn, C.; Jeong, D.; Cho, J.M.; Na, H.; Jang, W.; Roh, H.; Choi, J.; Um, S.H.; Bae, J.W. Water gas shift reaction on the Mn-modified ordered mesoporous Co3 O4 . Microporous Mesoporous Mater. 2016, 221, 204–211. [CrossRef] He, R.; Wang, D.; Zhi, K.; Wang, B.; Zhong, H.; Jiang, H.; Li, N.; Liu, Q. Cu-Mn catalysts modified by rare earth lantnaum for low temperature water-gas shift reaction. J. Rare Earths 2016, 34, 994–1003. [CrossRef] Xiao, Y.; Wu, X.; Liu, S.; Wan, J.; Li, M.; Weng, D.; Tong, C. Modification of PdO/CeO2 –ZrO2 catalyst by MnOx for water–gas shift reaction: Redox property and valence state of Pd. J. Mater. Sci. 2016, 51, 5377–5387. [CrossRef] Chianese, S.; Loipersböck, J.; Malits, M.; Rauch, R.; Hofbauer, H.; Molino, A.; Musmarra, D. Hydrogen from the high temperature water gas shift reaction with an industrial Fe/Cr catalyst using biomass gasification tar rich synthesis gas. Fuel Process. Technol. 2015, 132, 39–48. [CrossRef] Ma, S.; Tan, Y.; Han, Y. Water-gas shift coupling with methanation over MOx modified nanorod-NiO/γ-Al2 O3 catalysts. J. Ind. Eng. Chem. 2011, 17, 723–726. [CrossRef] Mei, Z.; Li, Y.; Fan, M.; Argyle, M.D.; Tang, J. The effects of bimetallic Co–Ru nanoparticles on Co/RuO2 /Al2 O3 catalysts for the water gas shift and methanation. Int. J. Hydrog. Energy 2014, 39, 14808–14816. [CrossRef] Ding, M.; Tu, J.; Zhang, Q.; Wang, M.; Tsubaki, N.; Wang, T.; Ma, L. Enhancement of methanation of bio-syngas over CeO2 -modified Ni/Al2 O3 catalysts. Biomass Bioenergy 2016, 85, 12–17. [CrossRef] Hu, D.; Gao, J.; Ping, Y.; Jia, L.; Gunawan, P.; Zhong, Z.; Xu, G.; Gu, F.; Su, F. Enhanced Investigation of CO Methanation over Ni/Al2 O3 Catalysts for Synthetic Natural Gas Production. Ind. Eng. Chem. Res. 2012, 51, 4875–4886. [CrossRef] Kumar, J.; Deo, G.; Kunzru, D. Preferential oxidation of carbon monoxide on Pt/γ-Al2 O3 catalyst: Effect of adding ceria and nickel. Int. J. Hydrog. Energy 2016, 41, 18494–18501. [CrossRef] Gao, Z.; Cui, L.; Ma, H. Selective methanation of CO over Ni/Al2 O3 catalyst: Effects of preparation method and Ru addition. Int. J. Hydrog. Energy 2016, 41, 5484–5493. [CrossRef] Arbeláez, O.; Reina, T.R.; Ivanova, S.; Bustamante, F.; Villa, A.L.; Centeno, M.A.; Odriozola, J.A. Mono and bimetallic Cu-Ni structured catalysts for the water gas shift reaction. Appl. Catal. A 2015, 497, 1–9. [CrossRef] Bayat, N.; Rezaei, M.; Meshkani, F. Methane decomposition over Ni–Fe/Al2 O3 catalysts for production of COx -free hydrogen and carbon nanofiber. Int. J. Hydrog. Energy 2016, 41, 1574–1584. [CrossRef] Liu, Q.; Zhong, Z.; Gu, F.; Wang, X.; Lu, X.; Li, H.; Xu, G.; Su, F. CO methanation on ordered mesoporous Ni–Cr–Al catalysts: Effects of the catalyst structure and Cr promoter on the catalytic properties. J. Catal. 2016, 337, 221–232. [CrossRef] Zhao, K.; Li, Z.; Bian, L. CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2 O3 catalysts. Front. Chem. Sci. Eng. 2016, 10, 273–280. [CrossRef] Lu, H.; Yang, X.; Gao, G.; Wang, J.; Han, C.; Liang, X.; Li, C.; Li, Y.; Zhang, W.; Chen, X. Metal (Fe, Co, Ce or La) doped nickel catalyst supported on ZrO2 modified mesoporous clays for CO and CO2 methanation. Fuel 2016, 183, 335–344. [CrossRef] Wang, R.; Li, Y.; Shi, R.; Yang, M. Effect of metal–support interaction on the catalytic performance of Ni/Al2 O3 for selective hydrogenation of isoprene. J. Mol. Catal. A Chem. 2011, 344, 122–127. [CrossRef] Zhao, A.; Ying, W.; Zhang, H.; Hongfang, M.; Fang, D. Ni/Al2 O3 catalysts for syngas methanation: Effect of Mn promoter. J. Nat. Gas Chem. 2012, 21, 170–177. [CrossRef] Zhang, J.; Xu, H.; Jin, X.; Ge, Q.; Li, W. Characterizations and activities of the nano-sized Ni/Al2 O3 and Ni/La–Al2 O3 catalysts for NH3 decomposition. Appl. Catal. A 2005, 290, 87–96. [CrossRef]

Catalysts 2017, 7, 51

30.

31.

32.

33.

34. 35. 36. 37.

38. 39. 40.

41. 42. 43.

44.

18 of 18

Lu, X.; Gu, F.; Liu, Q.; Gao, J.; Jia, L.; Xu, G.; Zhong, Z.; Su, F. Ni–MnOx Catalysts Supported on Al2 O3 -Modified Si Waste with Outstanding CO Methanation Catalytic Performance. Ind. Eng. Chem. Res. 2015, 54, 12516–12524. [CrossRef] Rodriguez, J.A.; Chaturvedi, S.; Hanson, J.C.; Brito, J.L. Reaction of H2 and H2 S with CoMoO4 and NiMoO4 : TPR, XANES, Time-Resolved XRD, and Molecular-Orbital Studies. J. Phys. Chem. B 1999, 103, 770–781. [CrossRef] Jeong, D.; Jang, W.; Shim, J.; Roh, H. High temperature water–gas shift without pre-reduction over spinel ferrite catalysts synthesized by glycine assisted sol–gel combustion method. Int. J. Hydrog. Energy 2016, 41, 3870–3876. [CrossRef] Nikparsa, P.; Mirzaei, A.A.; Rauch, R. Impact of Na Promoter on Structural Properties and Catalytic Performance of CoNi/Al2 O3 Nanocatalysts for the CO Hydrogenation Process: Fischer–Tropsch Technology. Catal. Lett. 2016, 146, 61–71. [CrossRef] Velu, S.; Gangwal, S. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption. Solid State Ion. 2006, 177, 803–811. [CrossRef] Gatica, J. M.; Chen, X.; Zerrad, S.; Vidal, H.; Ali, A.B. Simultaneous water gas shift and methanation reactions on Ru/Ce0.8 Tb0.2 O2−x based catalysts. Catal. Today 2012, 180, 42–50. [CrossRef] Senanayake, S.D.; Evans, J.; Agnoli, S.; Barrio, L.; Chen, T.; Hrbek, J.; Rodriguez, J.A. Water-Gas Shift and CO Methanation Reactions over Ni–CeO2 (111) Catalysts. Top. Catal. 2011, 54, 34–41. [CrossRef] Lee, M.S.; Lee, J.Y.; Lee, D.; Moon, D.J.; Lee, K. The effect of Zn addition into NiFe2 O4 catalyst for high-temperature shift reaction of natural gas reformate assuming no external steam addition. Int. J. Hydrog. Energy 2012, 37, 11218–11226. [CrossRef] Bartholomew, C.H. Mechanisms of catalyst deactivation. Appl. Catal. A 2001, 212, 17–60. [CrossRef] Yousef, A.M.I.; Eldrainy, Y.A.; El-Maghlany, W.M.; Attia, A. Upgrading biogas by a low-temperature CO2 removal technique. Alex. Eng. J. 2016, 55, 1143–1150. [CrossRef] Campo, M.C.; Ribeiro, A.M.; Ferreira, A.F.P.; Santos, J.C.; Lutz, C.; Loureiro, J.M.; Rodrigues, A.E. Carbon dioxide removal for methane upgrade by a VSA process using an improved 13X zeolite. Fuel Process. Technol. 2016, 143, 185–194. [CrossRef] Lestinsky, P.; Vecer, M.; Navratil, P.; Stehlik, P. The removal of CO2 from biogas using a laboratory PSA unit: Design using breakthrough curves. Clean Technol. Environ. Policy 2015, 17, 1281–1289. [CrossRef] Guo, F.; Xu, J.; Chu, W. CO2 reforming of methane over Mn promoted Ni/Al2 O3 catalyst treated by N2 glow discharge plasma. Catal. Today 2015, 256, 124–129. [CrossRef] Yao, L.; Zhu, J.; Peng, X.; Tong, D.; Hu, C. Comparative study on the promotion effect of Mn and Zr on the stability of Ni/SiO2 catalyst for CO2 reforming of methane. Int. J. Hydrog. Energy 2013, 38, 7268–7279. [CrossRef] Liu, Q.; Gao, J.; Zhang, M.; Li, H.; Gu, F.; Xu, G.; Zhong, Z.; Su, F. Highly active and stable Ni/γ-Al2 O3 catalysts selectively deposited with CeO2 for CO methanation. RSC Adv. 2014, 4, 16094–16103. [CrossRef] © 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).