Theories of Myopia

237 downloads 0 Views 1MB Size Report
Jun 22, 2017 - MYOPIA PROGRESSION THEORIES. Prepared by: Dr. Jacinto Santodomingo-‐Rubido, Clinical Affairs Manager & Senior. Research Scientist ...
MYOPIA  PROGRESSION  THEORIES       Prepared  by:  Dr.  Jacinto  Santodomingo-­‐Rubido,  Clinical  Affairs  Manager  &  Senior   Research  Scientist,  Menicon  Co.,  Ltd.     Date:  22nd  June  2017       INTRODUCTION   The  prevalence  of  myopia  has  been  increasing  substantially  in  recent  decades  and   continues  to  be  on  the  rise.  In  fact,  it  has  been  estimated  that  by  2050  around  50%   of  the  world’s  population  (~  2  billion  people)  would  be  myopic.1  The  mechanisms   involved   in   myopia   onset   and   progression   remain   unclear.   Several   theories,   including   (1)   lag   of   accommodation;   (2)   mechanical   tension;   and   (3)   peripheral   refraction   have   been   proposed   to   explain   the   aetiology   behind   myopia   progression,2   with   the   latter   theory   being   the   most   popular   currently   (Figure   1).   This   document   aims   at   providing   a   brief   summary   of   the   different   and   most   commonly  accepted  theories  used  to  explain  how  myopia  progresses.         Mechanical)Tension

Peripheral)Refrac2on

Lag)Accommoda2on

 

Figure  1.  Myopia  progression  theories       Lag  of  accommodation     The   lag   of   accommodation   theory   is   based   on   the   hypothesis   that   high   lag   of   accommodation   that   occurs   during   near   work   in   myopic   eyes   causes   foveal   hyperopic   retinal   blur   that   ultimately   induces   an   abnormal   axial   growth   of   the   eye   leading  to  myopia  (Figures  2  and  3).3  This  theory  is  supported  by  observations  that   myopes  have  a  reduced  accommodative  response  compared  with  emmetropes  and   thus,   an   insufficient   accommodative   response   to   blur   (Figure   2).   Such   hypothesis   suggests   that   treating   myopic   children   with   plus   lenses   for   near   work   (e.g.   bifocals   and   progressive   addition   spectacles)   to   reduce   accommodative   lag   during   near  

work   decreases   hyperopic   foveal   blur,   axial   elongation   and   ultimately   myopia   progression.      

 

  Figure   2.   Reduced   accommodative   response   during   near   work   typically   shown   by   myopic   eyes.  Image  taken  from  Lopez-­‐Gil  et  al.,    2013.4  

Figure   3.   Foveal   hyperopic   retinal   blur   resulting   from   reduced   accommodative   response   at   near.   Image   taken   from   Yeo   et   al.     2016.5  

      Some   previous   studies   have   indicated   that   the   wear   of   bifocals   and   progressive   addition   spectacles   can   reduce   myopia   progression,   but   the   effect   appears   to   be   limited   to   the   first   year   of   treatment   (~   10   to   20%   on   average).6,   7   However,   a   meta-­‐analysis  of  nine  trials  which  compared  the  effect  of  bifocals  and  progressive   addition  spectacles  in  reducing  myopia  progression  reported  that  the  wear  of  such   lenses   with   powers   ranging   from   +1.50   to   +2.00D   were   associated   with   a   statistically  significantly  mean  decrease  in  myopia  progression  of  0.25D  in  school-­‐ aged   children   compared   with   single-­‐vision   spectacles,   with   the   benefit   being   greater   in   children   with   a   higher   level   of   myopia   at   baseline   and   sustained   for   a   minimum  of  24  months.8         Mechanical  tension     The   finding   that   the   eye   responds   to   transient   changes   in   axial   length   following   short   periods   of   accommodation   lead   to   the   proposal   of   the   mechanical   tension   theory.9   This   theory   suggests   that   the   contraction   of   the   ciliary   muscle   following   accommodation   results   in   forward   and   inward   pulling   of   the   choroid.   Such  ciliary-­‐ choroidal   tension   restricts   the   equatorial   growth   of   the   eye   thus   decreasing   the   circumference  of  the  sclera  leading  to  a  more  prolate  eye  shape  and  ultimately  to   an  elongation  of  the  axial  length  of  the  eye  that  results  in  myopia  (Figure  4).9,  10  In   fact,  recent  research  work  using  both  optical  biometers  and  OCT  has  confirmed  the   choroid   thins   in   a   reversible   manner   following   short   periods   of   accommodation.11-­‐ 13        

Figure  4.  Schematic  representation  of  the  mechanical  tension  theory  

 

  Peripheral  refraction     Several   previous   studies   have   shown   that   chronic   exposure   to   lens-­‐induced   hyperopic   defocus   accelerates   the   axial   length   growth   of   the   eye   in   a   predictable   manner   in   various   species   ultimately   leading   to   myopia,   suggesting   that   foveal   defocus   influences   eye   growth.14,  15   However,   later   investigations   on   the   effect   of   hyperopic  defocus  on  ocular  growth  have  highlighted  the  importance  of  peripheral   image   formation   in   the   aetiology   and   progression   of   myopia.   Specifically,   the   peripheral  refraction  theory  indicates  that  peripheral  hyperopic  defocus  has  been   suggested  to  play  a  significant  role  in  the  development  of  myopia  (Figure  5).16,  17  In   fact,  several  meta-­‐analyses  reported  a  significant  reduction  of  myopia  progression   (~   30   to   50%   on   average)   with   treatments   that   reduce   peripheral   hyperopic   defocus   (i.e.   orthokeratology   and   centre-­‐distance   multifocal   soft   contact   lenses).18-­‐ 20  However,  large  studies  in  humans  have  failed  to  find  peripheral  refraction  to  be   associated   with   myopia   progression   thus   leaving   uncertainties   with   regards   to   the   validity  of  this  theory  in  humans.21,  22    

 

Figure  5.  Schematic  representation  of  the  peripheral  theory  

 

                       

CLOSING  REMARKS   Over  the  last  two  decades,  three  main  theories  have  been  proposed  to  explain  the   mechanisms  behind  myopia  onset  and  development,  although  none  of  them  have   been  able  to  fully  explain  the  rationale  behind  myopia  progression,  suggesting  the   condition   involves   complex   physiological   and   biological   processes   which   are   affected  by  environmental  and  genetic  factors.  There  is  some  overlapping  between   the   theories   as   the   three   share   assumptions   in   common   indicating   that   perhaps   these   theories   might   not   be   exclusive   of   each   other   to   explain   how   myopia   progresses.   Research   efforts   by   laboratories   throughout   the   world   are   underway   into  the  biological,  neurophysiological  and  environmental  bases  for  myopia  onset   and  development  that  will  help  in  mapping  pathways  to  effective  therapy.         REFERCENCES     1. Holden   BA,   Fricke   TR,   Wilson   DA,   et   al.   Global   prevalence   of   myopia   and   high   myopia   and   temporal   trends   from   2000   through   2050.   Ophthalmology   2016;123:1036–1042.     2. Berntsen   DA,   Mutti   DO,   Zadnik   K.   Study   of   Theories   about   Myopia   Progression   (STAMP)   design   and   baseline   data.   Optom   Vis   Sci.   2010   Nov;87(11):823-­‐32.     3. Gwiazda   J1,   Thorn   F,   Bauer   J,   Held   R.   Myopic   children   show   insufficient   accommodative  response  to  blur.  Invest  Ophthalmol  Vis  Sci  1993;34:690-­‐4.     4. López-­‐Gil   N1,   Martin   J,   Liu   T,   et   al.   Retinal   image   quality   during   accommodation.  Ophthalmic  Physiol  Opt  2013;33:497-­‐507.       5. Yeo  A,  Paillé  D,  Drobe  B,  Koh  P.  Myopia  and  effective  management  solutions.   Available   at:   http://www.pointsdevue.com/article/myopia-­‐and-­‐effective-­‐ management-­‐solutions.  [Accessed  on  20th  June  2017].       6. Gwiazda   J,   Hyman   L,   Hussein   M,   et   al.   A   randomized   clinical   trial   of   progressive   addition   lenses   versus   single   vision   lenses   on   the   progression   of  myopia  in  children.  Invest  Ophthalmol  Vis  Sci  2003;44:1492-­‐500.     7. Berntsen   DA,   Sinnott   LT,   Mutti   DO,   Zadnik   K.   A   randomized   trial   using   progressive   addition   lenses   to   evaluate   theories   of   myopia   progression   in   children   with   a   high   lag   of   accommodation.   Invest   Ophthalmol   Vis   Sci   2012;53:640-­‐9.     8. Li  SM1,  Ji  YZ,  Wu  SS,  et  al.  Multifocal  versus  single  vision  lenses  Intervention   to   slow   progression   of   myopia   in   school-­‐age   children:   a   meta-­‐analysis.   Surv   Ophthalmol  2011;56:451-­‐460.    

9. Drexler  W1,  Findl   O,  Schmetterer   L,  et   al.   Eye   elongation   during   accommodation   in   humans:   differences   between   emmetropes   and   myopes.  Invest  Ophthalmol  Vis  Sci  1998;39:2140-­‐7.     10. Mutti   DO1,  Sholtz   RI,  Friedman   NE,  Zadnik   K.   Peripheral   refraction   and   ocular  shape  in  children.  Invest  Ophthalmol  Vis  Sci  2000;41:1022-­‐30.    

   

11. Woodman   EC1,   Read   SA,   Collins   MJ.   Axial   length   and   choroidal   thickness   changes   accompanying   prolonged   accommodation   in   myopes   and   emmetropes.  Vision  Res  2012;72:34-­‐41.     12. Ghosh   A,   Collins   MJ,   Read   SA,   et   al.   Axial   elongation   associated   with   biomechanical  factors  during  near  work.  Optom  Vis  Sci  2014;91:322-­‐9.   13. Woodman-­‐Pieterse   EC,   Read   SA,   Collins   MJ,   Alonso-­‐Caneiro   D.   Regional   Changes   in   Choroidal   Thickness   Associated   With   Accommodation.   Invest   Ophthalmol  Vis  Sci.  2015;56:6414-­‐22.  

     

14. Schaeffel   F,   Glasser   A,   Howland   HC.   Accommodation,   refractive   error   and   eye  growth  in  chickens.  Vision  Res  1988;28:639–57.   15. Hung  LF,  Crawford  ML,  Smith  EL.  Spectacle  lenses  alter  eye  growth  and  the   refractive  status  of  young  monkeys.  Nat  Med  1995;1:761–  5.   16. Smith  EL,  Kee  CS,  Ramamirtham  R,  et  al.  Peripheral  vision  can  influence  eye   growth   and   refractive   development   in   infant   monkeys.   Invest   Ophthalmol   Vis  Sci  2005;46:3965–3972.  

 

 

17. Smith  EL  3rd,  Ramamirtham  R,  Qiao-­‐Grider  Y  et  al.  Effects  of  foveal  ablation   on   emmetropization   and   form-­‐deprivation   myopia.   Invest   Ophthalmol   Vis   Sci  2007;48:3914-­‐3922.   18. Huang  J,  Wen  D,  Wang  Q,  et  al.  Efficacy  comparison  of  16  Interventions  for   myopia   control   in   children:   a   network   meta-­‐analysis.   Ophthalmology   2016;123:697-­‐708.  

 

 

 

19. Li   SM,   Kang   MT,   Wu   SS,   et   al.   Efficacy,   safety   and   scceptability   of   orthokeratology   on   slowing   axial   elongation   in   myopic   children   by   meta-­‐ analysis.  Curr  Eye  Res  2016;41:600-­‐8.   20. Li   SM,   Kang   MT,   Wu   SS,   et   al.   Studies   using   concentric   ring   bifocal   and   peripheral   add   multifocal   contact   lenses   to   slow   myopia   progression   in   school-­‐aged  children:  a  meta-­‐analysis.  Ophthalmic  Physiol  Opt  2017;37:51-­‐ 59.   21. Mutti  DO,  Sinnott  LT,  Mitchell  GL,  et  al.  Relative  peripheral  refractive  error   and   the   risk   of   onset   and   progression   of   myopia   in   children.   InvestbvOphthalmol  Vis  Sci  2011;52:199–205.  

 

22. Atchison   DA,   Li   SM,   Li   H,   et   al.   Relative   peripheral   hyperopia   does   not   predict   development   and   progression   of   myopia   in   children.   Invest   Ophthalmol  Vis  Sci  2015;56:6162–6170.