Two Basic Boundary-Value Problems for ...

4 downloads 149 Views 536KB Size Report
permanent address : Dept. of Math., Faculty of Science, South Valley University,. Qena ...... [11] Burgumbayeva, S., Boundary value problems for Tri-harmonic.
Two Basic Boundary-Value Problems for inhomogeneous Cauchy–Riemann Equation in an infinite Sector Mohamed S. Akel and Hussein S. Hussein Dept. of Math., Faculty of Science, King Faisal University, Al-Ahsaa,31982, P.O. Box 380, Saudi Arabia *

Corresponding author E-mail adresses : [email protected] (M. S. Akel), [email protected] (H. S. Hussein)

Abstract The object of the present article is to investigate the Schwarz and Dirichlet boundary value problems for the inhomogeneous Cauchy–Riemann equation in an infinite sector. Firstly, we obtain the Schwarz–Poisson formula in a sector with angle πœ‹β„π›Ό 1

(𝛼 β‰₯ 2 ). Secondly, boundary values at the vertex point are proved to exist. Finally, the solutions and the conditions of solvability are explicitly obtained. The result we obtain is a generalization of recent results obtained by Begehr, H., Gaertner, E.A. (Georg. Math. J. 14(1), 33–52, 2007) and by Ying Wang, Yufeng Wang (Complex Anal. Oper. Theory, DOI 10.1007/s11785-010-0107-0).

Keywords Cauchy–Pompeiu formula, inhomogeneous Cauchy–Riemann equation , Schwarz –type operator, Pompeiu –type operator, Schwarz Problem, Dirichlet problem

Mathematics Subject Classification (2000) 30E25 - 30G30 - 45E05

1 Introduction Nowadays, complex analytic methods, e.g., the theory of boundary value problems (BVPs) for analytic and generalized analytic functions, are widely applied to solving physical problems in shell theory, fluid dynamics, elasticity theory and so on[1-4]. Kinds of BVPs have been investigated for complex partial differential equations (PDEs) [5-10]. On the other hand, BVPs of complex PDEs in some special domains are solved in a different way. Those special domains include the unit disc [11,12], half plane [13,14], circular ring [15–17], quarter plane [18–20], half disc and half ring [21], triangle[22-24]. In this paper we study the solvability of the Schwarz and Dirichlet problems for the inhomogeneous Cauchy–Riemann (a)

permanent address : Dept. of Math., Faculty of Science, South Valley University, Qena, Egypt 1

equation in an infinite sectoral domain in the plane. Firstly, we discuss the boundary behaviors of Schwarz-type operator and Pompeiu-type operator. Specially, boundary values at the vertex point of the sector are proved to exist. Finally, we obtain explicitly the expressions of the solutions and the solvability conditions. Let Ξ© be a infinite sector domain in the complex plane C defined by πœ‹

Ξ© = {𝑧 ∈ β„‚, 0 < arg 𝑧 < 𝛼}

(1.1) 1

Except for additional indication, we always assume that 𝛼(𝛼 β‰₯ ) 2

is a fixed real constant. The sector Ξ© is isomorphic with the upper half plane ℍ.

Indeed, the conformal mapping [25] 𝜁: Ξ© β†’ ℍ 𝑧 ⟼ 𝑧𝛼

(1.2)

with the branch cut along (0, +∞), maps the boundary [0, +∞) onto itself and the boundary {𝑧 = 𝑑𝑒 π‘–πœ— , 0 ≀ 𝑑 < +∞, πœ— = πœ‹/𝛼} onto (βˆ’βˆž, 0]. The inverse mapping is

𝜁: ℍ β†’ Ξ© 𝑧 ⟼ 𝑧1/𝛼

(1.3)

which transforms ℝ onto the boundary πœ•Ξ© of the sector Ξ©. Obviously, the above two conformal mappings can be firstly 1 βˆ’ 1 extended to the boundary except for 0. Since the argument at 0 can be arbitrary and 𝛼 β‰₯ 1/2 , we can assume that the arguments of 𝑧 𝛼 and 𝑧 1/𝛼 at 𝑧 = 0 are 0. Hence, the above 1 βˆ’ 1 mapping between the boundary is proper. In what follows, the main analytic branches of 𝑧 𝛼 and 𝑧 1/𝛼 are always chosen as above, respectively. Moreover, on the basis of the analytic branches of 𝑧 𝛼 and 𝑧 1/𝛼 , we define the analytic branch of several functions as follows, 𝑧 𝛼 1βˆ’π›Ό 𝑧 𝑧1/𝛼 π›Όβˆ’1 1/π›Όβˆ’1 𝑧 = ,𝑧 = 𝛼, 𝑧 = . 𝑧 𝑧 𝑧

2

One of the fundamental tools for solving BPVs of complex PDEs is the Cauchy-Pompeiu formula which is valid for the upper half plane ℍ[14]. Theorem 1.1 If 𝑀 ∢ ℍ β†’ β„‚ satisfies 𝑀 ∈ 𝐿2 (ℝ; β„‚) ∩ 𝐢(ℝ, β„‚) and 𝑀𝑧 ∈ 𝐿𝑝,2 (ℍ; β„‚), 𝑝 > 2. Then, for 𝑧 ∈ ℍ, +∞

1 𝑑𝑑 1 𝑀(𝑧) = ∫ 𝑀(𝑑) βˆ’ 2πœ‹π‘– π‘‘βˆ’π‘§ πœ‹ βˆ’βˆž

𝑀(𝑧) = βˆ’

+∞

∫ π‘€πœ (𝜁) 0 2, can be represented as ∞ ∞ 1 𝑑 βˆ’1/2 𝑑𝑑 1 𝑑 βˆ’1/2 𝑑𝑑 ∫ 𝑀(𝑑) 1/2 βˆ’ ∫ 𝑀(𝑑) 1/2 4πœ‹π‘– 0 𝑑 βˆ’ 𝑧 1/2 4πœ‹π‘– 0 𝑑 + 𝑧 1/2

1 𝜁 βˆ’1/2 𝑀(𝑧), 𝑧 ∈ β„‚0 βˆ’ ∫ π‘€πœΜ… (𝜁) 1/2 π‘‘πœ‰π‘‘πœ‚ = { 2πœ‹ β„‚0 0, 𝑧 βˆ‰ β„‚Μ…0 𝜁 βˆ’ 𝑧 1/2

and for 𝑧 ∈ β„‚0

∞

1 1 𝑑 1/2 𝑀(𝑧) = 𝑖Im𝑀(βˆ’1) + ∫ Re𝑀(𝑑) ( 1/2 βˆ’ ) 𝑑 βˆ’1/2 𝑑𝑑 1/2 2πœ‹π‘– 𝑑 + 1 𝑑 βˆ’π‘§ 0

∞

1 1 𝑑 1/2 βˆ’ ∫ Re𝑀(𝑑) ( 1/2 βˆ’ ) 𝑑 βˆ’1/2 𝑑𝑑 1/2 2πœ‹π‘– 𝑑 + 1 𝑑 +𝑧 0

1 1 𝜁1/2 βˆ’1/2 βˆ’ ∫ {𝜁 π‘€πœΜ… (𝜁) ( 1/2 βˆ’ ) 2πœ‹ Ξ© 𝜁 βˆ’ 𝑧 1/2 𝜁 + 1 β€“πœ

βˆ’1/2

Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ… π‘€πœΜ… (𝜁) (

1 𝜁

1/2

βˆ’

𝑧 1/2

βˆ’

𝜁

1/2

𝜁 + 1

)} π‘‘πœ‰π‘‘πœ‚

3 Schwarz boundary value problem in the sector This Section is devoted to extending the Schwarz-Poisson representation formula to an infinite sectoral domain with angle πœ‹β„π›Ό (𝛼 β‰₯ 1/2 ) by a proper conformal mapping to solve the Schwarz problem in the sector. Schwarz problem: Find a function 𝑀 satisfying the following conditions

6

𝑀𝑧̅ = 𝑓 in Ξ© , Re𝑀 = 𝛾 on πœ•Ξ© Im𝑀(𝑖 1/𝛼 ) = 𝑐 , 𝑐 ∈ ℝ, with 𝑓 ∈ 𝐿𝑝 (Ξ©, β„‚) , 𝑝 > 2, 𝛾 ∈ 𝐿2 (πœ•Ξ©, ℝ) ∩ 𝐢(πœ•Ξ©, ℝ). Firstly, introducing a new kernel 1 1 𝐻(𝑧, 𝜁) = [ 𝛼 βˆ’ ] 𝜁 π›Όβˆ’1 . 𝛼 𝛼 𝛼 Μ…Μ…Μ… 𝜁 βˆ’π‘§ 𝜁 βˆ’π‘§ Then, the following lemma is valid.

(3.1)

(3.2)

Lemma 3.1. For 𝛾 ∈ 𝐢(πœ•Ξ©, ℝ), lim

π‘§βˆˆΞ©, 𝑧→0

𝛼 ∫ [𝛾(𝜁) βˆ’ 𝛾(0)]𝐻(𝑧, 𝜁)π‘‘πœ = 0. 2πœ‹π‘– πœ•Ξ©

Proof: For (𝑧, 𝜁) ∈ Ξ© Γ— πœ•Ξ©, we have 𝛼 ∫ [𝛾(𝜁) βˆ’ 𝛾(0)]𝐻(𝑧, 𝜁)π‘‘πœ π‘§βˆˆΞ©, 2πœ‹π‘– πœ•Ξ© lim

𝑧→0

∞

1 1 1 1 = lim ∫ [𝛾(𝜁 𝛼 ) βˆ’ 𝛾(0)] [ βˆ’ ] π‘‘πœ 𝛼 π‘§βˆˆΞ©, 2πœ‹π‘– 𝜁 βˆ’ 𝑧 𝛼 𝜁 βˆ’ 𝑧̅̅̅ 𝑧→0

βˆ’βˆž

∞

1 Im z Ξ± 1/𝛼 = lim ∫ [𝛾(𝜁 ) βˆ’ 𝛾(0)] π‘‘πœ π‘§βˆˆΞ©, πœ‹ |𝜁 βˆ’ 𝑧 𝛼 |2 𝑧→0

βˆ’βˆž

= lim [𝛾(𝑧) βˆ’ 𝛾(0)] = 0, π‘§βˆˆΞ©, 𝑧→0

by Poisson formula on ℝ.

Lemma 3.2. For 𝛾 ∈ 𝐢(πœ•Ξ©, ℝ), if 𝜁0 ∈ πœ•Ξ©\{0} lim

π‘§βˆˆΞ©, π‘§β†’πœ0

𝛼 ∫ 𝛾(𝜁)𝐻(𝑧, 𝜁)π‘‘πœ = 𝛾(𝜁0 ). 2πœ‹π‘– πœ•Ξ©

Proof: Since 𝐻(𝑧, 𝜁) = 0 for (𝑧, 𝜁) ∈ (0, ∞) Γ— {t eiΟ€/Ξ± ; 0 ≀ 𝑑 < ∞}, then for 𝜁0 ∈ (0, ∞), 𝛼 ∫ 𝛾(𝜁)𝐻(𝑧, 𝜁)π‘‘πœ π‘§β†’πœ0 2πœ‹π‘– πœ•Ξ© lim

7

∞

𝛼 1 1 = lim ∫ 𝛾(𝜁) [ 𝛼 βˆ’ ] 𝜁 π›Όβˆ’1 π‘‘πœ 𝛼 π‘§β†’πœ0 2πœ‹π‘– 𝜁 βˆ’ 𝑧 𝛼 𝜁 𝛼 βˆ’ 𝑧̅̅̅ 0

∞

𝛼 𝛼 𝑧 𝛼 βˆ’ 𝑧̅̅̅ = lim ∫ 𝛾(𝜁) 𝛼 𝜁 π›Όβˆ’1 π‘‘πœ π‘§β†’πœ0 2πœ‹π‘– |𝜁 βˆ’ 𝑧 𝛼 |2 0

∞

𝛼 Μ…Μ…Μ… 1 𝑧𝛼 βˆ’ 𝑧 1 = lim ∫ 𝛾(𝜁 𝛼 ) π‘‘πœ = 𝛾(𝜁0 ) π‘§β†’πœ0 2πœ‹π‘– |𝜁 βˆ’ 𝑧 𝛼 |2 0

Similarly, 𝐻(𝑧, 𝜁) = 0 for (𝑧, 𝜁) ∈ {t eiΟ€/Ξ± ; 0 < 𝑑 < ∞} Γ— [0, ∞), then for 𝜁0 ∈ {t eiΟ€/Ξ± ; 0 < 𝑑 < ∞}, 𝛼 ∫ 𝛾(𝜁)𝐻(𝑧, 𝜁)π‘‘πœ π‘§β†’πœ0 2πœ‹π‘– πœ•Ξ© lim

∞

𝛼 1 1 = βˆ’ lim ∫ 𝛾(𝑑 𝑒 π‘–πœ‹/𝛼 ) [ 𝛼 βˆ’ ] 𝑑 π›Όβˆ’1 𝑑𝑑 𝛼 𝛼 𝛼 π‘§β†’πœ0 2πœ‹π‘– 𝑑 +𝑧 𝑑 + Μ…Μ…Μ… 𝑧 0

0

𝛼 1 𝑧 𝛼 βˆ’ 𝑧̅̅̅ 1/𝛼 = lim ∫ 𝛾(𝑑 ) 𝛼 𝑑𝑑 = 𝛾(𝜁0 ). π‘§β†’πœ0 2πœ‹π‘– |𝑑 βˆ’ 𝑧 𝛼 |2 βˆ’βˆž

We introduce the Schwarz-type operator as follows ∞

∞

𝛼 𝑑 π›Όβˆ’1 𝛼 𝑑 π›Όβˆ’1 1/𝛼 𝑆[𝛾](𝑧) = ∫ Ξ³(𝑑) 𝛼 𝑑𝑑 βˆ’ ∫ Ξ³((βˆ’1) 𝑑) 𝛼 𝑑𝑑 (3.3) πœ‹π‘– 𝑑 βˆ’ 𝑧𝛼 πœ‹π‘– 𝑑 + 𝑧𝛼 0

0

where 𝛾 ∈ 𝐿2 (πœ•Ξ©, ℝ) ∩ 𝐢(πœ•Ξ©, ℝ). Obviously, 𝑆[𝛾](𝑧) is analytic in the sector Ξ©. Further Re 𝑆[𝛾](𝑧) =

1 ∫ 𝛾(𝜁)𝐻(𝑧, 𝜁)π‘‘πœ , 𝑧 ∈ Ξ©, 2πœ‹π‘– πœ•Ξ©

(3.4)

for 𝛾 ∈ 𝐿2 (πœ•Ξ©, ℝ) ∩ 𝐢(πœ•Ξ©, ℝ), with 𝐻(𝑧, 𝜁) is defined by (3.2). By Lemmas 3.1 and 3.2 the following result is true.

Theorem 3.1. If 𝛾 ∈ 𝐿2 (πœ•Ξ©, ℝ) ∩ 𝐢(πœ•Ξ©, ℝ), then 8

lim Re 𝑆[𝛾](𝑧) = Ξ³(t), t ∈ βˆ‚Ξ©,

z∈Ω,zβ†’t

where 𝑆 is the Schwarz-type operator defined by (3.3). secondly, a Pompeiu-type operator for the sector Ξ© is introduced by π›Όβˆ’1

𝛼 𝜁 π›Όβˆ’1 𝜁 Μ…Μ…Μ…Μ…Μ…Μ… Μ‚ 𝑇[𝑓](𝑧) = βˆ’ ∫ {𝑓 (𝜁) 𝛼 βˆ’ 𝑓(𝜁) } π‘‘πœ‰π‘‘πœ‚ , 𝑧 ∈ Ξ© (3.5) 𝛼 πœ‹ Ξ© 𝜁 βˆ’ 𝑧𝛼 𝜁 βˆ’ 𝑧𝛼 where 𝑓 ∈ 𝐿𝑝 (Ξ©, β„‚) , 𝑝 > 2. By simple computation, one obtains 𝛼 Re 𝑇̂[𝑓](𝑧) = βˆ’ ∫ {𝑓(𝜁)𝐻(𝑧, 𝜁) βˆ’ Μ…Μ…Μ…Μ…Μ…Μ… 𝑓(𝜁) 𝐻(𝑧, 𝜁)}π‘‘πœ‰π‘‘πœ‚ , 𝑧 2πœ‹ Ξ© ∈ Ξ© (3.6) with 𝐻(𝑧, 𝜁) is defined by (3.2). the following theorem concludes basic properties of the Pompeiutype operator 𝑇̂ defined by (3.5).

Theorem 3.2. If 𝑓 ∈ 𝐿𝑝 (Ξ©, β„‚) , 𝑝 > 2, then πœ•π‘§ 𝑇̂[𝑓](𝑧) = 𝑓(𝑧), 𝑧 ∈ Ξ© in weak sense, and lim𝑧→𝑑 Re𝑇̂[𝑓](𝑧) = 0, 𝑑 ∈ πœ•Ξ©.

According to the representation formula in Theorem 2.1, and based on the previous lemmas, we can combine both theorems 3.1 and 3.2 to solve Schwarz problem (3.1), therefore it is enough to prove the following theorem.

Theorem 3.3. The Schwarz problem (3.1) for the sector Ξ© is uniquely solvable by

∞

𝛼 1 𝑑𝛼 𝑀(𝑧) = 𝑖c + ∫ Ξ³(𝑑) ( 𝛼 βˆ’ 2𝛼 ) 𝑑 π›Όβˆ’1 𝑑𝑑 𝛼 πœ‹π‘– 𝑑 βˆ’π‘§ 𝑑 + 1 0

∞

𝛼 1 𝑑𝛼 1/𝛼 βˆ’ ∫ Ξ³((βˆ’1) 𝑑) ( 𝛼 βˆ’ ) 𝑑 π›Όβˆ’1 𝑑𝑑 πœ‹π‘– 𝑑 + 𝑧 𝛼 𝑑 2𝛼 + 1 0

𝛼 1 πœπ›Ό βˆ’ ∫ {𝜁 π›Όβˆ’1 𝑓(𝜁) ( 𝛼 βˆ’ ) πœ‹ Ξ© 𝜁 βˆ’ 𝑧 𝛼 𝜁 2𝛼 + 1 β€“πœ

π›Όβˆ’1

1

𝜁

𝛼

Μ…Μ…Μ…Μ…Μ…Μ… 𝑓(𝜁) ( 𝛼 βˆ’ 2𝛼 )} π‘‘πœ‰π‘‘πœ‚ 𝜁 βˆ’ 𝑧𝛼 𝜁 + 1

(3.8)

9

Proof: From Theorem 2.1, we only need to verify that (3.8) provides a solution. Since for 𝑧, 𝜁 ∈ Ξ© π›Όπœ π›Όβˆ’1 lim(𝜁 βˆ’ 𝑧) 𝛼 =1 π‘§β†’πœ 𝜁 βˆ’ 𝑧𝛼 then we know that z is a simple pole of

π›Όπœ π›Όβˆ’1

𝜁 𝛼 βˆ’π‘§ 𝛼

in Ξ©, hence

π›Όπœ π›Όβˆ’1 1 (3.9) = + 𝑔(𝑧, 𝜁), πœπ›Ό βˆ’ 𝑧𝛼 𝜁 βˆ’ 𝑧 where for arbitrary 𝑧 ∈ Ξ©, 𝑔(𝑧, 𝜁) is analytic with respect to 𝑧. Thus, we obviously see that 1 𝑓(𝜁) πœ•π‘§Μ… 𝑀(𝑧) = πœ•π‘§Μ… {βˆ’ ∫ π‘‘πœ‰π‘‘πœ‚} = 𝑓(𝑧). πœ‹ Ω𝜁 βˆ’π‘§ Now, if we write (3.8) as 𝑀(𝑧) = 𝑖𝑐 + 𝑀1 (𝑧) + 𝑀2 (𝑧) with ∞

𝛼 1 𝑑𝛼 𝑀1 (𝑧) = ∫ Ξ³(𝑑) ( 𝛼 βˆ’ 2𝛼 ) 𝑑 π›Όβˆ’1 𝑑𝑑 𝛼 πœ‹π‘– 𝑑 βˆ’π‘§ 𝑑 + 1 0 ∞

𝛼 1 𝑑𝛼 1/𝛼 βˆ’ ∫ Ξ³((βˆ’1) 𝑑) ( 𝛼 βˆ’ 2𝛼 ) 𝑑 π›Όβˆ’1 𝑑𝑑, 𝛼 πœ‹π‘– 𝑑 +𝑧 𝑑 + 1 0

𝛼 1 πœπ›Ό π›Όβˆ’1 𝑀2 (𝑧) = βˆ’ ∫ {𝜁 𝑓(𝜁) ( 𝛼 βˆ’ ) πœ‹ Ξ© 𝜁 βˆ’ 𝑧 𝛼 𝜁 2𝛼 + 1 β€“πœ

π›Όβˆ’1

1

𝜁

𝛼

Μ…Μ…Μ…Μ…Μ…Μ… ( 𝛼 𝑓(𝜁) βˆ’ 2𝛼 )} π‘‘πœ‰π‘‘πœ‚. 𝛼 𝜁 βˆ’π‘§ 𝜁 + 1

Then, we obtain 1. For 𝑧 ∈ πœ•Ξ©, Re 𝑀(𝑧) = 𝛾(𝑧). Indeed, for (𝑧, 𝜁) ∈ πœ•Ξ© Γ— Ξ©, 𝐻(𝑧, 𝜁) = 0. Therefore, 𝛼 1 1 Re𝑀2 (𝑧) = βˆ’ ∫ {𝜁 π›Όβˆ’1 𝑓(𝜁) ( 𝛼 βˆ’ ) πœ‹ Ξ© 𝜁 βˆ’ 𝑧 𝛼 𝜁 𝛼 βˆ’ 𝑧𝛼 +𝜁

π›Όβˆ’1

1 1 Μ…Μ…Μ…Μ…Μ…Μ… 𝑓(𝜁) ( 𝛼 βˆ’ )} π‘‘πœ‰π‘‘πœ‚ 𝜁 βˆ’ 𝑧 𝛼 𝜁 𝛼 βˆ’ 𝑧𝛼

𝛼 = βˆ’ ∫ {𝑓 (𝜁)𝐻(𝑧, 𝜁) + Μ…Μ…Μ…Μ…Μ…Μ…Μ… 𝑓(𝜁) 𝐻(𝑧, 𝜁) }π‘‘πœ‰π‘‘πœ‚ = 0. πœ‹ Ξ© On the other hand, 𝛼 Re𝑀1 (𝑧) = ∫ 𝛾(𝜁)𝐻(𝑧, 𝜁)π‘‘πœ . 2πœ‹π‘– πœ•Ξ©

10

In according to Lemma 3.2, we have limπ‘§β†’πœ0 Re𝑀(𝑧) = 𝛾(𝜁0 ) for 𝜁0 ∈ πœ•Ξ©\{0}. With respect to the vertex point 0, we have 𝛼 Re𝑀1 (𝑧) = ∫ [𝛾(𝜁) βˆ’ 𝛾(0)]𝐻(𝑧, 𝜁)π‘‘πœ 2πœ‹π‘– πœ•Ξ©+ 𝛼𝛾(0) + ∫ 𝐻(𝑧, 𝜁)π‘‘πœ 2πœ‹π‘– πœ•Ξ©+ Applying the representation (2.3) to 𝑀(𝑧) ≑ 1 and then taking the real part on both sides, we obtain 𝛼 𝛼 1 1 ∫ 𝐻(𝑧, 𝜁)π‘‘πœ = ∫ [ 𝛼 βˆ’ ] π‘‘πœ = 1 𝛼 2πœ‹π‘– πœ•Ξ© 2πœ‹π‘– πœ•Ξ© 𝜁 βˆ’ 𝑧 𝛼 𝜁 𝛼 βˆ’ 𝑧̅̅̅ then, from Lemma 3.1, lim𝑧→0 Re𝑀1 (𝑧) = 𝛾(0). In a word, we have limπ‘§β†’πœ0 Re𝑀(𝑧) = 𝛾(𝜁0 )) for 𝜁0 ∈ πœ•Ξ©. 2. Because, 𝑀1 (𝑖

1/𝛼

𝛼 ∞ 1 𝑑𝛼 βˆ’ 2𝛼 ) = ∫ 𝛾(𝑑) [ 𝛼 ] 𝑑 π›Όβˆ’1 𝑑𝑑 πœ‹π‘– 0 𝑑 βˆ’π‘– 𝑑 +1 ∞

𝛼 1 𝑑𝛼 1/𝛼 βˆ’ ∫ Ξ³((βˆ’1) 𝑑) ( 𝛼 βˆ’ 2𝛼 ) 𝑑 π›Όβˆ’1 𝑑𝑑 πœ‹π‘– 𝑑 +𝑖 𝑑 + 1 0

𝛼 ∞ 𝑑 π›Όβˆ’1 1/𝛼 = ∫ {𝛾(𝑑) + Ξ³((βˆ’1) 𝑑)} 2𝛼 𝑑𝑑, πœ‹ 0 𝑑 +1 we have Im𝑀1 (𝑖 1/𝛼 ) = 0. Similarly, 𝑀2 (𝑖

1/𝛼

𝛼 1 πœπ›Ό π›Όβˆ’1 βˆ’ ) = βˆ’ ∫ {𝜁 𝑓(𝜁) ( 𝛼 ) πœ‹ Ξ© 𝜁 βˆ’ 𝑖 𝜁 2𝛼 + 1 π›Όβˆ’1

1

𝜁

𝛼

Μ…Μ…Μ…Μ…Μ…Μ… 𝑓(𝜁) ( 𝛼 βˆ’ 2𝛼 )} π‘‘πœ‰π‘‘πœ‚ 𝜁 βˆ’π‘– 𝜁 + 1 2𝛼 𝜁 π›Όβˆ’1 =βˆ’ ∫ Im {𝑓(𝜁) 2𝛼 } π‘‘πœ‰π‘‘πœ‚ , πœ‹ Ξ© 𝜁 + 1 β€“πœ

so, Im𝑀2 (𝑖 1/𝛼 ) = 0. Therefore, we have shown that Im 𝑀(𝑖 1/𝛼 ) = 𝑐. Thus, the proof of Theorem 3.3 is completed. 11

4 Dirichlet boundary value problem in the sector In this section, we consider the Dirichlet boundary value problem an infinite sectoral domain with angle πœ‹β„π›Ό (𝛼 β‰₯ 1/2 ). Dirichlet problem: Find a function 𝑀 satisfying the following conditions 𝑀𝑧̅ = 𝑓 in Ξ© , 𝑓 ∈ 𝐿𝑝 (Ξ©, β„‚) , 𝑝 > 2, (4.1) Re𝑀 = 𝛾 on πœ•Ξ©, 𝛾 ∈ 𝐿2 (πœ•Ξ©, β„‚) ∩ 𝐢(πœ•Ξ©, β„‚). Firstly, we consider the Dirichlet problem for the homogeneous Cauchy–Riemann equation 𝑀𝑧̅ = 0 in Ξ© , Re𝑀 = 𝛾 on πœ•Ξ©,

𝑓 ∈ 𝐿𝑝 (Ξ©, β„‚) , 𝑝 > 2, 𝛾 ∈ 𝐿2 (πœ•Ξ©, β„‚) ∩ 𝐢(πœ•Ξ©, β„‚).

(4.2)

Theorem 4.1. Dirichlet boundary value problem(4.2) is solvable if and only if for 𝑧 ∈ Ξ©, ∞

∞

𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 1/𝛼 ∫ 𝛾(𝑑) 𝛼 βˆ’ ∫ 𝛾((βˆ’) 𝑑) =0 2πœ‹π‘– 𝑑 βˆ’ 𝑧̅ 𝛼 2πœ‹π‘– 𝑑 𝛼 + 𝑧̅ 𝛼 0

(4.3)

0

Then the solution can uniquely be given by +∞

+∞

𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 1/𝛼 𝑀(𝑧) = ∫ 𝛾(𝑑) 𝛼 βˆ’ ∫ 𝛾((βˆ’1) 𝑑) 𝛼 𝛼 2πœ‹π‘– 𝑑 βˆ’ 𝑧 𝛼 2πœ‹π‘– 𝑑 +𝑧 for 𝑧 ∈ Ξ©.

0

(4.4)

0

Proof: Because of (3.9), it is obvious that (4.4) provides a weak solution to the equation 𝑀𝑧̅ = 0. Therefore, to complete the proof of this theorem it suffices to discuss the following two points. 1. The sufficiency of (4.3). If the condition (4.3) is satisfied, then we can rewrite 𝑀(𝑧) as 𝛼 𝑀(𝑧) = ∫ 𝛾(𝜁)𝐻(𝑧, 𝜁) π‘‘πœ , 2πœ‹π‘– πœ•Ξ© where 𝐻 is defined in (3.2). In according to Lemmas 3.1 and 3.2, one gets 𝛼 lim 𝑀(𝑧) = lim ∫ 𝛾(𝜁)𝐻(𝑧, 𝜁) π‘‘πœ , π‘§β†’πœ0 π‘§β†’πœ0 2πœ‹π‘– πœ•Ξ© for any 𝜁0 ∈ πœ•Ξ©. 12

Thus, the condition (4.3) suffices to solve the Dirichlet problem πœ•π‘§Μ… 𝑀(𝑧) = 0 in Ξ© and 𝑀 = 𝛾 on πœ•Ξ©. 2. The necessity of (4.3). Define a new function ∞

∞

𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 1/𝛼 𝑀 Μƒ(𝑧) = ∫ 𝛾(𝑑) 𝛼 βˆ’ ∫ 𝛾((βˆ’) 𝑑) 𝛼 , 2πœ‹π‘– 𝑑 βˆ’ 𝑧̅ 𝛼 2πœ‹π‘– 𝑑 + 𝑧̅ 𝛼 0

𝑧 ∈ Ξ©.

0

If 𝑀 be the solution to the Dirichlet problem (4.2), then lim 𝑀(𝑧) = 𝛾(𝜁),

for 𝜁 ∈ βˆ‚Ξ© .

π‘§β†’πœ

Thus, for the function

𝛼 ∫ 𝛾(𝜁)𝐻(𝑧, 𝜁) π‘‘πœ , 2πœ‹π‘– πœ•Ξ© we easily obtain, as above, that for any 𝜁0 ∈ πœ•Ξ©, lim [𝑀(𝑧) βˆ’ 𝑀 Μƒ(𝑧)] = 𝛾(𝜁0 ), 𝑀(𝑧) βˆ’ 𝑀 Μƒ(𝑧) =

π‘§β†’πœ0

which implies

lim 𝑀 Μƒ(𝑧) = 0, 𝜁 ∈ πœ•Ξ©. π‘§β†’πœ

(4.5) (4.6)

On other hand, we observe that the function ∞

∞

1 𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 Μ…Μ…Μ…Μ…Μ…Μ…Μ… 𝑀 Μƒ(𝑧) = βˆ’ ∫ 𝛾(𝑑) 𝛼 + ∫ 𝛾((βˆ’)𝛼 𝑑) 𝛼 , 2πœ‹π‘– 𝑑 βˆ’ 𝑧 𝛼 2πœ‹π‘– 𝑑 + 𝑧𝛼 0

𝑧 ∈ Ξ©.

0

is analytic on Ξ©, having zero boundary value. Then by the maximum principle for analytic functions, we have 𝑀 Μƒ(𝑧) = 0 on Ξ©, which is just the condition (4.3). This completes the proof.

Theorem 4.2. Dirichlet boundary value problem(4.1) is solvable if and only if for 𝑧 ∈ Ξ©,

∞

∞

𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 1/𝛼 ∫ 𝛾(𝑑) 𝛼 βˆ’ ∫ 𝛾((βˆ’) 𝑑) 𝛼 2πœ‹π‘– 𝑑 βˆ’ 𝑧̅ 𝛼 2πœ‹π‘– 𝑑 + 𝑧̅ 𝛼 0

0

𝛼 𝜁 π›Όβˆ’1 βˆ’ ∫ 𝑓(𝜁) 𝛼 π‘‘πœ‰πœ‚ = 0 πœ‹ Ξ© 𝜁 βˆ’ 𝑧̅ 𝛼 Then the solution can uniquely be given by +∞

+∞

0

0

(4.7)

𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 1/𝛼 𝑀(𝑧) = ∫ 𝛾(𝑑) 𝛼 βˆ’ ∫ 𝛾((βˆ’1) 𝑑) 𝛼 𝛼 2πœ‹π‘– 𝑑 βˆ’ 𝑧 𝛼 2πœ‹π‘– 𝑑 +𝑧 13

for 𝑧 ∈ Ξ©.

𝛼 𝜁 π›Όβˆ’1 π‘‘πœ‰π‘‘πœ‚ βˆ’ ∫ 𝑓(𝜁) 𝛼 , πœ‹ Ξ© 𝜁 βˆ’ 𝑧𝛼

(4.8)

Proof: Because of (3.9), it is obvious that (4.8) provides a weak solution to the equation 𝑀𝑧̅ = 𝑓. Thus, the proof of the theorem could be completed by discussing the following two points. 1. The sufficiency of (4.7). If the condition (4.7) is satisfied, then we can rewrite 𝑀(𝑧) as 𝛼 𝛼 𝑀(𝑧) = ∫ 𝛾(𝜁)𝐻(𝑧, 𝜁) π‘‘πœ βˆ’ ∫ 𝑓(𝜁)𝐻(𝑧, 𝜁)π‘‘πœ‰π‘‘πœ‚ , 2πœ‹π‘– πœ•Ξ© πœ‹ Ξ© where 𝐻 is defined in (3.2). Since 𝐻(𝑧, 𝜁) = 0 for (𝑧, 𝜁) ∈ πœ•Ξ© Γ— Ξ©, then, for 𝑧 ∈ Ξ© and 𝜁0 ∈ πœ•Ξ© 𝛼 lim 𝑀(𝑧) = lim ∫ 𝛾(𝜁)𝐻(𝑧, 𝜁) π‘‘πœ . π‘§β†’πœ0 π‘§β†’πœ0 2πœ‹π‘– πœ•Ξ© In according to Lemmas 3.1 and 3.2, one gets 𝑀 = 𝛾 on πœ•Ξ©. Thus, the condition (4.7) suffices to solve the Dirichlet problem (4.1). 2. The necessity of (4.7). Define a new function ∞

∞

𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 1/𝛼 Μƒ π‘Š (𝑧) = ∫ 𝛾(𝑑) 𝛼 βˆ’ ∫ 𝛾((βˆ’) 𝑑) 𝛼 2πœ‹π‘– 𝑑 βˆ’ 𝑧̅ 𝛼 2πœ‹π‘– 𝑑 + 𝑧̅ 𝛼 0

0

𝛼 𝜁 π›Όβˆ’1 βˆ’ ∫ 𝑓(𝜁) 𝛼 π‘‘πœ‰πœ‚, 𝑧 ∈ Ξ©. πœ‹ Ξ© 𝜁 βˆ’ 𝑧̅ 𝛼 If 𝑀 be the solution to the Dirichlet problem (4.1), then lim 𝑀(𝑧) = 𝛾(𝜁),

π‘§β†’πœ

Thus, we have Μƒ (𝑧) = 𝑀(𝑧) βˆ’ π‘Š

for 𝜁 ∈ βˆ‚Ξ© .

𝛼 𝛼 ∫ 𝛾(𝜁)𝐻(𝑧, 𝜁) π‘‘πœ βˆ’ ∫ 𝑓(𝜁)𝐻(𝑧, 𝜁)π‘‘πœ‰π‘‘πœ‚ . (4.9) 2πœ‹π‘– πœ•Ξ© πœ‹ Ξ©

Since the area integral in (4.9) vanishes on πœ•Ξ©, we easily obtain, as above, for 𝑧 ∈ Ξ© and 𝜁 ∈ πœ•Ξ©, Μƒ (𝑧)] = 𝛾(𝜁), lim[𝑀(𝑧) βˆ’ π‘Š (4.10) π‘§β†’πœ

which implies 14

Μƒ (𝑧) = 0, 𝜁 ∈ πœ•Ξ©. lim π‘Š

(4.11)

π‘§β†’πœ

On other hand, we observe that the function ∞

∞

𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 𝛼 𝑑 π›Όβˆ’1 𝑑𝑑 Μ…Μ…Μ…Μ…Μ…Μ…Μ… 1/𝛼 Μƒ π‘Š (𝑧) = βˆ’ ∫ 𝛾(𝑑) 𝛼 + ∫ 𝛾((βˆ’) 𝑑) 𝛼 2πœ‹π‘– 𝑑 βˆ’ 𝑧 𝛼 2πœ‹π‘– 𝑑 + 𝑧𝛼 0

βˆ’

π›Όβˆ’1

𝛼 𝜁 ∫ 𝑓(𝜁) 𝛼 π‘‘πœ‰πœ‚, πœ‹ Ξ© 𝜁 βˆ’ 𝑧𝛼

0

π‘§βˆˆΞ©

is analytic for 𝑧 ∈ Ξ©, and then by the maximum principle for Μƒ (𝑧) = 0 for 𝑧 ∈ Ξ©, which is just the analytic functions, we know π‘Š condition (4.7). This completes the proof. Acknowledgment

The authors are grateful to Deanship of Scientific Research, King Faisal University, for supporting this work ( Project No. 120047). References [1] Lu Jianke, Boundary Value Problems for Analytic Functions, World Scientific, Singapore, 1993. [2] F. D. Gakhov, Boundary Value Problems, Chap. VI, Pergamon Press, Oxford (1966). [3] I.N. Vekua, Generalized Analytic Function, Pergamon Press, Oxford, 1962. [4] N.I. Muskhelishvili, Singular Integral Equations, second ed., Noordhoff, Groningen, 1953. [5] M. Akel, Boundary value problems for complex elliptic partial differential equations of higher orders, Ph. D. Thesis, Freie Uni. Berlin, Germany, 1996. [6] M. Akel and H. Begehr, On the Pompeiu operator of higher order and applications, Complex variables, 32, 233-261, 1997. [7] M. Akel, On a generalized Riemann – Hilbert boundary value problem for second order elliptic systems in the plane In Complex analytic methods for partial differential equations, Edited by H. Begehr and et al , Freie Uni. Berlin, 1999. [8] Begehr, H., Schmersau, D., The Schwarz problem for polyanalytic functions. ZAA. 24, 341–351 (2005). 15

[9] Begehr, H., A particular polyharmonic Dirichlet problem. In: Aliev Azeroglu, T., Tamrazov, P.M. (eds.) Complex Analysis and Potential Theory, pp. 84–115. World Scientific, Singapore (2007). [10] Begehr, H., Du, J.Y., Wang, Y.F., A Dirichlet problem for polyharmonic functions. Ann. Math. Pura Appl.187, 435–457 (2008). [11] Burgumbayeva, S., Boundary value problems for Tri-harmonic functions in the unit disc. Ph.D. thesis, FU Berlin (2009). http://www.diss.fu-berlin.de/diss/receive/FUDISS-thesis-000000012636 [12] Du, Z.H., Boundary value problems for higher order complex partial differential equations. Ph.D. thesis, FU Berlin (2008). http://www.diss.fu-berlin.de/diss/receive/FUDISS-thesis-000000003677 [13] Begehr, H., Gaertner, E.A., Dirichlet problem for the inhomogeneous polyharmonic equation in the upper half plane. Georg. Math. J. 14(1), 33–52 (2007). [14] Gaertner, E.A., Basic complex boundary value problems in the upper half plane. Ph.D. thesis, FU Berlin (2006). http://www.diss.fu-berlin.de/diss/receive/FUDISS-thesis-000000002129 [15] Vaitekhovich, T., Boundary value problems to second order complex partial differential equations in a ring domain. Sauliai Math. Semin. 2, 117–146 (2007). [16] Vaitekhovich, T., Boundary value problems to first order complex partial differential equations in a ring domain. Integr. Transf. Special Funct. 19, 211–233 (2008). [17] Vaitekhovich, T., Boundary value problems for complex partial differential equations in a ring domain. Ph.D. thesis, FU Berlin (2008). http://www.diss.fu-berlin.de/diss/receive/FUDISS-thesis-000000003859 [18] Abdymanapov, S.A., Begehr, H., Tungatarov, A.B., Some Schwarz problems in a quarter plane. Eur. Math. J. 3, 22–35 (2005). [19] Abdymanapov, S.A., Begehr, H., Harutyunyan, G., Tungatarov, A.B., Four boundary value problems for the Cauchy–Riemann equation in a quarter plane. In: Begehr, H., Nicolosi, F. (eds.)More Progresses in Analysis, Proceedings of 5th International ISAAC Congress 2005, Catania, Italy, pp. 1137–1147. World Scientific, Singapore (2009). [20] Begehr, H., Harytyunyan, G., Complex boundary value problems in a quarter plane. In: Wang, Y. et al. (eds) Proceedings of 13th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications, Shantou, China, pp. 1–10. World 16

Scientific, New Jersey (2006). [21] H. Begehr, T. Vaitekhovich, Harmonic boundary value problems in half disc and half ring. Funct. Approx. 40(2), 251–282 (2009). [22] G. Dassios, A.S. Fokas, The basic elliptic equations in an equilateral triangle, Proc. R. Soc. Lond. Ser. A 461 (2005) 2721–2748. [23] Yufeng Wang, Yanjin Wang, Schwarz-type boundary-value problems of polyanalytic equation on a triangle, Ann. Univ. Paed. Cracov. Stud. Math. 9(2010) 69–78. [24] Yufeng Wang, Yanjin Wang, Schwarz-type boundary-value problems of nonhomogeneous Cauchy-Riemann equation on a triangle, J. Math. Anal. Appl. 377 (2011) 557–570. [25] R. Courant, Dirichlet principle, conformal mapping and minimal surfaces, Intersci. Publ., New York, 1950. [26] H. Begehr, Complex Analytic Methods for Partial Differential Equations: an introductory text.World Scientific, Singapore (1994). [27] H. Begehr, Boundary value problems in complex analysis, I II. Bol. Asoc. Mat. Venezolana., XII(65–85), 217–250 (2005).

17