Umbral calculus and special polynomials

2 downloads 0 Views 153KB Size Report
Jan 31, 2013 - arXiv:1301.7520v1 [math.NT] 31 Jan 2013. UMBRAL CALCULUS AND SPECIAL POLYNOMIALS. TAEKYUN KIM1 AND DAE SAN KIM2.
arXiv:1301.7520v1 [math.NT] 31 Jan 2013

UMBRAL CALCULUS AND SPECIAL POLYNOMIALS TAEKYUN KIM1 AND DAE SAN KIM2

Abstract. In this paper, we consider several special polynomials related to associated sequences of polynomials. Finally, we give some new and interesting identities of those polynomials arising from transfer formula for the associated sequences.

1. Introduction In this paper, we assume that λ ∈ C with λ 6= 1. For α ∈ R, the Frobenius-Euler polynomials are defined by the generating function to be α  ∞ X tn 1−λ xt (α) e = H (x|λ) , (see [1,5,13,15,20,22,23]). (1.1) n et − λ n! n=0 (α)

(α)

In the special case, x = 0, Hn (0|λ) = Hn (λ) are called the n-th Frobenius-Euler numbers of order α. As is well known, the Bernoulli polynomials of order α are given by α  ∞ X tn t xt e = Bn(α) (x) , (see [2,3,4,6,14,15,19,21]). (1.2) t e −1 n! n=0 (α)

(α)

In the special case, x = 0, Bn (0) = Bn are called the n-th Bernoulli numbers of order α. For n ≥ 0, the Stirling numbers of the second kind are defined by generating function to be ∞ X tl t n (1.3) (e − 1) = n! S2 (l, n) , (see [8-12,17,18]), l! l=n

and the Stirling numbers of the first kind are given by (x)n = x(x − 1) · · · (x − n + 1) =

n X

S1 (n, l)xl , (see [7,8,10,17,18]).

(1.4)

l=0

Let F be the set of all formal power series in the variable t over C with ( ) ∞ X ak k F = f (t) = t ak ∈ C . k!

(1.5)

k=0

Let P be the algebra of polynomials in the variable x over C and P∗ be the vector space of all linear functionals on P. As a notation, the action of the linear functional 1991 Mathematics Subject Classification. 05A10, 05A19. Key words and phrases. Bernoulli polynomial, Euler polynomial, Abel polynomial. 1

TAEKYUN KIM1 AND DAE SAN KIM2

2

k

P∞

ak tk! ∈ F . Then

hf (t)|xn i = an , (n ≥ 0), (see [10,12,16,17,18]).

(1.6)

L on a polynomial p(x) is denoted by hL | p(x)i. Let f (t) = we define the linear functional f (t) on P by

k=0

From (1.6), we note that

k n t |x = n!δn,k , (n, k ≥ 0),

(1.7)

where δn,k is the Kronecker symbol (see [8, 10, 11, 17, 18]). P∞ hL|xk i Let fL (t) = k=0 k! tk . Then, by (1.7), we get hfL (t)|xn i = hL|xn i. The map L 7→ fL (t) is a vector space isomorphism from P∗ onto F . Henceforth, F thought of as both a formal power series and a linear functional. We shall call F the umbral algebra. The umbral calculus is the study of umbral algebra (see [10, 16, 17, 18]). The order o(f (t)) of the non-zero power series f (t) is the smallest integer k for which the coefficient of tk does not vanish (see [10, 11, 12, 17, 18]). If o(f (t)) = 1, then f (t) is called a delta series, and if o(f (t)) = 0, then f (t) is called an invertible series. Let o(f (t)) = 1 and o(g(t)) = 0. Then

there exists a unique sequence Sn (x) of polynomials such that g(t)f (t)k |Sn (x) = n!δn,k where n, k ≥ 0. The sequence Sn (x) is called Sheffer sequence for (g(t), f (t)), which is denoted by Sn (x) ∼ (g(t), f (t)). If Sn (x) ∼ (1, f (t)), then Sn (x) is called the associated sequence for f (t) (see [10, 16, 17, 18]). From (1.7), we note that heyt | p(x)i = p(y). Let f (t) ∈ F and p(x) ∈ P. Then we have ∞

∞ k X X f (t)|xk k t |p(x) k f (t) = t , p(x) = x , (see [17,18]). (1.8) k! k! k=0

k=0

From (1.9), we can derive the following equation: D E

p(k) (0) = tk |p(x) and 1 p(k) (x) = p(k) (0), (see [10,16,17,18]).

for k ≥ 0, by (1.9), we easily see that tk p(x) = p(k) (x) = Let Sn (x) ∼ (g(t), f (t)). Then we see that

(1.9)

dk p(x) dxk .



X Sk (x) 1 ¯ y f(t) tk , for all y ∈ C, e = k! g(f¯(t)) k=0

(1.10)

where f¯(t) is the compositional inverse of f (t) (see [17, 18]). Let pn (x) ∼ (1, f (t)), qn (x) ∼ (1, g(t)). Then, the transfer formula for the associated sequence is given by  n f (t) qn (x) = x x−1 pn (x), (see [11,12,16,17,18]). (1.11) g(t) For n ≥ 0, b 6= 0, the Abel sequences are given by  An (x; b) = x(x − bn)n−1 ∼ 1, tebt .

(1.12)

In this paper, we consider several special polynomials related to associated sequences of polynomials. Finally, we give some new and interesting identities of those polynomials arising from transfer formula for the associated sequences.

UMBRAL CALCULUS AND SPECIAL POLYNOMIALS

3

2. Umbral calculus and special polynomials From (1.1), we note that Hn(α) (x|λ)





et − λ 1−λ





,t .

(2.1)



1−λ et − λ



xn .

(2.2)

Thus, we get Hn(α) (x|λ) = Let us assume that

 pn (x) ∼ 1, t(et − λ) , qn (x) ∼

  t a  e −λ 1, t , (a 6= 0). 1−λ

From xn ∼ (1, t), (1.11) and (2.3), we note that n n   x t 1−λ −1 n pn (x) = x x x = xn−1 t(et − λ) (1 − λ)n et − λ 1 (n) = xHn−1 (x|λ). (1 − λ)n and qn (x) = x



1−λ et − λ

na

(an)

x−1 xn = xHn−1 (x|λ).

(2.3)

(2.4)

(2.5)

From (1.11), (2.3), (2.4) and (2.5), we can derive 1 (n) xHn−1 (x|λ) (1 − λ)n   t a n −λ t e1−λ (an)   x−1 xHn−1 =x (x|λ) t(et − λ)

(a−1)n (an) x et − λ Hn−1 (x|λ) (1 − λ)an (a−1)n  X (a − 1)n x (an) (−λ)(a−1)n−l elt Hn−1 (x|λ) = (1 − λ)an l =

(2.6)

l=0

(a−1)n 

X x = an (1 − λ) l=0

 (a − 1)n (an) (−λ)(a−1)n−l Hn−1 (x + l|λ), l

where a, n ∈ N. Therefore, by (2.6), we obtain the following theorem. Theorem 2.1. For a, n ∈ N, we have (n)

Hn−1 (x|λ) =

(a−1)n  X (a − 1)n 1 (an) (−λ)(a−1)n−l Hn−1 (x + l|λ). l (1 − λ)(a−1)n l=0

Let us consider the following associated sequences: a     1−λ 1 (n) t t , (a 6= 0). (2.7) xHn−1 (x|λ) ∼ 1, t(e − λ) , pn (x) ∼ 1, t (1 − λ)n e −λ

TAEKYUN KIM1 AND DAE SAN KIM2

4

For xn ∼ (1, t), by (1.11) and (2.7), we get n



an  t t e −λ a  x−1 xn = x xn−1 pn (x) = x   1 − λ 1−λ t et −λ  an  X 1 an =x (−λ)an−l (x + l)n−1 . (1 − λ)an l

(2.8)

l=0

For n ≥ 1, by (1.11) and (2.7), we get 

t

n

t (e − λ)  −1 x (n) a pn (x) = x   x (x|λ) H n n−1 (1 − λ) 1−λ t et −λ  (a+1)n (a+1)n (n) 1 =x et − λ Hn−1 (x|λ). 1−λ

(2.9)

By (2.8) and (2.9), we get  an  X an (−λ)an−l (x + l)n−1 l l=0

(a+1)n (n) 1 et − λ Hn−1 (x|λ) n (1 − λ) (a+1)n  X (a + 1)n 1 (n) (−λ)(a+1)n−l Hn−1 (x + l|λ). = (1 − λ)n l

=

(2.10)

l=0

Therefore, by (2.10), we obtain the following theorem. Theorem 2.2. For n ≥ 1 and a ∈ Z+ = N ∪ {0}, we have  an  X an l=0

l

−l

(−λ)

(x + l)n−1 =

(a+1)n  X (a + 1)n 1 (n) (−λ)n−l Hn−1 (x + l|λ). (1 − λ)n l l=0

Let us consider the following associated sequences: t



(x)n ∼ 1, e − 1 ,

(an) xHn−1 (x|λ)

a    t e −λ , (a 6= 0). ∼ 1, t 1−λ

(2.11)

By (1.11) and (2.11), we get 

t

n

e − 1  −1 (an) a xHn−1 (x|λ) = x   x (x)n t −λ t e1−λ n  an  t 1−λ e −1 (x − 1)n−1 . =x t et − λ

(2.12)

UMBRAL CALCULUS AND SPECIAL POLYNOMIALS

Replacing x by x + 1, we have n  an n−1  t X 1−λ e −1 (an) S1 (n − 1, l)xl Hn−1 (x + 1|λ) = t t e −λ l=0  t n n−1 X e −1 (an) = S1 (n − 1, l)Hl (x|λ) t l=0

n−1 l XX

5

(2.13)

n! (an) = S1 (n − 1, l) S2 (k + n, n)(l)k Hl−k (x|λ) (k + n)! l=0 k=0  n−1 l l XX (an) k = S1 (n − 1, l)S2 (k + n, n) k+n Hl−k (x|λ). n

l=0 k=0

Therefore, by (2.13), we obtain the following theorem. Theorem 2.3. For n ≥ 1, a ∈ Z+ , we have (an) Hn−1 (x

+ 1|λ) =

n−1 l XX

S1 (n − 1, l)S2 (k + n, n)

l=0 k=0

Let

l (an) k  Hl−k (x|λ) k+n n



  t a  (an) −λ , (a 6= 0), xHn−1 (x|λ) ∼ 1, t e1−λ t (x)n ∼ (1, e − 1) .

Then, by (1.11) and (2.14), we get   t a n −λ t e1−λ (an)  x−1 xHn−1  (x|λ) (x)n = x et − 1  n  t an t e −λ (an) =x t Hn−1 (x|λ) e −1 1−λ n  t xn−1 =x t e −1

(2.14)

(2.15)

(n)

= xBn−1 (x). and (x)n =

n X

S1 (n, l)xl = x

l=0

Therefore, by (2.15) and (2.16), we get

n−1 X

S1 (n, l + 1)xl , (n ≥ 1).

(2.16)

l=0

Theorem 2.4. For n ≥ 1, 0 ≤ l ≤ n − 1, we have   n−1 (n) S1 (n, l + 1) = Bn−1−l . l From (2.15), we note that  t n e −1 (an) (x − 1)n−1 = (1 − λ)−an (et − λ)an Hn−1 (x|λ), (n ≥ 1). t

(2.17)

TAEKYUN KIM1 AND DAE SAN KIM2

6

LHS of (2.17) =



et − 1 t

n−1 X

n n−1 X

S1 (n − 1, l), (x − 1)l

l=0

l X

n!l! S2 (k + n, n)(x − 1)l−k (k + n)!(l − k)! l=0 k=0  l n−1 l X X k S1 (n − 1, l) =  S2 (k + n, n)(x − 1)l−k , k+n =

S1 (n − 1, l)

k=0

l=0

n

(2.18)

and  an  X an (an) RHS of (2.17) = (1 − λ) (−λ)an−l elt Hn−1 (x|λ) l l=0  an  X an (an) = (1 − λ)−an (−λ)an−l Hn−1 (x + l|λ). l −an

(2.19)

l=0

Therefore, by (2.17), (2.18) and (2.19), we obtain the following theorem. Theorem 2.5. For n ≥ 1, a ∈ Z+ , we have

−an

(1 − λ)

 an  X an l=0

=

n−1 l XX

l=0 k=0

l

l k  S1 (n k+n n



(an)

(−λ)an−l Hn−1 (x + l|λ)

− 1, l)S2 (k + n, n)(x − 1)l−k .

Let

pn (x) ∼

a     1−λ t , (x)n ∼ 1, et − 1 , (a 6= 0). 1, t e −λ

(2.20)

By (2.8), we have

an X  an  an x (−λ)an−l (x + l)n−1 pn (x) = l l=0 an X   an  n−1 X n − 1 an 1 an−k x (−λ) k n−1−l xl . = 1−λ k l 

1 1−λ

k=0

l=0

(2.21)

UMBRAL CALCULUS AND SPECIAL POLYNOMIALS

7

From (1.11) and (2.20), we have a n   t e1−λ t −λ  x−1 pn (x) (x)n = x  t e −1

n  an  an X an n−1 X ann − 1 t 1−λ 1 k n−1−l (−λ)an−k xl et − 1 et − λ 1−λ k l k=0 l=0 an  n X    an n−1 X an n − 1 1 t (an) = x t k n−1−l (−λ)an−k Hl (x|λ) 1−λ e −1 k l k=0 l=0  an X    an n−1 l  X X an n − 1 l 1 (an) (n) x k n−1−l (−λ)an−k Hl−m (λ)Bm (x) = k 1−λ l m k=0 l=0 m=0      an X m  l X an n−1 XX 1 an n − 1 l m n−1−l (an) (n) = k (−λ)an−k Hl−m (λ)Bm−p xp x k l m p 1−λ k=0 l=0 m=0 p=0     an n−1    l  an n−1   X X X X 1 an n − 1 l m n−1−l (an) (n) = x k (−λ)an−k Hl−m (λ)Bm−p xp .   k 1−λ l m p

=x



k=0 l=p m=p

p=0

(2.22)

Therefore, by (2.16) and (2.22), we obtain the following theorem. Theorem 2.6. For n ≥ 1, a ∈ Z+ and 0 ≤ p ≤ n − 1, we have S1 (n, p+1) =



1 1−λ

 an X    an n−1 l  XX an n − 1 l m n−1−l (an) (n) k (−λ)an−k Hl−m (λ)Bm−p . k l m p m=p k=0 l=p

Theorem 2.7. For n ≥ 0, we have  ∞ n X k   X X n  e−xt (et − λ)n = (1 − λ)n−l l j=0 k=0

l=0

Proof. Note that e

−xt

t

n

(e − λ) = e

−xt

t

n

(e − 1 + 1 − λ) =

k j  S2 (j j+l l



n   X n l=0

l



+ l, l)(−1)k−j xk−j 

tk+l . k!

(1 − λ)n−l (et − 1)l e−xt , (2.23)

and (et − 1)l e−xt

 tk+l l!k! S2 (j + l, l)(−1)k−j xk−j  = (j + l)!(k − j)! k! j=0 k=0    k ∞ k k+l X X j k−j k−j  t  = S (j + l, l)(−1) x .  2 j+l k! l j=0 ∞ X

 k X 

(2.24)

k=0

From (2.23) and (2.24), we can derive Theorem 2.7.



TAEKYUN KIM1 AND DAE SAN KIM2

8

By (1.12) and Theorem 2.7, we get an 1 (an) e−nbt (et − λ)an Hn−1 (x|λ) 1−λ   an k an n−1−l k X X X l j (n − 1)k+l (an) (1 − λ)an−l S2 (j + l, l)(−1)k−j (nb)k−j Hn−1−l−k (x|λ).  j+l

An (x; b) = x(x − bn)n−1 = x =

x (1 − λ)an

l=0



l

k=0 j=0

(2.25)

Therefore, by (2.25), we obtain the following theorem. Theorem 2.8. For n ≥ 1, a ∈ Z+ and b 6= 0, we have n−1

(x−bn)

=

  an k (n−1)k+l k! l j  j+l (1 − λ)l l

an n−1−l k X X X l=0

k=0 j=0

(an)

S2 (j+l, l)(−1)k−j (nb)k−j Hn−1−l−k (x|λ).

Let us consider the Changhee polynomials of the second kind as follows: ∞ X

Ck (x|λ)

k=0

tk 1 = (1 + t)x . k! 1 + λ(1 + t)

(2.26)

From (1.10) and (2.26), we note that  Ck (x|λ) ∼ 1 + λet , et − 1 .

(2.27)

 (1 + λet )Cn (x|λ) = (x)n ∼ 1, et − 1 ,

(2.28)

Hence λ ∈ C with λ 6= −1. Thus, by (2.27), we get

and (x)n = x



t t e −1

n

−1 n



t t e −1

n

(n)

xn−1 = xBn−1 (x).

(2.29)

n   X 1 (n) (n) xB (x) = (−λ)l elt xBn−1 (x) n−1 t λe + 1

(2.30)

x

x =x

Thus, by (2.28) and (2.29), we get Cn (x|λ) =

l=0

=

n X

l

(−λ) (x +

(n) l)Bn−1 (x

+ l).

l=0

Let tn (x|λ) ∼



t 1, 1 + λ(1 + t)



.

(2.31)

UMBRAL CALCULUS AND SPECIAL POLYNOMIALS

9

Then, by (1.11) and (2.31), we get !n t x−1 xn = x(1 + λ(1 + t))n xn−1 tn (x|λ) = x t 1+λ(1+t)

n−1   n   n   X X n a X a b n−1 n l l n−1 λ tx =x λ (1 + t) x =x a b l a=0 b=0 l=0    n n−1 n X n X X na X a a n−b a n = λ (n − 1)b x = λ (n − 1)n−b xb a b a n − b a=0 b=0 a=0 b=1    n n XX n a (n − 1)! b = λa x . a n − b (b − 1)! a=0 b=1 (2.32)

Let us also consider the following associated sequence:   t , (µ ∈ N). Sn (x|µ) ∼ 1, (1 + t)µ Then, by (1.11) and (2.33), we easily get  n  X µn (n − 1)! k Sn (x|µ) = x . n − k (k − 1)!

(2.33)

(2.34)

k=1

From (1.11), (2.32) and (2.33), we can derive !n  n t (1 + t)µ 1+λ(1+t) −1 x tn (x|λ) = x x−1 tn (x|λ) Sn (x|µ) = x t 1 + λ(1 + t) (1+t)µ !n ∞ X Cl (µ|λ) l x−1 tn (x|λ) t =x l! l=0 ( !)   Y ∞ n X X tl −1 l =x Cli (µ|λ) x tn (x|λ) l1 , . . . , ln l! i=1 l=0 l1 +···+ln =l ) ( !) ( n n      Y ∞ n X X a (n − 1)! b−1 tl X X a n l λ =x x Cli (µ|λ) l! a=0 a n − b (b − 1)! l1 , . . . , ln i=1 b=1 l=0 l1 +···+ln =l !      Y n X n X b−1 n X X a (n − 1)! (b − 1)l b−1−l l a n =x Cli (µ|λ) λ x a n − b (b − 1)! l1 , . . . , ln l! a=0 b=1 l=0 l1 +···+ln =l i=1 !        Y n X n X b−1 n X X a l (n − 1)! b − 1 b−l a n x = Cli (µ|λ) λ l a n − b (b − 1)! l1 , . . . , ln a=0 b=1 l=0 l1 +···+ln =l i=1 ) ( n n !       Y n n X X XX a b−k b − 1 (n − 1)! a n xk . = Cli (µ|λ) λ (b − 1)! a n − b l , . . . , l k − 1 1 n a=0 i=1 k=1

b=k l1 +···+ln =b−k

(2.35)

Therefore, by (2.34) and (2.35), we obtain the following theorem.

TAEKYUN KIM1 AND DAE SAN KIM2

10

Theorem 2.9. For n ≥ 1, 1 ≤ k ≤ n, b 6= 0 and µ, a ∈ Z+ , we have       µn n X n X X n a b−k 1 b−1 a n−k = λ (k − 1)! a=0 (b − 1)! a n − b l1 , . . . , ln k−1 b=k l1 +···+ln =b−k

n Y

!

Cli (µ|λ) .

i=1

Remark. From (1.1), we note that l  t ∞ X 1−λ 1−λ 1 e −1 l = = = (−1) t −1 et − λ et − 1 + 1 − λ 1−λ 1 + e1−λ l=0 !   ∞ k l X X tk 1 l!S2 (k, l) , = (−1)l 1−λ k! k=0

and

(2.36)

l=0

∞ X 1−λ tn = H (λ) , n et − λ n=0 n!

(2.37)

where Hn (λ) are the Frobenius-Euler numbers. By (2.36) and (2.37), we get l k  X 1 l!S2 (k, l). (2.38) Hk (λ) = λ−1 l=0

Let us consider the following associated sequences:   1−λ t , xn ∼ (1, t). pn (x) ∼ 1, t e −λ

(2.39)

Then, by (1.11) and (2.39), we get n n X   n   1 n 1 t n n−1 (e − λ) x = x (−λ)n−k (x + k)n−1 , pn (x) = x 1−λ 1−λ k k=0 (2.40) and  n  1−λ n  t t −λ e  x−1 pn (x) = x 1 − λ x−1 pn (x). (2.41) xn = x  t et − λ

Thus, by (2.40) and (2.41), we get ( ) ) ( n     n−1 n−1 X X X n l tl n−1 n−k (x + k) x = Hl1 (λ) · · · Hln (λ) × (−λ) l1 , . . . , ln l! (1 − λ)n k l=0 l1 +···+ln =l k=0 !      Y n n−1 n X X X 1 n n−1 l = (λ) H (−λ)n−k (x + k)n−1−l . li (1 − λ)n k l1 , . . . , ln l i=1 k=0 l=0 l1 +···+ln =l

References [1] S. Araci and M. Acikgoz, A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math., 22 (2012), 399-406. [2] S. Araci, M. Acikgoz and A. Esi, A note on the q-Dedekind-type Daehee-Changhee sums with weight alpha arising from modified q-Genocchi polynomials with weight alpha, arXiv:1211.2350. [3] S. Araci and M. Acikgoz, Extended q-Dedekind-type Daehee-Changhee sums associated with Extended q-Euler polynomials, arXiv:1211.1233. [4] S. Araci, E Sen and M. Acikgoz, A note on the modified q-Dedekind sums, arXiv:1212.5837.

UMBRAL CALCULUS AND SPECIAL POLYNOMIALS

11

[5] L. Carlitz, Eulerian numbers and polynomials of higher order, Duke Math. J., 27 (1960), 401-423. [6] I. N. Cangul, V. Kurt, H. Ozden and Y. Simsek, On the higher-order w-q-Genocchi numbers, Adv. Stud. Contemp. Math. 19 (2009), no. 1, 39-57. [7] R. Dere and Y. Simsek, Applications of umbral algebra to some special polynomials, Adv. Stud. Contemp. Math. 22 (2012), no. 3, 433-438. [8] Q. Fang and T. Wang, Umbral calculus and invariant sequences, Ars Combin., 101 (2011) 257-264. [9] D. S. Kim, T. Kim, S. H. Lee and S. H. Rim, Frobenius-Euler polynomials and umbral calculus in the p-adic case, Adv. Difference Equ. 2012, 2012:222. [10] D. S. Kim and T. Kim, Some new identities of Frobenius-Euler numbers and polynomials, J. of Inequ. and Appl., 2012, 2012:307. [11] D. S. Kim and T. Kim, Applications of Umbral Calculus Associated with p-Adic Invariant Integrals on Zp , Abstract and Applied Analysis 2012 (2012), Article ID 865721, 12 pages. [12] D. S. Kim and T. Kim, Some identities of Frobenius-Euler polynomials arising from umbral calculus, Adv. Difference Equ. 2012, 2012:196. [13] T. Kim, Identities involving Frobenius-Euler polynomials arising from non-linear differential equations, J. Number Theory, 132 (2012), no. 1, 2854-2865. [14] T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on Zp , Russ. J. Math. Phys., 16 (2009), no. 4, 484-491. [15] T. Kim, An identity of the symmetry for the Frobenius-Euler polynomials associated with the fermionic p-adic invariant q-integrals on Zp , Rocky Mountain J. Math., 41 (2011), no. 1, 239-247. [16] T. J. Robinson, Formal calculus and umbral calculus, Electron. J. Combin., 17 (2010), no. 1, Research Paper 95, 31 pp. [17] S. Roman, More on the umbral calculus, with emphasis on the q-umbral calculus, J. Math. Anal. Appl., 107 (1985), 222-254. [18] S. Roman, The umbral calculus, Dover Publ. Inc. New York, 2005. [19] C. Ryoo, A note on the Frobenius-Euler polynomials, Proc. Jangjeon Math. Soc., 14 (2011), no. 4, 495-501. [20] C. S. Ryoo and R. P. Agarwal, Calculating zeros of the Frobenius-Euler polynomials, Neural Parallel Sci. Comput., 17 (2009), no. 3, 351-361. [21] C. S. Ryoo and R. P. Agarwal, Exploring the multiple Changhee q-Bernoulli polynomials, Int. J. Comput. Math., 82 (2005), no. 4, 483-493. [22] Y. Simsek, O. Yurekli and V. Kurt, On interpolation functions of the twisted generalized Frobenius-Euler numbers, Adv. Stud. Contemp. Math., 15 (2007), no. 2, 187-194. [23] K. Shiratani, On Euler numbers, Mem. Fac. Sci. Kyushu Univ. Ser. A, 27 (1973), 1-5. 1 Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea. E-mail address: [email protected] 2

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea. E-mail address: [email protected]