Use of Artificial Neural Networks for Prediction of ...

3 downloads 0 Views 1MB Size Report
Romero-Méndez Ricardo, Hidalgo-López Juan Manuel, Durán-García Héctor Martín, Pacheco-Vega .... re sensors are all RTD-100PT type with a third wire for.
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 93-101 ISSN 1405-7743 FI-UNAM (artículo arbitrado)

Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units Determinación de coeficientes del proceso de transferencia de calor en unidades de evaporación utilizando redes neuronales Romero-Méndez Ricardo

Durán-García Héctor Martín

Faculty of Engineering Universidad Autónoma de San Luis Potosí E-mail: [email protected]

Arid Zones Research Institute Universidad Autónoma de San Luis Potosí E-mail: [email protected]

Hidalgo-López Juan Manuel

Pacheco-Vega Arturo

Faculty of Engineering Universidad Autónoma de San Luis Potosí E-mail: [email protected]

Department of Mechanical Engineering California State University-Los Angeles E-mail: [email protected]

Information on the article: received: July 2012, reevaluated: August 2012, accepted: February 2013

Abstract Convective heat transfer prediction of evaporative processes is more complicated than the heat transfer prediction of single-phase convective processes. This is due to the fact that physical phenomena involved in evaporative processes are very complex and vary with the vapor quality that increases graduŠ••¢ȱŠœȱ–˜›Žȱ̞’ȱ’œȱŽŸŠ™˜›ŠŽǯȱ˜ Ž›Ȭ•Š ȱŒ˜››Ž•Š’˜—œȱžœŽȱ˜›ȱ™›Ž’Œ’˜—ȱ˜ȱ ŽŸŠ™˜›Š’ŸŽȱŒ˜—ŸŽŒ’˜—ȱ‘ŠŸŽȱ™›˜ŸŽȱ•’Ĵ•ŽȱŠŒŒž›ŠŒ¢ȱ ‘Ž—ȱžœŽȱ’—ȱ™›ŠŒ’ŒŠ•ȱŒŠœŽœǯȱ In this investigation, neural-network-based models have been used as a tool for prediction of the thermal performance of evaporative units. For this purpose, Ž¡™Ž›’–Ž—Š•ȱŠŠȱ Ž›Žȱ˜‹Š’—Žȱ’—ȱŠȱŠŒ’•’¢ȱ‘Šȱ’—Œ•žŽœȱŠȱŒ˜ž—Ž›Ȭ̘ ȱŒ˜—ŒŽ—›’Œȱ™’™Žœȱ‘ŽŠȱŽ¡Œ‘Š—Ž›ȱ ’‘ȱŗřŚŠȱ›Ž›’Ž›Š—ȱ̘ ’—ȱ’—œ’Žȱ‘ŽȱŒ’›Œž•Š›ȱ section and temperature controlled warm water moving through the annular section. This work also included the construction of an inverse Rankine refrigeration cycle that was equipped with measurement devices, sensors and a data ŠŒšž’œ’’˜—ȱ œ¢œŽ–ȱ ˜ȱ Œ˜••ŽŒȱ ‘Žȱ Ž¡™Ž›’–Ž—Š•ȱ –ŽŠœž›Ž–Ž—œȱ ž—Ž›ȱ ’쎛Ž—ȱ ˜™Ž›Š’—ȱŒ˜—’’˜—œǯȱŠ›ȱ˜ȱ‘ŽȱŠŠȱ Ž›ŽȱžœŽȱ˜ȱ›Š’—ȱœŽŸŽ›Š•ȱ—Žž›Š•Ȭ—Ž ˜›”ȱ Œ˜—ꐞ›Š’˜—œǯȱ ‘Žȱ ‹Žœȱ —Žž›Š•Ȭ—Ž ˜›”ȱ –˜Ž•ȱ  Šœȱ ‘Ž—ȱ žœŽȱ ˜›ȱ ™›Ž’Œ’˜—ȱ purposes and the results obtained were compared with experimental data not used for training purposes. The results obtained in this investigation reveal the Œ˜—ŸŽ—’Ž—ŒŽȱ˜ȱžœ’—ȱŠ›’ęŒ’Š•ȱ—Žž›Š•ȱ—Ž ˜›”œȱŠœȱŠŒŒž›ŠŽȱ™›Ž’Œ’ŸŽȱ˜˜•œȱ˜›ȱ determining convective heat transfer rates of evaporative processes.

Keywords: ‡ ‡ ‡ ‡

DUWLILFLDOQHXUDOQHWZRUN WKHUPDOV\VWHP KHDWWUDQVIHU HYDSRUDWLYHSURFHVVHV

Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units

Resumen Šȱ™›Ž’ŒŒ’à—ȱŽȱ•Šȱ›Š—œŽ›Ž—Œ’ŠȱŽȱŒŠ•˜›ȱŽ—ȱ™›˜ŒŽœ˜œȱŽȱŽŸŠ™˜›ŠŒ’à—ȱŽœȱž—ŠȱŠ›ŽŠȱ Œ˜–™•’ŒŠŠȱŒ˜–™Š›ŠŠȱŒ˜—ȱ•ŠȱŽȱž—ȱ™›˜ŒŽœ˜ȱœ’—ȱŒŠ–‹’˜ȱŽȱŠœŽǰȱ¢ŠȱšžŽȱ•ŠȱÇœ’ŒŠȱŽ•ȱ Ž—à–Ž—˜ȱŽȱŽŸŠ™˜›ŠŒ’à—ȱŽœȱ–žŒ‘˜ȱ–¤œȱ’ŸŽ›œŠȱ¢ȱœŽȱ–˜’ęŒŠȱŒ˜—’—žŠ–Ž—ŽȱŒ˜—˜›–Žȱ •Šȱ ŒŠ•’Šȱ Ž•ȱ ŸŠ™˜›ȱ Šž–Ž—Šǯȱ Šœȱ Œ˜››Ž•ŠŒ’˜—Žœȱ ›Š’Œ’˜—Š•Žœȱ ‹ŠœŠŠœȱ Ž—ȱ •Ž¢ŽœȱŽȱ™˜Ž—Œ’ŠȱšžŽȱœŽȱž’•’£Š—ȱ™Š›Šȱ•ŠȱŽŽ›–’—ŠŒ’à—ȱŽȱ•Šȱ›Š—œŽ›Ž—Œ’ŠȱŽȱŒŠ•˜›ȱ Ž—ȱŽŸŠ™˜›Š˜›Žœȱ‘Š—ȱ™›˜‹Š˜ȱœžȱŠ•ŠȱŽȱŽŽŒ’Ÿ’ŠȱŒžŠ—˜ȱœŽȱ›Žšž’Ž›Žȱ•Šȱ™›Ž’ŒŒ’à—ȱŒ˜››ŽŒŠȱŽȱŠ‹œ˜›Œ’à—ȱŽȱŒŠ•˜›ȱŽ•ȱ™›˜ŒŽœ˜ȱŽȱŽŸŠ™˜›ŠŒ’à—ǯȱ—ȱŽœŽȱ›Š‹Š“˜ȱœŽȱ ž’•’£Š›˜—ȱ–˜Ž•˜œȱ‹ŠœŠ˜œȱŽ—ȱ›ŽŽœȱ—Žž›˜—Š•ŽœȱŠ›’ęŒ’Š•Žœȱ™Š›Šȱ™›ŽŽŒ’›ȱŽ•ȱŽœŽ–™ŽÛ˜ȱ·›–’Œ˜ȱŽȱž—’ŠŽœȱŽŸŠ™˜›Š˜›Šœȱ¢ǰȱ™Š›ŠȱŽ••˜ǰȱœŽȱ˜‹žŸ’Ž›˜—ȱŠ˜œȱŽ¡™Ž›’–Ž—Š•Žœȱ Ž—ȱ ž—ȱ –àž•˜ȱ Žȱ ™›žŽ‹Šœȱ Œ˜—œ’œŽ—Žȱ Ž—ȱ ž—ȱ ŽŸŠ™˜›Š˜›ȱ ’™˜ȱ ’—Ž›ŒŠ–‹’Š˜›ȱ Žȱ ŒŠ•˜›ȱ Žȱ ˜‹•Žȱ ž‹˜ȱ Šȱ Œ˜—›ŠĚž“˜ǰȱ ™˜›ȱ Œž¢Šȱ œŽŒŒ’à—ȱ Œ’›Œž•Š›ȱ ̞¢Žȱ›Ž›’Ž›Š—ŽȱŗřŚŠȱ¢ȱ™˜›ȱŒž¢ŠȱœŽŒŒ’à—ȱŠ—ž•Š›ȱ̞¢ŽȱŠžŠȱŠȱž—ŠȱŽ–™Ž›Šž›Šȱ –Š¢˜›ȱ Œ˜—›˜•ŠŠǯȱ Š›Šȱ ŽŽ›–’—Š›ȱ •˜œȱ Š˜œȱ Ž¡™Ž›’–Ž—Š•Žœȱ œŽȱ Œ˜—œ›ž¢àȱ ž—ȱ ‹Š—Œ˜ȱŽȱ™›žŽ‹Šœȱ‹ŠœŠ˜ȱŽ—ȱŽ•ȱŒ’Œ•˜ȱŠ—”’—Žȱ’—ŸŽ›œ˜ǰȱŽ•ȱŒžŠ•ȱœŽȱŽšž’™àȱŒ˜—ȱ’—œ›ž–Ž—˜œȱŽȱ–Ž’Œ’à—ǰȱœŽ—œ˜›Žœȱ¢ȱž—ŠȱŠ›“ŽŠȱŽȱŠšž’œ’Œ’à—ȱŽȱŠ˜œȱ™Š›ŠȱŽ•ȱ–˜—’˜›Ž˜ȱŽȱœŽÛŠ•Žœǯȱ—Šȱ™Š›ŽȱŽȱ•˜œȱŠ˜œȱ˜‹Ž—’˜œȱŽ—ȱ•˜œȱŽ¡™Ž›’–Ž—˜œȱœŽȱžœŠ›˜—ȱ ™Š›ŠȱŽ—›Ž—Š›ȱŠȱ’œ’—ŠœȱŒ˜—ꐞ›ŠŒ’˜—ŽœȱŽȱ›ŽŽœȱ—Žž›˜—Š•ŽœȱŠȱę—ȱŽȱ˜‹Ž—Ž›ȱŽ•ȱ –Ž“˜›ȱ–˜Ž•˜ǯȱœŽȱ–˜Ž•˜ȱœŽȱžœàȱ™Š›ŠȱŽŽŒ˜œȱ™›Ž’Œ’Ÿ˜œȱ¢ȱ•˜œȱ›Žœž•Š˜œȱ˜‹Ž—’˜œȱ œŽȱ Œ˜–™Š›Š›˜—ȱ Œ˜—ȱ Š˜œȱ Ž¡™Ž›’–Ž—Š•Žœȱ šžŽȱ —˜ȱ žŽ›˜—ȱ žœŠ˜œȱ ž›Š—Žȱ Ž•ȱ Ž—›Ž—Š–’Ž—˜ȱŽȱ•Šȱ›Žȱ—Žž›˜—Š•ȱŠ›’ęŒ’Š•ǯȱ˜œȱ›Žœž•Š˜œȱ˜‹Ž—’˜œȱŽ—ȱŽœŠȱ’—ŸŽœ’ŠŒ’à—ȱŽ–žŽœ›Š—ȱ•ŠȱŒ˜—ŸŽ—’Ž—Œ’ŠȱŽȱžœŠ›ȱ›ŽŽœȱ—Žž›˜—Š•ŽœȱŠ›’ęŒ’Š•Žœȱ™Š›Šȱ •ŠȱŽŽ›–’—ŠŒ’à—ȱŒ˜››ŽŒŠȱŽȱ•Šȱ›Š—œŽ›Ž—Œ’ŠȱŽȱŒŠ•˜›ȱŽ—ȱ™›˜ŒŽœ˜œȱŽȱŽŸŠ™˜›ŠŒ’à—ȱ Žȱ›Ž›’Ž›Š—Žœǯ

Introduction Thermal systems are engineering systems that involve Ž–™Ž›Šž›Žȱ’쎛Ž—ŒŽœǯȱ ŽŠȱ›Š—œŽ›ȱ’œȱŽŸ˜Žȱ˜ȱ‘Žȱ analysis, design and control of these systems, and has a long history of development in response to the needs of a great variety of applications. One of the modern technologies that has been successful as an analysis tool is ‘ŽȱŽŒ‘—’šžŽȱ˜ȱŠ›’ęŒ’Š•ȱ—Žž›Š•ȱ—Ž ˜›”œǯȱ‘’œȱŽŒ‘—’šžŽȱ‘Šœȱ‹ŽŽ—ȱŠ™™•’Žȱ˜›ȱ™ŠĴŽ›—ȱ›ŽŒ˜—’’˜—ǰȱŽŒ’œ’˜—ȱ making, control systems, information processing, symbolic mathematics, computer vision and robotics. The žœŽȱ ˜ȱ Š›’ęŒ’Š•ȱ —Žž›Š•ȱ —Ž ˜›”œȱ ŒŠ—ȱ ‹Žȱ Ž¡Ž—Žȱ ˜ȱ Šȱ wide variety of disciplines, among which are the thermal sciences, because it allows to study complex thermal systems that otherwise would be impossible to characterize with conventional analytical techniques.

ŽŠȱ›Š—œŽ›ȱ’œȱ™Š›ȱ˜ȱŠ’•¢ȱ•’Žȱ˜ȱ‘ž–Š—ȱ‹Ž’—œDzȱ‘Ž›Žȱ is a need for buildings and homes that provide comfort –’—’–’£’—ȱ Ž—Ž›¢ȱ •˜œœŽœǯȱ ›’ęŒ’Š•ȱ —Žž›Š•ȱ —Ž ˜›”œȱ have been studied over the last decades and are an excellent option for modeling complex systems. Some of the thermal systems that have been studied with this ŽŒ‘—’šžŽȱŠ›Žȱ‘Žȱ™›Ž’Œ’˜—ȱ˜ȱ‘ŽŠȱ›Š—œŽ›ȱŒ˜ŽĜŒ’Ž—œȱ (Jambunathan et al., 1996), determination of Nusselt

94

Descriptores: ‡ ‡ ‡ ‡

UHGHVQHXURQDOHVDUWLILFLDOHV VLVWHPDVWpUPLFRV WUDQVIHUHQFLDGHFDORU SURFHVRVGHHYDSRUDFLyQ

number (Thibault and Grandjean, 1991), prediction of heat transfer in heat exchangers (Díaz et alǯǰȱ ŗşşŜDzȱ Šcheco-Vega et al., 2002, 2001a, 2001b), estimation of heat transfer in the transition region of a circular tube (Ghajar et al., 2004), the thermal performance of cooling towers (Islamoglu, 2005), analysis of shell and tube heat exchangers (Wang et al.ǰȱŘŖŖŜǼǰȱ™‘ŠœŽȱŒ‘Š—Žȱ’—ȱꗗŽȱ tubes (Ermis et al., 2007), friction and heat transfer in ‘Ž•’ŒŠ••¢ȱꗗŽȱž‹ŽœȱǻŠ—’ž”ȱet al., 2007), the mode•’—ȱ˜ȱŽŸŠ™˜›Š’ŸŽȱŠ’›ȱŒ˜˜•Ž›œȱǻ ˜œ˜£ȱet al., 2008), the characterization of compact heat exchangers (Ermis, 2008), the estimation of thermal performance of plate Š—ȱ ž‹Žȱ ‘ŽŠȱ Ž¡Œ‘Š—Ž›œȱ ǻŽ—ȱ Š—ȱ ’—ǰȱ ŘŖŖşǼǰȱ ŽŸŠ•žŠ’˜—ȱ ˜ȱ ꗗŽȱ ž‹Žȱ Œ˜—Ž—œŽ›œȱ ǻ‘Š˜ȱ Š—ȱ ‘Š—ǰȱ ŘŖŗŖǼǰȱ™Ž›˜›–Š—ŒŽȱ˜ȱꗗŽȱž‹ŽȱŽŸŠ™˜›Š˜›œȱǻ‘Š˜ȱet al., 2010) and indirect evaporative cooling (Kiran and Rajput, 2011). The Š›’ęŒ’Š•ȱ —Žž›Š•ȱ —Ž ˜›” (ANN) is a procedure that permits the modeling of complex systems that cannot be described with simple mathematical models. One of the main advantages is that it does not require a detailed knowledge of the physical phenomena describing the system under analysis. The principle of the ANN is based on the structure and functioning of neural systems, where the neuron is the ž—Š–Ž—Š•ȱ Ž•Ž–Ž—ǯȱ ‘Ž›Žȱ Š›Žȱ —Žž›˜—œȱ ˜ȱ ’쎛Ž—ȱ

Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 93-101 ISSN 1405-7743 FI-UNAM

Romero-Méndez Ricardo, Hidalgo-López Juan Manuel, Durán-García Héctor Martín, Pacheco-Vega Arturo Javier

shapes, sizes and lengths. The biological neuron, as shown in Figure 1, is formed by the body of the cell, anaxon and dendrites. The axon is a protuberance that transports the signal coming from a neuron to other neurons at subsequent layers, and the dendrites provide enough surface area to facilitate connection with neurons of previous layers. The dendrites divide in such a way that they form dense dendritic trees, and the axons also divide to some extent, but not so much as the Ž—›’Žœǯȱ ›’ęŒ’Š•ȱ —Žž›Š•ȱ —Ž ˜›”œȱ ‘ŠŸŽȱ —˜Žœȱ ǻ˜›ȱ neurons), as shown in Figure 2, whose function is to make mapping operations between inputs and outputs. ‘ŽȱŠ›’ęŒ’Š•ȱ—Žž›˜—ȱ’œȱ›ŽŠŽȱŠœȱŠȱ—˜ŽȱŒ˜——ŽŒŽȱ˜ȱ others through linkages corresponding to connections axon-synapsis-dendrite. Each link is associated with a  Ž’‘DzȱŠœȱ’—ȱ‘ŽȱŒŠœŽȱ˜ȱŠȱœ¢—Š™œ’œǰȱ‘’œȱ Ž’‘ȱŽŽ›–’—Žœȱ‘Žȱ—Šž›ŽȱŠ—ȱ’—Ž—œ’¢ȱ˜ȱ’—ĚžŽ—ŒŽȱ˜ȱ˜—Žȱ—˜Žȱ˜—ȱ Š—˜‘Ž›ǯȱ™ŽŒ’ęŒŠ••¢ǰȱ‘Žȱ’—ĚžŽ—ŒŽȱ˜ȱŠȱ—˜Žȱ˜—ȱŠ—˜‘Ž›ȱ is the product of the output of a neuron and the weight that connects them. Therefore a positive (or negative)

weight of large value corresponds to a large excitation, while a small weight corresponds to a negligible excita’˜—ǯȱ‘Ž›ŽȱŠ›Žȱ’쎛Ž—ȱŒ˜—ꐞ›Š’˜—œȱ˜ȱŠ›’ęŒ’Š•ȱ—Žž›Š•ȱ—Ž ˜›”œDzȱ‘Žȱž••¢ȱŒ˜——ŽŒŽȱ’œȱ‘Žȱ–˜œȱŒ˜––˜—•¢ȱ employed in engineering problems. This kind of neural network is called multilayered perceptron or feed ˜› Š›ȱ—Ž ˜›”ǯȱ‘’œȱŒ˜—ꐞ›Š’˜—ȱ’œȱœ‘˜ —ȱ’—ȱ’ž›Žȱ 3, and has a series of layers, each formed by a set of —˜Žœȱǻ˜›ȱ—Žž›˜—œǼǯȱ‘Žȱꛜȱ•Š¢Ž›ȱ’œȱŒŠ••Žȱ’—™žȱ•Š¢Ž›Dzȱ the last one is called output layer, while the inner layers are the hidden layers. A neural network is fully connected when each node of a layer is connected to all the nodes of the adjacent layers. The objective of this inves’Š’˜—ȱ  Šœȱ ˜ȱ –Š”Žȱ žœŽȱ ˜ȱ Š›’ęŒ’Š•ȱ —Žž›Š•ȱ —Ž ˜›”œȱ for the characterization of a refrigeration system. For this purpose an experimental setup was built and a sig—’ęŒŠ—ȱ Š–˜ž—ȱ ˜ȱ ‘ŽŠȱ ›Š—œŽ›ȱ ŠŠȱ  Šœȱ ˜‹Š’—Žǯȱ ’‘ȱ‘Šȱ’—˜›–Š’˜—ȱœŽŸŽ›Š•ȱŒ˜—ꐞ›Š’˜—œȱ˜ȱ—Žž›Š•ȱ networks were trained and the results obtained were reported in terms of the accuracy of the prediction.

Dendrites

Nucleus

Axon

)LJXUH%LRORJLFDOQHXURQ

Inputs

Weights

X1

W1

X2

W2

Summation function

Output

6

Xm

Wm

Activation function

) (¬)

Y

)LJXUH$UWLILFLDOQHXURQ

Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 93-101 ISSN 1405-7743 FI-UNAM

95

Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units

Layer number Node number

j=1

i=1

i=2

W1,12,1

i=3

WI I 1,1,1

W2,3

3,1

W1,1

2,2

j=2

W1,12,3

W2,33,2

WI I 1,2,1

W2,33,3

WI I 1,3,1

i=I

j=3

W1,12,4

WI I 1,4,1

W2,33,4

j=4

W2,33,m

WI I 1,,1J

I 1

W1,1

2,m

j J

)LJXUH$UWLILFLDOQHXUDOQHWZRUN

i

i

Experimental setup and procedure An experimental apparatus based on the inverse Rankine cycle, which includes an expansion thermoelectric ŸŠ•ŸŽǰȱ Šœȱ‹ž’•ȱ’—ȱ‘Žȱ‘Ž›–˜Ȭ̞’œȱ•Š‹ȱ˜ȱ‘ŽȱŠŒž•¢ȱ˜ȱ —’—ŽŽ›’—ȱ˜ȱ‘Žȱ—’ŸŽ›œ’Šȱžà—˜–ŠȱŽȱŠ—ȱž’œȱ ˜˜œÇǯȱ‘ŽȱŽ¡™Ž›’–Ž—Š•ȱœŽž™ȱ’œȱ™‘˜˜›Š™‘Žȱ’—ȱ’žre 4 and shown schematically in Figure 5. The main part of it is the test section, in which a refrigerant is evaporated by circulation through a concentric pipes heat exŒ‘Š—Ž›ȱŠ—ȱ‘˜ȱ ŠŽ›ȱ̘ œȱ‘›˜ž‘ȱ‘ŽȱŠ——ž•Š›ȱœŽŒ’˜—ǯȱ This apparatus has the following subsystems: condensing unit, experimental evaporator test zone, evaporator heating, power supply, measurements and control devices. These subsystems are described as follows: ‡ Condensing unit, it has an alternative piston com™›Žœœ˜›ȱ ’‘ȱŠȱřśŖŖȱŠĴœȱŒŠ™ŠŒ’¢ǰȱ˜›ȱȬŗřŚŠȱ›Ž›’gerant, a forced air condenser, a receiving tank and service valves for refrigerant loading (Figure 6). ‡ Experimental evaporator test zone, which has a concentric pipes heat exchanger, as shown in Figure 7, ’—ȱ ‘’Œ‘ȱ‘Žȱ›Ž›’Ž›Š—ȱŗřŚŠȱ̘ œȱ’—œ’Žȱ‘Žȱ’——Ž›ȱ ž‹Žȱ ‘’•Žȱ‘˜ȱ ŠŽ›ȱŒ’›Œž•ŠŽœȱŠȱŒ˜ž—Ž›Ȭ̘ ȱ’—œ’de the annular section. The heat exchanger is 112 ––ȱ •˜—Dzȱ ‘Žȱ ’——Ž›ȱ ž‹Žȱ ‘Šœȱ Š—ȱ ˜žŽ›ȱ ’Š–ŽŽ›ȱ ˜ȱ 12.7 mm and is 0.89 mm thick, the outer tube has an inner diameter of 19.05 mm, both tubes are made of copper. In order to minimize heat losses to the exterior, the outer surface of the outer tube is covered with an insulating material. ‡ Evaporator heating system, formed by a reservoir for storage of water, a section for water heating with three heating resistances of 15 Amperes, 127 Volts ŽŠŒ‘ǰȱŠȱŖǯśȱ ȱ™ž–™ȱŠ—ȱŠȱ̘ ȱ›Žž•Š’˜—ȱŸŠ•ŸŽǯ

96

‡ȱ ˜ Ž›ȱ œž™™•¢ȱ  ’‘ȱ ‘›ŽŽȱ ™‘ŠœŽœǰȱ ŘŘŖȱ ˜•œȱ ǯǯȱ each, and formed by 12 derived circuits. ‡ Measurements and control devices, with 12 measurements among which are temperatures, pressures Š—ȱ–Šœœȱ̘ ȱ›ŠŽœǰȱ’ȱŠ•œ˜ȱ’—Œ•žŽœȱŒ˜—›˜•œȱ˜›ȱ‘Žȱ evaporator heating water temperature and the refriŽ›Š—ȱ̘ ȱ›ŠŽǯ The measurements performed during the experiments are the following: Refrigerant temperature at the inlet and outlet of the test section, refrigerant temperature before the expansion valve, water temperature at the inlet and outlet of the test section, liquid R134a refrigerant –Šœœȱ ̘ ȱ ›ŠŽǰȱ  ŠŽ›ȱ Ÿ˜•ž–Ž›’Œȱ ̘ ȱ ›ŠŽǰȱ ›Ž›’Ž›Š—ȱ pressure at the inlet and outlet of the compressor, subcooled refrigerant pressure before the expansion valve, and refrigerant pressure after the test section. The temperatu›ŽȱœŽ—œ˜›œȱŠ›ŽȱŠ••ȱȬŗŖŖȱ¢™Žȱ ’‘ȱŠȱ‘’›ȱ ’›Žȱ˜›ȱ load compensation and are mounted on the outer surface of the pipes. The temperature sensors have capabilities such as controllers, allowing outputs to relay, retransmission of the process output variable or communication to a serial port RS-485. With this capability, the temperature sensor that measures the water temperature at the inlet of ‘ŽȱŽœȱœŽŒ’˜—ȱ’œȱ›ŽŠŽȱŠœȱŠ—ȱ˜—Ȧ˜ěȱŒ˜—›˜••Ž›ȱ ’‘ȱ˜žput to relay with the objective of maintaining a constant water temperature at the input of the test section. This relay controls the heating electric resistances power with the purpose of maintaining the water temperature at the Žœ’›ŽȱŸŠ•žŽǯȱ‘Žȱ›Ž›’Ž›Š—ȱŸ˜•ž–Ž›’Œȱ̘ ȱ›ŠŽȱ’œȱŽtermined when this is liquid at the exit of the condenser. ‘’œȱ –ŽŠœž›Ž–Ž—ȱ ’œȱ –ŠŽȱ  ’‘ȱ Šȱ ›˜Š–ŽŽ›ȱ ¢™Žȱ ̘ ȱ ›Š—œ–’ĴŽ›ȱ ‘Šȱ ›Ž’œŽ›œȱ Šȱ œ’—Š•ȱ ›Š—’—ȱ ›˜–ȱ Śȱ ˜ȱ ŘŖȱ mA with a precision of 0.5%. The refrigerant volumetric ̘ ȱ›ŠŽȱ›Š—Žœȱ›˜–ȱŖȱ˜ȱŚǯŗŜřśȱ•Ȧ–’—ǯȱ‘Žȱ ŠŽ›ȱŸ˜•ž-

Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 93-101 ISSN 1405-7743 FI-UNAM

Romero-Méndez Ricardo, Hidalgo-López Juan Manuel, Durán-García Héctor Martín, Pacheco-Vega Arturo Javier

–Ž›’Œȱ̘ ȱ›ŠŽȱ’œȱ–ŽŠœž›ŽȱŠȱ‘Žȱ˜ž™žȱ˜ȱ‘ŽȱŽŸŠ™˜›Š˜›ȱ  ’‘ȱ Šȱ Š—Ž—’Š•ȱ ž›‹’—Žȱ ¢™Žȱ ̘ ȱ ›Š—œ–’ĴŽ›ȱ ‘Šȱ registers a signal ranging from 4 to 20 mA with a precision of 0.5% throughout the range of measurements. The  ŠŽ›ȱŸ˜•ž–Ž›’Œȱ̘ ȱ›ŠŽȱ›Š—Žœȱ›˜–ȱŖȱ˜ȱŜŖȱ•Ȧ–’—ǯȱ‘Žȱ refrigerant pressure at the inlet and outlet of the compressor are measured with Bourdon type manometers, which have reading precision of 1%. The refrigerant pressure at the inlet to the condenser is read with a pressure transductor that has a precision of 0.25% in the range of meaœž›Ž–Ž—œȱ ‘Šȱ ˜Žœȱ ›˜–ȱ Ŗȱ ˜ȱ řŚŚŞȱ ”Šǰȱ  ‘’Œ‘ȱ ’œȱ ›ŽȬ gistered with an output from 4 to 20 mA. The thermoelectric expansion valve produces the low pressure needed for evaporation of the refrigerant. The valve used in this investigation is electronically controlled by means of a step motor, a control card, a temperature sensor, a pressure transductor and a manual parameter programmer. With the use of this thermoelectric expansion valve it is possible to guarantee repeata‹’•’¢ȱ’—ȱ‘ŽȱŽ¡™Ž›’–Ž—œǰȱœŽĴ’—ȱ‘Žȱ›Ž›’Ž›Š—ȱŽ›ŽŽȱ

of superheating at the outlet of the test section, and au˜–Š’ŒŠ••¢ȱŠ“žœ’—ȱ‘Žȱ›Ž›’Ž›Š—ȱ–Šœœȱ̘ ȱ›ŠŽǯȱ The objective of the experiments was to obtain 200 data points in a wide range of variation of the parameters of the refrigerant evaporation process, that when used to train the neural network was representative of the phenomenon being analyzed. The water temperature was varied from 5.5°C to 8.8°C and the volume›’Œȱ ̘ ȱ ›ŠŽȱ ˜ȱ  ŠŽ›ȱ  Šœȱ ŸŠ›’Žȱ ›˜–ȱ řǯśŜȱ •Ȧ–’—ȱ ˜ȱ 31.68 l/min, while the other parameters adjusted according to the conditions of thermal balance through the change of position of the thermoelectric expansion valve, in a process that may take from 20 minutes to 2 hours to stabilize. The parameters that adjust to the position of the valve took values within the following ›Š—ŽœDZȱ›Ž›’Ž›Š—ȱ–Šœœȱ̘ ȱ›ŠŽȱ›˜–ȱŖǯŘśŝȱ”Ȧ–’—ȱ to 4.219 kg/min, vapor quality lower than 50% and re›’Ž›Š—ȱ ŽŸŠ™˜›Š’˜—ȱ ™›Žœœž›Žȱ ›˜–ȱ ŗśŗǯŝŚȱ ”Šȱ ǻŠ‹œǼȱ ˜ȱ ŚŚŞǯŗŗ”Šȱ ǻŠ‹œǼǯȱ ’‘ȱ ‘ŽœŽȱ ŠŠǰȱ Š—ȱ Š™™•¢’—ȱ Š—ȱ energy balance, the heat absorbed by the refrigerant was calculated and compared with the heat released by the water. An uncertainty analysis of both calculations determined that the inaccuracy of the calculation of heat transferred due to errors in the measurements was 1.4% if calculated from the refrigerant side information, and larger if calculated from the water side information.

Results and discussion ›˜–ȱ‘ŽȱŠŠȱ˜‹Š’—Žȱ’—ȱ‘ŽȱŽ¡™Ž›’–Ž—œǰȱ꟎ȱ™Š›Šmeters were chosen as relevant input data for characterization of the thermal phenomena of evaporation of refrigerant in the concentric pipes heat exchanger described before. These parameters are: saturation pressu)LJXUH3KRWRJUDSKRIWKHH[SHULPHQWDOHTXLSPHQW re during the evaporation process (œŠǼǰȱ–Šœœȱ̘ ȱ›ŠŽȱ x of the refrigerant ( –r Ǽǰȱ –Šœœȱ ̘ ȱ Expansion x rate of water ( –a ), temperature of valve water at the inlet of the heat exchanTest section ger (Tea) and vapor quality at the inPump Mechanical let of the heat exchanger (X). The refrigeration system output obtained from this input inHeat pump system Water formation is the heat transfer to the x system refrigerant ( Qre ). The Fortran 77 code used for training and predicValve Condenser ’˜—ȱ ‘›˜ž‘ȱ Š›’ęŒ’Š•ȱ —Žž›Š•ȱ —ŽCondenser works was developed by Díaz ǻŘŖŖŖǼȱ Š—ȱ ŠŒ‘ŽŒ˜ȬŽŠȱ ǻŘŖŖŘǼȱ ’—ȱ Compressor Tank the ¢›˜—’Œœȱ Š‹ of the University of Notre Dame. The training proFlow Heater Pump meter cess was made by adjusting the sy)LJXUH6FKHPDWLFGLDJUDPRIWKHH[SHULPHQWDOHTXLSPHQW naptic weights and biases for the

Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 93-101 ISSN 1405-7743 FI-UNAM

97

Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units

x



V )LJXUH&RQGHQVLQJXQLW

1 N Qre ¦ N r 1 xp Qr

2 ª § x · º 1 « N ¨ Qre ¸ »  ¸ » «¦ N « r 1 ¨¨ x p ¸ » Q ¹ ¼» ¬« © r

1

2

x

’쎛Ž—ȱŸŠ•žŽœȱ˜ȱ’—™žȱŠ—ȱ˜ž™žȱŸŠ›’Š‹•Žœǯȱ‘Žȱ—Žžral network was trained using the technique of back propagation, as described by Rumelhart et al. (1986). —ŒŽȱ‘ŽȱŒ˜—ꐞ›Š’˜—ȱ˜ȱ‘Žȱ—Žž›Š•ȱ—Ž ˜›”ȱ ŠœȱŒ‘˜œŽ—ǰȱ‘ŽȱꛜȱœŽ™ȱ˜ȱ‘ŽȱŠ•˜›’‘–ȱ Šœȱ‘ŽȱŠœœ’—–Ž—ȱ of initial synaptic weights and biases. The second step was to feed forward, that starts by feeding data for the ꛜȱ•Š¢Ž›ȱǻ’—™žȱ•Š¢Ž›Ǽǯȱ‘Šȱ’—˜›–Š’˜—ȱ’œȱ›Š—œŽ››Žȱ forward to reach the nodes of the last layer (output layer), and compared with the known output data to generate an error. The third step was back propagation, in  ‘’Œ‘ȱŠ—ȱŽ››˜›ȱ’œȱšžŠ—’ꮍȱ’—ȱŽŠŒ‘ȱ•Š¢Ž›ȱŠ—ȱ—˜Žȱ‹¢ȱ means of a sigmoid function, which is used later to change the synaptic weights and biases. The training process ended when the error in the last cycle decreased below an established threshold value. ’—ŽŽŽ—ȱ’쎛Ž—ȱŠ›’ęŒ’Š•ȱ—Žž›Š•ȱ—Ž ˜›”ȱŒ˜—ꐞrations were analyzed and compared to determine  ‘’Œ‘ȱ Šœȱ‹ŽĴŽ›ȱ˜›ȱ™›Ž’Œ’˜—ȱ˜ȱ‘Ž›–Š•ȱ‹Ž‘ŠŸ’˜›ȱ˜ȱ the evaporation process. Table 1 shows all the network Œ˜—ꐞ›Š’˜—œȱŽœŽǯȱ‘Žȱ—ž–‹Ž›ȱ˜ȱ•Š¢Ž›œȱžœŽȱ Šœȱŗǰȱ Řȱ˜›ȱřǰȱ ’‘ȱŠȱ’쎛Ž—ȱ—ž–‹Ž›ȱ˜ȱ—˜Žœȱ™Ž›ȱ•Š¢Ž›ǯȱ˜›ȱ ŽŠŒ‘ȱ˜—Žȱ˜ȱ‘ŽȱŗşȱŒ˜—ꐞ›Š’˜—œǰȱ‘Žȱ–ŽŠ—ȱŽ››˜›ȱŸŠ•žŽȱ ǰȱ ‘Žȱ –Š¡’–ž–ȱ Ž››˜›ȱ Š—ȱ ‘Žȱ œŠ—Š›ȱ ŽŸ’Š’˜—ȱ Ηȱ were calculated while the number of training cycles was increased. The calculations were made with the following equations:

Hot water

T5

T4

T3

T2

)LJXUH7HVWVHFWLRQ

98

Where Qre is the heatx transfer determined from the experimental data and Qrp is the heat transfer predicted by ‘ŽȱŠ›’ęŒ’Š•ȱ—Žž›Š•ȱ—Ž ˜›”ǯȱ‹˜žȱŝśƖȱ˜ȱ‘ŽȱŘŖŖȱŽ¡™Žrimental data were used to train every one of the neural —Ž ˜›”ȱ Œ˜—ꐞ›Š’˜—œǰȱ ›ŽœŽ›Ÿ’—ȱ ‘Žȱ ˜‘Ž›ȱ ŘśƖȱ ˜›ȱ comparison of the experimental results with the prediction obtained from the neural network (for calculating  Š—ȱ Ηȱ ˜ȱ ŽŠŒ‘ȱ Œ˜—ꐞ›Š’˜—Ǽǯȱœȱ ’—ȱ ŠŒ‘ŽŒ˜ȬŽŠȱ et al. ǻŘŖŖŗŠǰȱŘŖŖŗ‹Ǽǰȱ‘Žȱꗊ•ȱ–˜Ž•ȱ˜ȱ‘ŽȱŠ›’ęŒ’Š•ȱ—Žž›Š•ȱ—Žwork was built with 100% of the available experimental data, because this allows for an optimum model in the range of the parameters. ‘Žȱ—ž–‹Ž›ȱ˜ȱ›Š’—’—ȱŒ¢Œ•Žœȱ ŠœȱŽę—Žȱ’—ȱŽ›–œȱ of the minimum value of the maximum error and standard deviation. An example of the behavior observed is shown in Figure 8 for the case of the neural network 5-11-1. From the observations of this and other cases not shown in the paper, it was concluded that after 120,000 cycles the reduction of the error was negligible, and this number of training cycles was taken as the standard throughout this investigation. ‘’•Žȱ Š—Š•¢£’—ȱ ‘ŽœŽȱ ŗşȱ Œ˜—ꐞ›Š’˜—œȱ ’ȱ  Šœȱ ™˜œœ’‹•Žȱ ˜ȱ ˜‹œŽ›ŸŽȱ ‘Šȱ ‘Žȱ Œ˜—ꐞ›Š’˜—ȱ ™›˜™˜œŽȱ ‹¢ȱ ŽŒ‘ȱǻŗşŞŝǼǰȱŠȱœ’—•Žȱ’—Ž›–Ž’ŠŽȱ•Š¢Ž›ȱ ’‘ȱؗȱƸȱ ŗȱ—˜Žœǰȱ ’‘ȱ—ȱƽȱśȱǻŒ˜—ꐞ›Š’˜—ȱśȬŗŗȬŗǼȱ Šœȱ‘Žȱ‹Žœȱ choice in terms of the standard deviation, ȱƽȱŖǯşşşŞȱŠ—ȱΗȱƽȱŖǯŖŖśŗǯȱ ˜ ŽŸŽ›ǰȱ ‘Ž—ȱœŽŠ›Œ‘’—ȱ ˜›ȱ Šȱ –˜›Žȱ ›˜‹žœȱ –˜Ž•ǰȱ ‘Ž›Žȱ Š›Žȱ ˜‘Ž›ȱ Œ˜—ꐞ›Š’˜—œǰȱ Šœȱ Œ˜—ꐞ›Š’˜—œȱ śȬśȬřȬŗǰȱ śȬŜȬŚȬŗǰȱ śȬśȬśȬŗȬŗȱ ¢ȱ 5-5-5-3-1, that are also very compe’’ŸŽǯȱ ˜—ꐞ›Š’˜—ȱ śȬśȬřȬŗǰȱ ȱ ƽȱ ŗǯŖŖŖŞȱ Š—ȱ Ηȱ ƽȱ ŖǯŖŖśŗȱ  ˜ž•ȱ ‹Žȱ Šȱ good second option. Figure 9 shows the heat transfer x obtained experimentally, Qre versus the prediction of the neural network x 5-11-1, Qrp for each one of the 200 experimental data. It can be seen R-134a ›˜–ȱ‘Žȱꐞ›Žȱ‘Šȱ‘ŽȱŽ¡™Ž›’–Ž—tal and predicted values are very close to the ideal straight line that

Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 93-101 ISSN 1405-7743 FI-UNAM

Romero-Méndez Ricardo, Hidalgo-López Juan Manuel, Durán-García Héctor Martín, Pacheco-Vega Arturo Javier



Internal layers

˜—ꐞ›Š’˜—

R

Η

1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

5-1-1 5-3-1 5-5-1 5-7-1 5-9-1 5-11-1 5-13-1 5-1-1-1 5-3-1-1 5-5-1-1 5-5-3-1 5-5-5-1 5-6-4-1 5-1-1-1-1 5-3-1-1-1 5-5-1-1-1 5-5-3-1-1 5-5-5-1-1 5-5-5-3-1

0.9976 0.9981 0.9999 1.0000 1.0003 0.9998 0.9999 0.9969 0.9953 0.9995 1.0008 0.9988 0.9996 0.9960 1.0076 0.9990 0.9994 0.9996 0.9996

0.0156 0.0074 0.0052 0.0052 0.0052 0.0051 0.0053 0.0182 0.0093 0.0055 0.0052 0.0057 0.0054 0.0206 0.0217 0.0053 0.0053 0.0059 0.0056











Maximum error

(%)

7DEOH$UWLILFLDOQHXUDOQHWZRUN FRQILJXUDWLRQV

7.13 5.44 2.49 2.56 2.50 2.46 2.48 7.18 2.92 2.62 2.53 2.70 2.48 7.31 6.69 2.84 2.63 2.58 2.55

D 



E

)LJXUH3ORWVRID VWDQGDUGGHYLDWLRQDQGE PD[LPXPHUURUDVDIXQFWLRQRIWUDLQLQJF\FOHVIRUWKHQHXUDOQHWZRUNFRQILJXUDWLRQ 





x







D 



E

x

)LJXUH Qre YVIRUWZRFRQILJXUDWLRQVD \E  Qrp

Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 93-101 ISSN 1405-7743 FI-UNAM

99

Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units

describes the perfect prediction. It is important to mention that the error in the prediction is less than the 10% ŽœŠ‹•’œ‘ŽȱŠœȱŠȱ•’–’ȱ’—ȱ‘Žȱꐞ›ŽǰȱŠ—ȱ–žŒ‘ȱ•Žœœȱ‘Š—ȱ the errors encountered in predictions obtained with correlations that use conventional prediction techniques. It is evident that neural networks are an excellent tool for prediction of the thermal performance of the evaporation of a refrigerant inside a concentric pipes heat exŒ‘Š—Ž›ǯȱ ’žȱ Š—ȱ ’—Ž›˜—ȱ ǻŗşşŗǼȱ ™›ŽœŽ—Žȱ Šȱ Œ˜››ŽȬ lation which is one of the most accepted for prediction of heat transfer during evaporation of a refrigerant insiŽȱ̊ȱž‹ŽœǰȱŠ—ȱ‘Žȱ–ŽŠ—ȱŽ››˜›ȱ›Ž™˜›Žȱ’—ȱ‘ŽȱŒ˜››Žlation is 30% when compared with their own data. In contrast, the maximum error obtained in the prediction of heat transfer in the evaporator with the optimal neu›Š•ȱ—Ž ˜›”ȱŒ˜—ꐞ›Š’˜—ȱ ŠœȱŘǯŜƖǰȱŠ—ȱ‘Žȱ–ŽŠ—ȱšžŠ›Š’ŒȱŽ››˜›ȱ ŠœȱŖǯśŘƖǯȱ›’ęŒ’Š•ȱ—Žž›Š•ȱ—Ž ˜›”œȱŠ›ŽȱŠȱ good option for prediction of heat transfer in evaporators with errors of the same order of magnitude as the experimental uncertainty.

Conclusions The physics involved in convective evaporation has increased its complexity since the emergence of enhanced surfaces for evaporators and the change of refrigerants for others more environmentally friendly. For those reasons now it is even harder to have good correlations for prediction of the thermal performance of evaporators, based on models that consider forced convection Š—ȱ̘˜ŽȱŽŸŠ™˜›Š’˜—ȱŠœȱœŽ™Š›ŠŽȱ™‘Ž—˜–Ž—Šǯ ‘Žȱ›Žœž•œȱ˜‹Š’—Žȱ‹¢ȱžœ’—ȱ‘ŽȱŽŒ‘—’šžŽȱ˜ȱŠ›’ęcial neural networks, as developed in this investigation, are encouraging. The prediction of heat transfer obtained in this work has a maximum error of 2.46% and a mean quadratic error of 0.51%, which is by far lower ‘Š—ȱ‘ŽȱřŖƖȱ˜‹Š’—Žȱ‹¢ȱ˜‘Ž›ȱŠž‘˜›œǰȱŠœȱ’žȱŠ—ȱ’—terton (1991) that use conventional correlation technišžŽœǯȱ ‘Žȱ ŽŒ‘—’šžŽȱ ˜ȱ Š›’ęŒ’Š•ȱ —Žž›Š•ȱ —Ž ˜›”œȱ ’œȱ Š—ȱ excellent option for reliable and precise characterization of thermal systems where evaporation processes occur, such as in refrigeration and air conditioning units.

References ’Š£ȱ ǯǰȱŽ—ȱǯǰȱŠ—ȱ ǯǯǰȱŒ•Š’—ȱǯǯȱ—Š•¢œ’œȱ˜ȱŠŠȱ›˜–ȱ ’—•ŽȬ˜ ȱ ŽŠȱ¡Œ‘Š—Ž›ȱ¡™Ž›’–Ž—œȱœ’—ȱŠ—ȱ›’ęŒ’Š•ȱ Žž›Š•ȱŽ ˜›”ǰȱ˜—DZȱ›˜ŒŽŽ’—œȱ˜ȱ‘Žȱȱ —Ž›—Š’˜—Š•ȱ Mechanical Engineering Congress and Exposition, 1996, volume 242, pp. 45-52. Díaz G.C. ’–ž•Š’˜—ȱŠ—ȱ˜—›˜•ȱ˜ȱ ŽŠȱ¡Œ‘Š—Ž›œȱœ’—ȱ›’ęŒ’Š•ȱŽž›Š•ȱŽ ˜›”œǰȱ‘Žœ’œȱǻ‘ȱǼǰȱŽ™Š›–Ž—ȱ˜ȱŽ›˜œ™ŠŒŽȱ

100

and Mechanical Engineering, University of Notre Dame, 2000. ›–’œȱ ǯǰȱ ›Ž”ȱ ǯǰȱ ’—ŒŽ›ȱ ǯȱ ȱ ŽŠȱ ›Š—œŽ›ȱ —Š•¢œ’œȱ ˜ȱ ‘ŠœŽȱ ‘Š—Žȱ ›˜ŒŽœœȱ ’—ȱ Šȱ ’——ŽȬž‹Žȱ ‘Ž›–Š•ȱ —Ž›¢ȱ ˜›ŠŽȱ ¢œŽ–ȱœ’—ȱ›’ęŒ’Š•ȱŽž›Š•ȱŽ ˜›”ǯȱ —Ž›—Š’˜—Š•ȱ ˜ž›—Š•ȱ ˜ȱ ŽŠȱŠ—ȱŠœœȱ›Š—œŽ›, volume 50, 2007: 3163-3175. ›–’œȱ ǯȱȱ˜Ž•’—ȱ˜ȱ˜–™ŠŒȱ ŽŠȱ¡Œ‘Š—Ž›œǯȱ —Ž›—Š’˜—Š•ȱ ˜ž›—Š•ȱ˜ȱ—Ž›¢ȱŽœŽŠ›Œ‘, volume 32, 2008: 581-594. ‘Š“Š›ȱǯ ǯǰȱŠ–ȱǯǯǰȱŠ–ȱǯǯȱ –™›˜ŸŽȱ ŽŠȱ›Š—œŽ›ȱ˜››Ž•Štion in the Transition Region for a Circular Tube with Three —•Žȱ ˜—ꐞ›Š’˜—œȱ œ’—ȱ›’ęŒ’Š•ȱ Žž›Š•ȱ Ž ˜›”œǯȱ Heat ›Š—œŽ›ȱ—’—ŽŽ›’—ǰ volume 25, 2004: 30-40.

ŽŒ‘Ȭ’Ž•œŽ—ȱǯȱ ˜•–˜˜›˜ŸȂœȱŠ™™’—ȱŽž›Š•ȱŽ ˜›”œȱ¡’œtence Theorem, on: IEEE First International Conference on Neural Networks, San Diego, CA, 1987, pp. iii/11-14.

˜œ˜£ȱǯǰȱ›ž—Œȱ ǯǯǰȱ£žŒȱǯǯȱ˜Ž••’—ȱ˜ȱŠȱ’›ŽŒȱŸŠ™˜›Š’ŸŽȱ’›ȱ˜˜•Ž›ȱœ’—ȱ›’ęŒ’Š•ȱŽž›Š•ȱŽ ˜›”ǯȱ —Ž›—Š’˜—Š•ȱ ˜ž›—Š•ȱ˜ȱ—Ž›¢ȱŽœŽŠ›Œ‘, volume 32, 2008: 83-89. œ•Š–˜•žȱ ǯȱ ˜Ž•’—ȱ ˜ȱ ‘Ž›–Š•ȱ Ž›˜›–Š—ŒŽȱ ˜ȱ Šȱ ˜˜•’—ȱ ˜ Ž›ȱœ’—ȱŠ—ȱ›’ęŒ’Š•ȱŽž›Š•ȱŽ ˜›”ǯȱ ŽŠȱ›Š—œŽ›ȱ—’—ŽŽ›’—, volume 26, 2005: 73-76. Š–‹ž—Š‘Š—ȱ ǯǰȱ Š›•Žȱǯǯǰȱœ‘˜›‘ȱǯǯǰȱ˜—Š–ŠȱǯǯȱŸŠ•žŠ’—ȱ˜—ŸŽŒ’ŸŽȱ ŽŠȱ›Š—œŽ›ȱ˜ŽĜŒ’Ž—ȱœ’—ȱŽž›Š•ȱŽworks. —Ž›—Š’˜—Š•ȱ ˜ž›—Š•ȱ˜ȱ ŽŠȱŠ—ȱŠœœȱ›Š—œŽ›, volume 39 (issue 11), 1996: 2329-2332.

’›Š—ȱǯǯǰȱŠ“™žȱǯǯǯȱ—ȱ쎌’ŸŽ—Žœœȱ˜Ž•ȱ˜›ȱŠ—ȱ —’›ŽŒȱ ŸŠ™˜›Š’ŸŽȱ˜˜•’—ȱǻ Ǽȱ¢œŽ–DZȱ˜–™Š›’œ˜—ȱ˜ȱ›’ęŒ’Š•ȱ Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Fuzzy Inference System (FIS) Approach. ™™•’Žȱ˜ȱ˜–™ž’—, volume 11, 2011: 3525-3533. ’žȱǯǰȱ’—Ž›˜—ȱǯ ǯǯȱȱ Ž—Ž›Š•ȱ˜››Ž•Š’˜—ȱ˜›ȱŠž›ŠŽȱŠ—ȱ Subcooled Flow Boiling in Tubes and Annuli Bbased on a NuŒ•ŽŠŽȱ˜˜•ȱ˜’•’—ȱšžŠ’˜—ǯȱ —Ž›—Š’˜—Š•ȱ ˜ž›—Š•ȱ˜ȱ ŽŠȱŠ—ȱ Šœœȱ›Š—œŽ›, volume 34, 1991: 2759-2766. ŠŒ‘ŽŒ˜ȬŽŠȱǯȱ’–ž•Š’˜—ȱ˜ȱ˜–™ŠŒȱ ŽŠȱ¡Œ‘Š—Ž›œȱœ’—ȱ •˜‹Š•ȱŽ›Žœœ’˜—ȱŠ—ȱ˜ȱ˜–™ž’—ǰȱ‘Žœ’œȱǻ‘ǼǰȱŽ™Š›–Ž—ȱ˜ȱ Aerospace and Mechanical Engineering, University of Notre Dame, 2002. ŠŒ‘ŽŒ˜ȬŽŠȱǯǰȱ’Š£ȱ ǯǰȱŽ—ȱǯǰȱŠ—ȱ ǯǯǰȱŒ•Š’—ȱǯǯȱ ŽŠȱ ŠŽȱ›Ž’Œ’˜—œȱ’—ȱ ž–’ȱ’›ȬŠŽ›ȱ ŽŠȱ¡Œ‘Š—Ž›œȱœ’—ȱ Correlations and Neural Networks. ȱ ˜ž›—Š•ȱ ˜ȱ ŽŠȱ ›Š—œŽ›, volume 123, 2001a: 348-354. ŠŒ‘ŽŒ˜ȬŽŠȱ ǯǰȱ Ž—ȱ ǯǰȱ Š—ȱ ǯǯǰȱ Œ•Š’—ȱ ǯǯȱ Žž›Š•ȱ Ž ˜›”ȱ—Š•¢œ’œȱ˜ȱ’—Ȭž‹ŽȱŽ›’Ž›Š’˜—ȱ ŽŠȱ¡Œ‘Š—Ž›ȱ ’‘ȱ ’–’Žȱ ¡™Ž›’–Ž—Š•ȱ ŠŠǯȱ —Ž›—Š’˜—Š•ȱ ˜ž›—Š•ȱ ˜ȱ ŽŠȱ Š—ȱ Šœœȱ›Š—œŽ›, volume 44, 2001b: 763-770. Ž—ȱ ǯǰȱ’—ȱǯȱŽž›Š•ȱŽ ˜›”œȱ—Š•¢œ’œȱ˜ȱ‘Ž›–Š•ȱ‘Š›ŠŒŽ›’œ’Œœȱ˜—ȱ•ŠŽȬ’—ȱ ŽŠȱ¡Œ‘Š—Ž›œȱ ’‘ȱ’–’Žȱ¡™Ž›’–Ž—tal Data. ™™•’Žȱ ‘Ž›–Š•ȱ —’—ŽŽ›’—, volume 29, 2009: 2251-2256. ž–Ž•‘Š›ȱǯǯǰȱ ’—˜—ȱ ǯǯǰȱ’••’Š–œȱǯ ǯȱŽŠ›—’—ȱ —Ž›—Š•ȱŽ™›ŽœŽ—Š’˜—ȱ‹¢ȱ››˜›ȱ›˜™ŠŠ’˜—ǯȱŠ›Š••Ž•ȱ’œ›’‹žŽȱ›˜ŒŽœœ’—ȱ

Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 93-101 ISSN 1405-7743 FI-UNAM

Romero-Méndez Ricardo, Hidalgo-López Juan Manuel, Durán-García Héctor Martín, Pacheco-Vega Arturo Javier

¡™•˜›Š’˜—œȱ ’—ȱ ‘Žȱ ’Œ›˜œ›žŒž›Žȱ ˜ȱ ˜—’’˜—ǰȱ  ȱ ›Žœœǰȱ Cambridge, MA, 1986. ‘’‹Šž•ȱ ǯǰȱ ›Š—“ŽŠ—ȱ ǯǯǯȱ Žž›Š•ȱ Ž ˜›”ȱ Ž‘˜˜•˜¢ȱ ˜›ȱ

ŽŠȱ›Š—œŽ›ȱŠŠȱ—Š•¢œ’œǯȱ —Ž›—Š’˜—Š•ȱ ˜ž›—Š•ȱ˜ȱ ŽŠȱŠ—ȱ Šœœȱ›Š—œŽ›, volume 34 (issue 8), 1991: 2063-2070. Š—ȱ ǯǯǰȱ ’Žȱ ǯǯǰȱ ‘Ž—ȱ ǯǰȱ ž˜ȱ ǯǯȱ ›Ž’Œ’˜—ȱ ˜ȱ ŽŠȱ ›Š—œŽ›ȱŠŽœȱ˜›ȱ‘Ž••ȬŠ—Ȭž‹Žȱ ŽŠȱ¡Œ‘Š—Ž›œȱ‹¢ȱ›’ęcial Neural Networks Approach. —Ž›—Š’˜—Š•ȱ ˜ž›—Š•ȱ˜ȱ‘Ž›–Š•ȱŒ’Ž—ŒŽœ, volume 15, 2006: 257-262. Š—’ž”ȱ ǯ ǯǰȱ‘Š–›ŠȱǯǯǰȱŠ•Ž›œȱǯ ǯȱ˜››Ž•Š’—ȱ ŽŠȱ›Š—œŽ›ȱ Š—ȱ ›’Œ’˜—ȱ ’—ȱ Ž•’ŒŠ••¢Ȭ’——Žȱ ž‹Žœȱ œ’—ȱ ›’ęŒ’Š•ȱ Neural Networksǯȱ —Ž›—Š’˜—Š•ȱ ˜ž›—Š•ȱ˜ȱ ŽŠȱŠ—ȱŠœœȱ›Š—œŽ›, volume 50, 2007: 4713-4723. ‘Š˜ȱǯǯǰȱŠ—ȱǯǰȱ‘Š—ȱǯǯȱŽ ˜›”ȱ˜Ž•’—ȱ˜ȱ’—ȬŠ—Ȭ ž‹ŽȱŸŠ™˜›Š˜›ȱŽ›˜›–Š—ŒŽȱ—Ž›ȱ›¢ȱŠ—ȱŽȱ˜—’tions. ȱ ˜ž›—Š•ȱ ˜ȱ ŽŠȱ ›Š—œŽ›, volume 132, Art. 074502, 2010. ‘Š˜ȱǯǯȱŠ—ȱ‘Š—ȱǯǯȱ’—ȬŠ—Ȭž‹Žȱ˜—Ž—œŽ›ȱŽ›˜›–Š—ŒŽȱ Evaluation Using Neural Networks. —Ž›—Š’˜—Š•ȱ ˜ž›—Š•ȱ˜ȱŽ›’Ž›Š’˜—, volume 33, 2010: 625-634.

Citation for this article: Chicago citation style 5RPHUR0pQGH] 5LFDUGR -XDQ 0DQXHO +LGDOJR/ySH] +pFWRU 0DUWtQ'XUiQ*DUFtD$UWXUR3DFKHFR9HJD8VHRI$UWLILFLDO1HX UDO1HWZRUNVIRU3UHGLFWLRQRI&RQYHFWLYH+HDW7UDQVIHULQ(YDSR UDWLYH8QLWV,QJHQLHUtD,QYHVWLJDFLyQ\7HFQRORJtD;9    ISO 690 citation style 5RPHUR0pQGH] 55 +LGDOJR/ySH] -0 'XUiQ*DUFtD +0 3DFKHFR9HJD$8VHRI$UWLILFLDO1HXUDO1HWZRUNVIRU3UHGLFWLRQ RI&RQYHFWLYH+HDW7UDQVIHULQ(YDSRUDWLYH8QLWV,QJHQLHUtD,QYHVWLJDFLyQ\7HFQRORJtDYROXPH;9 LVVXH -DQXDU\0DUFK 

About the authors ’ŒŠ›˜ȱ˜–Ž›˜Ȭ·—Ž£ǯȱ‘ǯȱ’—ȱ–ŽŒ‘Š—’ŒŠ•ȱŽ—’—ŽŽ›’—ȱ›˜–ȱ—’ŸŽ›œ’¢ȱ˜ȱ˜›ŽȱŠ–Žǯȱ M. Eng. (Mechanical) from Universidad de Guanajuato, México. B.Sc. in mechanicalŽ•ŽŒ›’ŒŠ•ȱŽ—’—ŽŽ›’—ȱ›˜–ȱ‘Žȱ—’ŸŽ›œ’Šȱžà—˜–ŠȱŽȱŠ—ȱž’œȱ˜˜œÇǰȱ·¡’Œ˜ǯ žŠ—ȱŠ—žŽ•ȱ ’Š•˜Ȭà™Ž£. M. Eng. (Electrical) and B.Sc. in mechanical-electrical engi—ŽŽ›’—ȱ›˜–ȱ‘Žȱ—’ŸŽ›œ’Šȱžà—˜–ŠȱŽȱŠ—ȱž’œȱ˜˜œÇǰȱ·¡’Œ˜ǯ

·Œ˜›ȱŠ›Ç—ȱž›¤—Ȭ Š›ŒÇŠǯȱ‘ȱŠ›’Œž•ž›Š•ȱŽ—’—ŽŽ›’—ȱ›˜–ȱ—’ŸŽ›œ’Šȱ˜•’·Œ—’ca de Madrid. M. Eng. (Mechanical) from Universidad de Guanajuato, México. Master of farm machinery desing from University of Tzukuba, Japón and B.Sc. in agricultural engineering specialist in agricultural machinery from Universidad Autónoma Chapingo. ›ž›˜ȱŠŒ‘ŽŒ˜ȬŽŠǯȱ‘ǯȱ’—ȱ–ŽŒ‘Š—’ŒŠ•ȱŽ—’—ŽŽ›’—ȱ›˜–ȱ—’ŸŽ›œ’¢ȱ˜ȱ˜›ŽȱŠ–Žǯȱǯȱ of Eng (Mechanical) from Universidad de Guanajuato, México. B.Sc. in mechanicalŽ•ŽŒ›’ŒŠ•ȱŽ—’—ŽŽ›’—ȱ›˜–ȱ—’ŸŽ›œ’Šȱ ‹Ž›˜Š–Ž›’ŒŠ—Šǰȱ™•Š—Ž•ȱŽà—ǰȱ·¡’Œ˜ǯ

Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 93-101 ISSN 1405-7743 FI-UNAM

101