Weak Decays into - Hindawi

2 downloads 0 Views 1MB Size Report
Jan 20, 2016 - weak decays at BESIII and the potential prospects of charmonium at high-luminosity heavy-flavor experiments, we study (1 , 2 ) andΒ ...
Hindawi Publishing Corporation Advances in High Energy Physics Volume 2016, Article ID 5071671, 11 pages http://dx.doi.org/10.1155/2016/5071671

Research Article Study of the πœ“(1𝑆, 2𝑆) and πœ‚π‘(1𝑆, 2𝑆) Weak Decays into 𝐷𝑀 Junfeng Sun,1 Yueling Yang,1 Jinshu Huang,2 Lili Chen,1 and Qin Chang1 1

Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007, China College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China

2

Correspondence should be addressed to Yueling Yang; [email protected] Received 20 October 2015; Revised 19 January 2016; Accepted 20 January 2016 Academic Editor: Sally Seidel Copyright Β© 2016 Junfeng Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3 . Inspired by the recent measurements on the 𝐽/πœ“(1𝑆) β†’ 𝐷𝑠 𝜌, 𝐷𝑒 πΎβˆ— weak decays at BESIII and the potential prospects of charmonium at high-luminosity heavy-flavor experiments, we study πœ“(1𝑆, 2𝑆) and πœ‚π‘ (1𝑆, 2𝑆) weak decays into final states including one charmed meson plus one light meson, considering QCD corrections to hadronic matrix elements with QCD factorization 0 βˆ—0 approach. It is found that the Cabibbo-favored πœ“(1𝑆, 2𝑆) β†’ π·π‘ βˆ’ 𝜌+ , π·π‘ βˆ’ πœ‹+ , 𝐷𝑒 𝐾 decays have large branching ratios ≳ 10βˆ’10 , which might be accessible at future experiments.

1. Introduction More than forty years after the discovery of the 𝐽/πœ“(1𝑆) meson, the properties of charmonium (bound state of 𝑐𝑐) continue to be the subject of intensive theoretical and experimental study. It is believed that charmonium, resembling bottomonium (bound state of 𝑏𝑏), plays the same role in exploring hadronic dynamics as positronium and/or the hydrogen atom in understanding the atomic physics. Charmonium and bottomonium are good objects to test the basic ideas of QCD [1]. There is a renewed interest in charmonium due to the plentiful dedicated investigation from BES, CLEOc, LHCb, and the studies via decays of the 𝐡 mesons at 𝐡 factories. The πœ“(1𝑆, 2𝑆) and πœ‚π‘ (1𝑆, 2𝑆) mesons are 𝑆-wave charmonium states below open-charm kinematic threshold and have the well-established quantum numbers of 𝐼𝐺𝐽𝑃𝐢 = 0+ 1βˆ’βˆ’ and 0+ 0βˆ’+ , respectively. They decay mainly through the strong and electromagnetic interactions. Because the 𝐺parity conserving hadronic decays πœ“(2𝑆) β†’ πœ‹πœ‹π½/πœ“(1𝑆), πœ‚π½/πœ“(1𝑆) and πœ‚π‘ (2𝑆) β†’ πœ‹πœ‹πœ‚π‘ (1𝑆) are suppressed by the compact phase space of final states, and because the decays into light hadrons are suppressed by the phenomenological Okubo-Zweig-Iizuka (OZI) rules [2–4], the total widths of πœ“(1𝑆, 2𝑆) and πœ‚π‘ (1𝑆, 2𝑆) are narrow (see Table 1), which

might render the charmonium weak decay as a necessary supplement. Here, we will concentrate on the πœ“(1𝑆, 2𝑆) and πœ‚π‘ (1𝑆, 2𝑆) weak decays into 𝐷𝑀 final states, where 𝑀 denotes the low-lying π‘†π‘ˆ(3) pseudoscalar and vector meson nonet. Our motivation is listed as follows. From the experimental point of view, (1) some 109 πœ“(1𝑆, 2𝑆) data samples have been collected by BESIII since 2009 [5]. It is inspiringly expected to have about 10 billion 𝐽/πœ“(1𝑆) and 3 billion πœ“(2𝑆) events at BESIII experiment per year of data taking with the designed luminosity [6]: over 1010 𝐽/πœ“(1𝑆) at LHCb [7], ATLAS [8], and CMS [9] per fbβˆ’1 data in 𝑝𝑝 collisions. A large amount of data sample offers a realistic possibility to explore experimentally the charmonium weak decays. Correspondingly, theoretical study is very necessary to provide a ready reference. (2) Identification of the single 𝐷 meson would provide an unambiguous signature of the charmonium weak decay into 𝐷𝑀 states. With the improvements of experimental instrumentation and particle identification techniques, accurate measurements on the nonleptonic charmonium weak decay might be feasible. Recently, a search for the 𝐽/πœ“(1𝑆) β†’ 𝐷𝑠 𝜌, 𝐷𝑒 πΎβˆ— decays has been performed at BESIII, although signals are unseen for the moment [10]. Of course, the branching ratios for the inclusive charmonium weak decay are tiny within the standard model,

2

Advances in High Energy Physics Table 1: The properties of πœ“(1𝑆, 2𝑆) and πœ‚π‘ (1𝑆, 2𝑆) mesons [12].

Meson πœ“(1𝑆) πœ“(2𝑆) πœ‚π‘ (1𝑆) πœ‚π‘ (2𝑆)

𝐼𝐺𝐽𝑃𝐢 0+ 1βˆ’βˆ’ 0+ 1βˆ’βˆ’ 0+ 0βˆ’+ 0+ 0βˆ’+

Mass (MeV) 3096.916 Β± 0.011 +0.012 3686.109βˆ’0.014 2983.6 Β± 0.7 3639.4 Β± 1.3

Width 92.9 Β± 2.8 keV 299 Β± 8 keV 32.2 Β± 0.9 MeV +3.2 11.3βˆ’2.9 MeV

about 2/(πœπ·Ξ“πœ“ ) ∼ 10βˆ’8 and 2/(πœπ·Ξ“πœ‚π‘ ) ∼ 10βˆ’10 , where 𝐷 denotes the neutral charmed meson [11] and Ξ“πœ“ and Ξ“πœ‚π‘ stand for the total widths of πœ“(1𝑆, 2𝑆) and πœ‚π‘ (1𝑆, 2𝑆) resonances, respectively. Observation of an abnormally large production rate of single charmed mesons in the final state would be a hint of new physics beyond the standard model [11]. From the theoretical point of view, (1) the charm quark weak decay is more favorable than the bottom quark weak decay, because the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements obey |𝑉𝑐𝑏 | β‰ͺ |𝑉𝑐𝑠 | [12]. Penguin and annihilation contributions to nonleptonic charm quark weak decay, being proportional to the CKM factor |𝑉𝑐𝑏 𝑉𝑒𝑏 | ∼ O(πœ†5 ) with the Wolfenstein parameter πœ† ≃ 0.22 [12], are highly suppressed and hence negligible relative to tree contributions. Both 𝑐 and 𝑐 quarks in charmonium can decay individually, which provides a good place to investigate the dynamical mechanism of heavy-flavor weak decay and crosscheck model parameters obtained from the charmed hadron weak decays. (2) There are few works devoted to nonleptonic 𝐽/πœ“(1𝑆) weak decays in the past, such as [13] with the covariant light-cone quark model, [14] with QCD sum rules, and [15–17] with the Wirbel-Stech-Bauer (WSB) model [18]. Moreover, previous works of [13–17] concern mainly the weak transition form factors between the 𝐽/πœ“(1𝑆) and charmed mesons. Fewer papers have been devoted to nonleptonic πœ“(2𝑆) and πœ‚π‘ (1𝑆, 2𝑆) weak decays until now even though a rough estimate of branching ratios is unavailable. In this paper, we will estimate the branching ratios for nonleptonic two-body charmonium weak decay, taking the nonfactorizable contributions to hadronic matrix elements into account with the attractive QCD factorization (QCDF) approach [19]. This paper is organized as follows. In Section 2, we will present the theoretical framework and the amplitudes for πœ“(1𝑆, 2𝑆), πœ‚π‘ (1𝑆, 2𝑆) β†’ 𝐷𝑀 decays. Section 3 is devoted to numerical results and discussion. Finally, Section 4 is our summation.

2. Theoretical Framework 2.1. The Effective Hamiltonian. Phenomenologically, the effective Hamiltonian responsible for charmonium weak decay into 𝐷𝑀 final states can be written as follows [25]: Heff =

𝐺𝐹 βˆ‘ π‘‰βˆ— 𝑉 {𝐢 (πœ‡) 𝑄1 (πœ‡) + 𝐢2 (πœ‡) 𝑄2 (πœ‡)} √2 π‘ž1 ,π‘ž2 π‘π‘ž1 π‘’π‘ž2 1 + H.c.,

(1)

where 𝐺𝐹 = 1.166 Γ— 10βˆ’5 GeVβˆ’2 [12] is the Fermi coupling constant; π‘‰π‘π‘žβˆ— 1 π‘‰π‘’π‘ž2 is the CKM factor with π‘ž1,2 = 𝑑, 𝑠; the Wilson coefficients 𝐢1,2 (πœ‡), which are independent of one particular process, summarize the physical contributions above the scale of πœ‡. The expressions of the local tree fourquark operators are 𝑄1 = [π‘ž1,𝛼 π›Ύπœ‡ (1 βˆ’ 𝛾5 ) 𝑐𝛼 ] [𝑒𝛽 π›Ύπœ‡ (1 βˆ’ 𝛾5 ) π‘ž2,𝛽 ] , 𝑄2 = [π‘ž1,𝛼 π›Ύπœ‡ (1 βˆ’ 𝛾5 ) 𝑐𝛽 ] [𝑒𝛽 π›Ύπœ‡ (1 βˆ’ 𝛾5 ) π‘ž2,𝛼 ] ,

(2)

where 𝛼 and 𝛽 are color indices. It is well known that the Wilson coefficients 𝐢𝑖 could be systematically calculated with perturbation theory and have properly been evaluated to the next-to-leading order (NLO). Their values at the scale of πœ‡ ∼ O(π‘šπ‘ ) can be evaluated with the renormalization group (RG) equation [25]: 𝐢1,2 (πœ‡) = π‘ˆ4 (πœ‡, π‘šπ‘ ) π‘ˆ5 (π‘šπ‘ , π‘šπ‘Š) 𝐢1,2 (π‘šπ‘Š) ,

(3)

where π‘ˆπ‘“ (πœ‡π‘“ , πœ‡π‘– ) is the RG evolution matrix which transforms the Wilson coefficients from scale of πœ‡π‘– to πœ‡π‘“ . The expression for π‘ˆπ‘“ (πœ‡π‘“ , πœ‡π‘– ) can be found in [25]. The numerical values of the leading-order (LO) and NLO 𝐢1,2 in the naive dimensional regularization scheme are listed in Table 2. The values of coefficients 𝐢1,2 in Table 2 agree well with those obtained with β€œeffective” number of active flavors 𝑓 = 4.15 [25] rather than formula (3). To obtain the decay amplitudes and branching ratios, the remaining works are to evaluate accurately the hadronic matrix elements (HME) where the local operators are sandwiched between the charmonium and final states, which is also the most intricate work in dealing with the weak decay of heavy hadrons by now. 2.2. Hadronic Matrix Elements. Analogous to the exclusive processes with perturbative QCD theory proposed by Lepage and Brodsky [26], the QCDF approach is developed by Beneke et al. [19] to deal with HME based on the collinear factorization approximation and power counting rules in the heavy quark limit and has been extensively used for 𝐡 meson decays. Using the QCDF master formula, HME of nonleptonic decays could be written as the convolution integrals of the process-dependent hard scattering kernels and universal light-cone distribution amplitudes (LCDA) of participating hadrons. The spectator quark is the heavy-flavor charm quark for charmonium weak decays into 𝐷𝑀 final states. It is commonly assumed that the virtuality of the gluon connecting to the heavy spectator is of order Ξ›2QCD , where Ξ› QCD is the characteristic QCD scale. Hence, the transition form factors between charmonium and 𝐷 mesons are assumed to be dominated by the soft and nonperturbative contributions, and the amplitudes of the spectator rescattering subprocess are power-suppressed [19]. Taking πœ‚π‘ β†’ 𝐷𝑀 decays, for example, HME can be written as πœ‚ →𝐷 󡄨 󡄨 βŸ¨π·π‘€ 󡄨󡄨󡄨𝑄1,2 󡄨󡄨󡄨 πœ‚π‘ ⟩ = βˆ‘πΉπ‘– 𝑐 𝑓𝑀 ∫ 𝐻𝑖 (π‘₯) Φ𝑀 (π‘₯) 𝑑π‘₯, 𝑖

(4)

Advances in High Energy Physics

3

Table 2: Numerical values of the Wilson coefficients 𝐢1,2 and parameters π‘Ž1,2 for πœ‚π‘ β†’ π·πœ‹ decay with π‘šπ‘ = 1.275 GeV [12], where π‘Ž1,2 in [20] is used in the 𝐷 meson weak decay. πœ‡ 0.8π‘šπ‘ π‘šπ‘ 1.2π‘šπ‘

LO 𝐢1 1.335 1.276 1.240

NLO 𝐢2 βˆ’0.589 βˆ’0.505 βˆ’0.450

𝐢1 1.275 1.222 1.190

𝐢2 βˆ’0.504 βˆ’0.425 βˆ’0.374

QCDF π‘Ž1 ∘ 1.275𝑒+𝑖4 +𝑖3∘ 1.219𝑒 ∘ 1.186𝑒+𝑖3

πœ‚ →𝐷

where 𝐹𝑖 𝑐 is the weak transition form factor and 𝑓𝑀 and Φ𝑀(π‘₯) are the decay constant and LCDA of the meson 𝑀, respectively. The leading twist LCDA for the pseudoscalar and longitudinally polarized vector mesons can be expressed in terms of Gegenbauer polynomials [23, 24]:

π‘Ž2 ∘ 0.503π‘’βˆ’π‘–154 βˆ’π‘–154∘ 0.402𝑒 ∘ 0.342π‘’βˆ’π‘–154

(5)

𝑛=0

where π‘₯ = 1 βˆ’ π‘₯; 𝐢𝑛3/2 (𝑧) is the Gegenbauer polynomial,

󡄨 󡄨 βˆ—πœ‡ 󡄨 󡄨 Hπœ† = βŸ¨π‘‰ σ΅„¨σ΅„¨σ΅„¨π½πœ‡ 󡄨󡄨󡄨 0⟩ ⟨𝐷 σ΅„¨σ΅„¨σ΅„¨σ΅„¨π½πœ‡ 󡄨󡄨󡄨󡄨 πœ“βŸ© = πœ–π‘‰ πœ–πœ“] {π‘Žπ‘”πœ‡]

𝐢13/2 (𝑧) = 3𝑧, 3 (5𝑧2 βˆ’ 1) , 2

+

πœ‡ 𝑏 (π‘πœ“ + 𝑝𝐷) 𝑝𝑉] π‘šπœ“ π‘šπ‘‰

+

𝛽 𝑖𝑐 πœ–πœ‡]𝛼𝛽 𝑝𝑉𝛼 (π‘πœ“ + 𝑝𝐷) } . π‘šπœ“ π‘šπ‘‰

H0 = βˆ’π‘Žπ‘₯ βˆ’ 2𝑏 (π‘₯2 βˆ’ 1) , (6)

HΒ± = π‘Ž Β± 2π‘βˆšπ‘₯2 βˆ’ 1,

.. .

π‘₯=

π‘Žπ‘›π‘€ is the Gegenbauer moment corresponding to the Gegenbauer polynomials 𝐢𝑛3/2 (𝑧); π‘Ž0𝑀 ≑ 1 for the asymptotic form; and π‘Žπ‘› = 0 for 𝑛 = 1, 3, 5, . . . because of the 𝐺-parity invariance of the πœ‹, πœ‚(σΈ€ ) , 𝜌, πœ”, πœ™ meson distribution amplitudes. In this paper, to give a rough estimation, the contributions from higher-order 𝑛 β‰₯ 3 Gegenbauer polynomials are not considered for the moment. Hard scattering function 𝐻𝑖 (π‘₯) in (4) is, in principle, calculable order by order with the perturbative QCD theory. At the order of 𝛼𝑠0 , 𝐻𝑖 (π‘₯) = 1. This is the simplest scenario, and one goes back to the naive factorization where there is no information about the strong phases and the renormalization scale hidden in the HME. At the order of 𝛼𝑠 and higher orders, the renormalization scale dependence of hadronic matrix elements could be recuperated to partly cancel the πœ‡dependence of the Wilson coefficients. In addition, part of the strong phases could be reproduced from nonfactorizable contributions. Within the QCDF framework, amplitudes for πœ‚π‘ β†’ 𝐷𝑀 decays can be expressed as 󡄨 󡄨 A (πœ‚π‘ 󳨀→ 𝐷𝑀) = βŸ¨π·π‘€ 󡄨󡄨󡄨Heff 󡄨󡄨󡄨 πœ‚π‘ ⟩ 𝐺 󡄨 󡄨 󡄨 󡄨 = 𝐹 π‘‰π‘π‘žβˆ— 1 π‘‰π‘’π‘ž2 π‘Žπ‘– βŸ¨π‘€ σ΅„¨σ΅„¨σ΅„¨π½πœ‡ 󡄨󡄨󡄨 0⟩ ⟨𝐷 σ΅„¨σ΅„¨σ΅„¨σ΅„¨π½πœ‡ 󡄨󡄨󡄨󡄨 πœ‚π‘ ⟩ . √2

(8)

The relations among helicity amplitudes and invariant amplitudes π‘Ž, 𝑏, 𝑐 are

𝐢03/2 (𝑧) = 1,

𝐢23/2 (𝑧) =

Previous works π‘Ž1 π‘Ž2 1.26 βˆ’0.51 1.3 Β± 0.1 βˆ’0.55 Β± 0.10 1.274 βˆ’0.529

In addition, the HME for the πœ“(1𝑆, 2𝑆) β†’ 𝐷𝑉 decays are conventionally expressed as the helicity amplitudes with the decomposition [27, 28],

∞

Φ𝑀 (π‘₯) = 6π‘₯π‘₯ βˆ‘ π‘Žπ‘›π‘€πΆπ‘›3/2 (π‘₯ βˆ’ π‘₯) ,

Ref. [14, 16, 17] [15] [20]

(7)

π‘πœ“ β‹… 𝑝𝑉 π‘šπœ“ π‘šπ‘‰

=

π‘šπœ“2

(9) βˆ’

2 π‘šπ·

+

2 π‘šπ‘‰

2π‘šπœ“ π‘šπ‘‰

,

where three scalar amplitudes π‘Ž, 𝑏, 𝑐 describe 𝑠, 𝑑, 𝑝 wave contributions, respectively. The effective coefficient π‘Žπ‘– at the order of 𝛼𝑠 can be expressed as [19] π‘Ž1 = 𝐢1NLO + π‘Ž2 =

𝐢2NLO

1 NLO 𝛼𝑠 𝐢𝐹 LO 𝐢 + 𝐢 V, 𝑁𝑐 2 4πœ‹ 𝑁𝑐 2

1 NLO 𝛼𝑠 𝐢𝐹 LO + 𝐢 + 𝐢 V, 𝑁𝑐 1 4πœ‹ 𝑁𝑐 1

(10)

where the color factor 𝐢𝐹 = 4/3; the color number 𝑁𝑐 = 3. For the transversely polarized light vector meson, the factor V = 0 in the helicity HΒ± amplitudes beyond the leading twist contributions. With the leading twist LCDA for the pseudoscalar and longitudinally polarized vector mesons, the factor V is written as [19] V = 6 log (

π‘šπ‘2 1 ) βˆ’ 18 βˆ’ ( + 𝑖3πœ‹) 2 πœ‡ 2

21 11 + ( βˆ’ 𝑖3πœ‹) π‘Ž1𝑀 βˆ’ π‘Ž2𝑀 + β‹… β‹… β‹… . 2 20

(11)

From the numbers in Table 2, it is found that (1) the values of coefficients π‘Ž1,2 agree generally with those used in previous works [14–17, 20], (2) the strong phases appear by taking

4

Advances in High Energy Physics

nonfactorizable corrections into account, which is necessary for 𝐢𝑃 violation, and (3) the strong phase of π‘Ž1 is small due to the suppression of 𝛼𝑠 and 1/𝑁𝑐 . The strong phase of π‘Ž2 is large due to the enhancement from the large Wilson coefficients 𝐢1 .

𝑉 (0) =

2.3. Form Factors. The weak transition form factors between charmonium and a charmed meson are defined as follows [18]: 󡄨 󡄨 ⟨𝐷 (𝑝2 ) σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘‰πœ‡ βˆ’ 𝐴 πœ‡ 󡄨󡄨󡄨󡄨 πœ‚π‘ (𝑝1 )⟩

β‹…

= {(𝑝1 + 𝑝2 )πœ‡ βˆ’ +

2 π‘šπœ‚2𝑐 βˆ’ π‘šπ·

π‘ž2

2 π‘šπœ‚2𝑐 βˆ’ π‘šπ·

π‘ž2

π‘žπœ‡ } 𝐹1 (π‘ž2 )

π‘žπœ‡ 𝐹0 (π‘ž2 ) ,

2π‘šπœ“ πœ–πœ“ β‹… π‘ž

βˆ’π‘–

π‘ž2

2

𝑉 (π‘ž )

𝛽

π‘šπœ“ + π‘šπ·

(12)

π‘žπœ‡ 𝐴 0 (π‘ž2 )

βˆ’ π‘–πœ–πœ“,πœ‡ (π‘šπœ“ + π‘šπ·) 𝐴 1 (π‘ž2 ) πœ–πœ“ β‹… π‘ž

βˆ’π‘–

π‘šπœ“ + π‘šπ· 2π‘šπœ“ πœ–πœ“ β‹… π‘ž

+𝑖

π‘ž2

(𝑝1 + 𝑝2 )πœ‡ 𝐴 2 (π‘ž2 ) π‘žπœ‡ 𝐴 3 (π‘ž2 ) ,

1

𝐼 = √2 ∫ ∫ {Ξ¦πœ“ (π‘˜βƒ— βŠ₯ , π‘₯, 1, βˆ’1) π‘–πœŽπ‘¦ Φ𝐷 (π‘˜βƒ— βŠ₯ , π‘₯, 0, 0)} 0

1 𝑑π‘₯ π‘‘π‘˜βƒ— βŠ₯ , π‘₯ (14)

where πœŽπ‘¦,𝑧 is the Pauli matrix acting on the spin indices of the decaying charm quark; π‘₯ and π‘˜βƒ— βŠ₯ denote the fraction of the longitudinal momentum and the transverse momentum of the nonspectator quark, respectively. With the separation of the spin and spatial variables, wave functions can be written as

2π‘šπœ“ 𝐴 3 (π‘ž2 ) = (π‘šπœ“ + π‘šπ·) 𝐴 1 (π‘ž2 ) + (π‘šπœ“ βˆ’ π‘šπ·) 𝐴 2 (π‘ž2 ) .

(13)

There are four independent transition form factors, 𝐹0 (0), 𝐴 0,1 (0), and 𝑉(0), at the pole of π‘ž2 = 0. They could be written as the overlap integrals of wave functions [18]:

β‹… πœŽπ‘§ Φ𝐷 (π‘˜βƒ— βŠ₯ , π‘₯, 0, 0)} 𝑑π‘₯ π‘‘π‘˜βƒ— βŠ₯ , 𝐴 1 (0) =

π‘šπ‘ + π‘šπ‘ž π‘šπœ“ + π‘šπ·

𝐼,

2

2

(16)

where the parameter 𝛼 determines the average transverse 2 quark momentum, βŸ¨πœ™1𝑆 |π‘˜βƒ— βŠ₯ |πœ™1𝑆 ⟩ = 𝛼2 . With the NRQCD power counting rules [29], |π‘˜βƒ— βŠ₯ | ∼ π‘šV ∼ π‘šπ›Όπ‘  for heavy quarkonium. Hence, parameter 𝛼 is approximately taken as π‘šπ›Όπ‘  in our calculation. Using the substitution ansatz [33], 2 π‘˜βƒ— 󳨀→

0

0

2

2 βƒ— πœ™2𝑆 (π‘˜)βƒ— ∼ π‘’βˆ’π‘˜ /2𝛼 (2π‘˜βƒ— βˆ’ 3𝛼2 ) ,

𝐹0 (0) = ∫ ∫ {Ξ¦πœ‚π‘ (π‘˜βƒ— βŠ₯ , π‘₯, 0, 0)

1

βƒ—2

πœ™1𝑆 (π‘˜)βƒ— ∼ π‘’βˆ’π‘˜ /2𝛼 ,

1

𝐴 0 (0) = ∫ ∫ {Ξ¦πœ“ (π‘˜βƒ— βŠ₯ , π‘₯, 1, 0)

(15)

where the total angular momentum 𝑗⃗ = 𝐿⃗ + 𝑠1βƒ— + 𝑠2βƒ— = 𝑠1βƒ— + 𝑠2βƒ— = 𝑠⃗ because the orbital angular momentum between the valence quarks in πœ“(1𝑆, 2𝑆), πœ‚π‘ (1𝑆, 2𝑆), 𝐷 mesons in question have 𝐿⃗ = 0; 𝑠1,2 denote the spins of valence quarks in meson; 𝑠 = 1 and 0 for the πœ“ and πœ‚π‘ mesons, respectively. The charm quark in the charmonium state is nearly nonrelativistic with an average velocity V β‰ͺ 1 based on arguments of nonrelativistic quantum chromodynamics (NRQCD) [29–31]. For the 𝐷 meson, the valence quarks are also nonrelativistic due to π‘šπ· β‰ˆ π‘šπ‘ + π‘šπ‘ž , where the light quark mass π‘šπ‘’ β‰ˆ π‘šπ‘‘ β‰ˆ 310 MeV and π‘šπ‘  β‰ˆ 510 MeV [32]. Here, we will take the solution of the SchrΒ¨odinger equation with a scalar harmonic oscillator potential as the wave functions of the charmonium and 𝐷 mesons:

where π‘ž = 𝑝1 βˆ’ 𝑝2 ; πœ–πœ“ denotes the πœ“β€™s polarization vector. The form factors 𝐹0 (0) = 𝐹1 (0) and 𝐴 0 (0) = 𝐴 3 (0) are required compulsorily to cancel singularities at the pole of π‘ž2 = 0. There is a relation among these form factors:

β‹… Φ𝐷 (π‘˜βƒ— βŠ₯ , π‘₯, 0, 0)} 𝑑π‘₯ π‘‘π‘˜βƒ— βŠ₯ ,

𝐼,

󡄨 Ξ¦ (π‘˜βƒ— βŠ₯ , π‘₯, 𝑗, 𝑗𝑧 ) = πœ™ (π‘˜βƒ— βŠ₯ , π‘₯) 󡄨󡄨󡄨𝑠, 𝑠𝑧 , 𝑠1 , 𝑠2 ⟩ ,

󡄨 󡄨 ⟨𝐷 (𝑝2 ) σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘‰πœ‡ βˆ’ 𝐴 πœ‡ 󡄨󡄨󡄨󡄨 πœ“ (𝑝1 , πœ–)⟩ = βˆ’πœ–πœ‡]𝛼𝛽 πœ–πœ“] π‘žπ›Ό (𝑝1 + 𝑝2 )

π‘šπ‘ βˆ’ π‘šπ‘ž π‘šπœ“ βˆ’ π‘šπ·

2 π‘˜βƒ— βŠ₯ + π‘₯π‘šπ‘ž2 + π‘₯π‘šπ‘2

4π‘₯π‘₯

,

(17)

one can obtain 2 2 2 { π‘˜βƒ— βŠ₯ + π‘₯π‘šπ‘ž + π‘₯π‘šπ‘ } βƒ— πœ™1𝑆 (π‘˜βŠ₯ , π‘₯) = 𝐴 exp { }, βˆ’8𝛼2 π‘₯π‘₯ } { 2 2 2 { π‘˜βƒ— βŠ₯ + π‘₯π‘šπ‘ž + π‘₯π‘šπ‘ } βƒ— βƒ— πœ™2𝑆 (π‘˜βŠ₯ , π‘₯) = π΅πœ™1𝑆 (π‘˜βŠ₯ , π‘₯) { βˆ’ 1} , 2 6𝛼 π‘₯π‘₯ { }

(18)

Advances in High Energy Physics

5

Table 3: The numerical values of transition form factors at π‘ž2 = 0, where uncertainties of this work come from the charm quark mass. Transition

πœ‚π‘ (1𝑆), πœ“(1𝑆) β†’ 𝐷𝑒,𝑑

πœ‚π‘ (1𝑆), πœ“(1𝑆) β†’ 𝐷𝑠

πœ‚π‘ (2𝑆), πœ“(2𝑆) β†’ 𝐷𝑒,𝑑 πœ‚π‘ (2𝑆), πœ“(2𝑆) β†’ 𝐷𝑠

Reference This work [13]a [21]b [15]c [17]d [17]e This work [13]a [21]b [15]c [17]d [17]e This work This work

𝐹0 (0) 0.85 Β± 0.01 β‹…β‹…β‹… β‹…β‹…β‹… β‹…β‹…β‹… β‹…β‹…β‹… β‹…β‹…β‹… 0.90 Β± 0.01 β‹…β‹…β‹… β‹…β‹…β‹… β‹…β‹…β‹… β‹…β‹…β‹… β‹…β‹…β‹… 0.62 Β± 0.01 0.65 Β± 0.01

𝐴 0 (0) 0.85 Β± 0.01 0.68 Β± 0.01 +0.02 0.27βˆ’0.03 0.40 (0.61) 0.55 Β± 0.02 0.54 0.90 Β± 0.01 0.68 Β± 0.01 0.37 Β± 0.02 0.47 (0.66) 0.71+0.04 βˆ’0.02 0.69 0.61 Β± 0.01 0.64 Β± 0.01

𝐴 1 (0) 0.72 Β± 0.01 0.68 Β± 0.01 +0.03 0.27βˆ’0.02 0.44 (0.68) +0.09 0.77βˆ’0.07 0.80 0.81 Β± 0.01 0.68 Β± 0.01 0.38+0.02 βˆ’0.01 0.55 (0.78) 0.94 Β± 0.07 0.96 0.54 Β± 0.01 0.59 Β± 0.02

𝑉(0) 1.76 Β± 0.03 1.6 Β± 0.1 0.81+0.12 βˆ’0.08 1.17 (1.82) +0.15 2.14βˆ’0.11 2.21 1.55 Β± 0.04 1.8 +0.05 1.07βˆ’0.02 1.25 (1.80) 2.30+0.09 βˆ’0.06 2.36 1.00 Β± 0.04 0.83 Β± 0.04

a

The form factors are computed with the covariant light-front quark model, where uncertainties come from the decay constant of charmed meson. The form factors are computed with QCD sum rules, where uncertainties are from the Borel parameters. c The form factors are computed with parameter πœ” = 0.4 (0.5) GeV using the WSB model. d The form factors are computed with flavor dependent parameter πœ” using the WSB model. e The form factors are computed with parameter πœ” = π‘šπ›Όπ‘  using the WSB model. b

where the parameters 𝐴 and 𝐡 are the normalization coefficients satisfying the normalization condition, 1 󡄨 󡄨2 ∫ ∫ σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ™ (π‘˜βƒ— βŠ₯ , π‘₯)󡄨󡄨󡄨󡄨 𝑑π‘₯ π‘‘π‘˜βƒ— βŠ₯ = 1. 0

(19) 2

The numerical values of transition form factors at π‘ž = 0 are listed in Table 3. It is found that (1) the model dependence of form factors is large; (2) isospin-breaking effects are negligible and flavor breaking effects are small; and (3) as stated in [18] 𝐹0 ≃ 𝐴 0 holds within collinear symmetry.

the mixing of pseudoscalar πœ‚ and πœ‚σΈ€  meson, we will adopt the quark-flavor basis description proposed in [22] and neglect the contributions from possible gluonium compositions; that is, πœ‚ πœ‚π‘ž cos πœ™ βˆ’ sin πœ™ )( ), ( σΈ€ ) = ( sin πœ™ cos πœ™ πœ‚π‘  πœ‚

where πœ‚π‘ž = (𝑒𝑒 + 𝑑𝑑)/√2 and πœ‚π‘  = 𝑠𝑠; the mixing angle πœ™ = (39.3 Β± 1.0)∘ [22]. The mass relations are π‘šπœ‚2π‘ž = π‘šπœ‚2 cos2 πœ™ + π‘šπœ‚2σΈ€  sin2 πœ™

3. Numerical Results and Discussion In the charmonium center-of-mass frame, the branching ratio for the charmonium weak decay can be written as Bπ‘Ÿ (πœ‚π‘ 󳨀→ 𝐷𝑀) = Bπ‘Ÿ (πœ“ 󳨀→ 𝐷𝑀) =

𝑝cm 󡄨󡄨 󡄨2 󡄨A (πœ‚π‘ 󳨀→ 𝐷𝑀)󡄨󡄨󡄨 , 4πœ‹π‘šπœ‚2𝑐 Ξ“πœ‚π‘ 󡄨

(20)

𝑝cm 󡄨󡄨 󡄨2 󡄨A (πœ“ 󳨀→ 𝐷𝑀)󡄨󡄨󡄨 , 12πœ‹π‘šπœ“2 Ξ“πœ“ 󡄨

𝑝cm √[π‘šπœ‚2 ,πœ“ βˆ’ (π‘šπ· + π‘šπ‘€)2 ] [π‘šπœ‚2 ,πœ“ βˆ’ (π‘šπ· βˆ’ π‘šπ‘€)2 ] 𝑐

𝑐

2π‘šπœ‚π‘ ,πœ“

βˆ’

√2π‘“πœ‚

𝑠

π‘“πœ‚π‘ž

(π‘šπœ‚2σΈ€  βˆ’ π‘šπœ‚2 ) cos πœ™ sin πœ™,

π‘šπœ‚2𝑠 = π‘šπœ‚2 sin2 πœ™ + π‘šπœ‚2σΈ€  cos2 πœ™ βˆ’

π‘“πœ‚π‘ž √2π‘“πœ‚

(23)

(π‘šπœ‚2σΈ€  βˆ’ π‘šπœ‚2 ) cos πœ™ sin πœ™.

𝑠

where the common momentum of final states is

=

(22)

(21) .

The decay amplitudes for A(πœ“ β†’ 𝐷𝑀) and A(πœ‚π‘ β†’ 𝐷𝑀) are collected in Appendices A and B, respectively. In our calculation, we assume that the light vector mesons are ideally mixed; that is, πœ” = (𝑒𝑒 + 𝑑𝑑)/√2 and πœ™ = 𝑠𝑠. For

The input parameters, including the CKM Wolfenstein parameters, decay constants, and Gegenbauer moments, are collected in Table 4. If not specified explicitly, we will take their central values as the default inputs. Our numerical results on branching ratios for the nonleptonic two-body πœ“(1𝑆, 2𝑆), πœ‚π‘ (1𝑆, 2𝑆) β†’ 𝐷𝑀 weak decays are displayed in Tables 5 and 6, where the uncertainties of this work come from the CKM parameters, the renormalization scale πœ‡ = (1Β± 0.2)π‘šπ‘ , and hadronic parameters including decay constants and Gegenbauer moments, respectively. For comparison, previous results on 𝐽/πœ“(1𝑆) weak decays [14, 16, 17] with parameters π‘Ž1 = 1.26 and π‘Ž2 = βˆ’0.51 are also listed in Table 5. The following are some comments.

6

Advances in High Energy Physics Table 4: Numerical values of input parameters. +0.023 𝐴 = 0.814βˆ’0.024 [12] πœ‚ = 0.353 Β± 0.013 [12] π‘šπ·π‘’ = 1864.84 Β± 0.07 MeV [12] π‘šπ·π‘  = 1968.30 Β± 0.11 MeV [12] 𝑓𝐾 = 156.2 Β± 0.7 MeV [12] π‘“πœ‚π‘  = (1.34 Β± 0.06) π‘“πœ‹ [22]

πœ† = 0.22537 Β± 0.00061 [12] 𝜌 = 0.117 Β± 0.021 [12] π‘šπ‘ = 1.275 Β± 0.025 GeV [12] π‘šπ·π‘‘ = 1869.61 Β± 0.10 MeV [12] π‘“πœ‹ = 130.41 Β± 0.20 MeV [12] π‘“πœ‚π‘ž = (1.07 Β± 0.02) π‘“πœ‹ [22] π‘“πœŒ = 216 Β± 3 MeV [23] π‘“πœ™ = 215 Β± 5 MeV [23] πœ‚ πœ‚ π‘Ž2πœ‹ = π‘Ž2 π‘ž = π‘Ž2 𝑠 = 0.25 Β± 0.15 [24] π‘Ž1𝐾 = βˆ’π‘Ž1𝐾 = 0.06 Β± 0.03 [24] βˆ— βˆ— π‘Ž1𝐾 = βˆ’π‘Ž1𝐾 = 0.03 Β± 0.02 [23] 𝜌 πœ™ π‘Ž1πœ‹ = π‘Ž1 = π‘Ž1πœ” = π‘Ž1 = 0

π‘“πœ” = 187 Β± 5 MeV [23] π‘“πΎβˆ— = 220 Β± 5 MeV [23] 𝜌 π‘Ž2 = π‘Ž2πœ” = 0.15 Β± 0.07 [23] π‘Ž2𝐾 = π‘Ž2𝐾 = 0.25 Β± 0.15 [24] βˆ— βˆ— π‘Ž2𝐾 = π‘Ž2𝐾 = 0.11 Β± 0.09 [23] πœ™ π‘Ž2 = 0.18 Β± 0.08 [23]

Table 5: Branching ratios for the nonleptonic two-body 𝐽/πœ“(1𝑆) weak decays, where the uncertainties of this work come from the CKM parameters, the renormalization scale πœ‡ = (1 Β± 0.2)π‘šπ‘ , and hadronic parameters including decay constants and Gegenbauer moments, respectively. The results of [14, 16, 17] are calculated with π‘Ž1 = 1.26 and π‘Ž2 = βˆ’0.51. The results of [14] are based on QCD sum rules. The numbers in columns of β€œA,” β€œB,” β€œC,” and β€œD” are based on the WSB model with flavor dependent πœ”, QCD inspired πœ” = 𝛼𝑠 π‘š, and universal πœ” = 0.4 GeV and 0.5 GeV, respectively. Final states π·π‘ βˆ’ πœ‹+ π·π‘ βˆ’ 𝐾+ π·π‘‘βˆ’ πœ‹+ π·π‘‘βˆ’ 𝐾+ 0 𝐷 𝑒 πœ‹0 0 𝐷𝑒 𝐾0 0 0 𝐷𝑒 𝐾 0 𝐷𝑒 πœ‚ 0 𝐷𝑒 πœ‚σΈ€  βˆ’ + 𝐷𝑠 𝜌 π·π‘ βˆ’ πΎβˆ—+ π·π‘‘βˆ’ 𝜌+ π·π‘‘βˆ’ πΎβˆ—+ 0 𝐷 𝑒 𝜌0 0 𝐷𝑒 πœ” 0 𝐷𝑒 πœ™ 0 𝐷𝑒 πΎβˆ—0 0 βˆ—0 𝐷𝑒 𝐾

Case

Reference [14]

1-a 1-b 1-b 1-c 2-b 2-c 2-a

2.0 Γ— 10βˆ’10 1.6 Γ— 10βˆ’11 0.8 Γ— 10βˆ’11 β‹…β‹…β‹… β‹…β‹…β‹… β‹…β‹…β‹… 3.6 Γ— 10βˆ’11 β‹…β‹…β‹… β‹…β‹…β‹… 1.26 Γ— 10βˆ’9 0.82 Γ— 10βˆ’10 0.42 Γ— 10βˆ’10 β‹…β‹…β‹… β‹…β‹…β‹… β‹…β‹…β‹… β‹…β‹…β‹… β‹…β‹…β‹… 1.54 Γ— 10βˆ’10

1-a 1-b 1-b 1-c 2-b 2-b 2-b 2-c 2-a

A 7.41 Γ— 10βˆ’10 5.3 Γ— 10βˆ’11 2.9 Γ— 10βˆ’11 2.3 Γ— 10βˆ’12 2.4 Γ— 10βˆ’12 4.0 Γ— 10βˆ’13 1.39 Γ— 10βˆ’10 7.0 Γ— 10βˆ’12 4.0 Γ— 10βˆ’13 5.11 Γ— 10βˆ’9 2.82 Γ— 10βˆ’10 2.16 Γ— 10βˆ’10 1.3 Γ— 10βˆ’11 1.8 Γ— 10βˆ’11 1.6 Γ— 10βˆ’11 4.2 Γ— 10βˆ’11 2.1 Γ— 10βˆ’12 7.61 Γ— 10βˆ’10

Reference [17] B 7.13 Γ— 10βˆ’10 5.2 Γ— 10βˆ’11 2.8 Γ— 10βˆ’11 2.2 Γ— 10βˆ’12 2.3 Γ— 10βˆ’12 4.0 Γ— 10βˆ’13 1.34 Γ— 10βˆ’10 6.7 Γ— 10βˆ’12 4.0 Γ— 10βˆ’13 5.32 Γ— 10βˆ’9 2.96 Γ— 10βˆ’10 2.28 Γ— 10βˆ’10 1.3 Γ— 10βˆ’11 1.9 Γ— 10βˆ’11 1.7 Γ— 10βˆ’11 4.4 Γ— 10βˆ’11 2.2 Γ— 10βˆ’12 8.12 Γ— 10βˆ’10

(1) There are some differences among the estimates of branching ratios for 𝐽/πœ“(1𝑆) β†’ 𝐷𝑀 weak decays (see the numbers in Table 5). These inconsistencies among previous works, although the same values of parameters π‘Ž1,2 are used, come principally from different values of form factors. Our results are generally in line with the numbers in columns β€œA” and β€œB” which are favored by [17]. (2) Branching ratios for 𝐽/πœ“(1𝑆) weak decay are about two or more times as large as those for πœ“(2𝑆) decay into the same final states, because the decay width of πœ“(2𝑆) is about three times as large as that of 𝐽/πœ“(1𝑆).

C 3.32 Γ— 10βˆ’10 2.4 Γ— 10βˆ’11 1.5 Γ— 10βˆ’11 1.2 Γ— 10βˆ’12 1.2 Γ— 10βˆ’12 2.0 Γ— 10βˆ’13 7.2 Γ— 10βˆ’11 3.6 Γ— 10βˆ’12 2.0 Γ— 10βˆ’13 1.77 Γ— 10βˆ’9 0.97 Γ— 10βˆ’10 0.72 Γ— 10βˆ’10 4.2 Γ— 10βˆ’12 6.0 Γ— 10βˆ’12 5.0 Γ— 10βˆ’12 1.4 Γ— 10βˆ’11 7.0 Γ— 10βˆ’13 2.51 Γ— 10βˆ’10

Reference [16] D 8.74 Γ— 10βˆ’10 5.5 Γ— 10βˆ’11 5.5 Γ— 10βˆ’11 β‹…β‹…β‹… 5.5 Γ— 10βˆ’12 β‹…β‹…β‹… 2.8 Γ— 10βˆ’10 1.6 Γ— 10βˆ’12 3.0 Γ— 10βˆ’13 3.63 Γ— 10βˆ’9 2.12 Γ— 10βˆ’10 2.20 Γ— 10βˆ’10 β‹…β‹…β‹… 2.2 Γ— 10βˆ’11 1.8 Γ— 10βˆ’11 6.5 Γ— 10βˆ’11 β‹…β‹…β‹… 1.03 Γ— 10βˆ’9

This work +0.01+0.10+0.01 (1.09βˆ’0.01βˆ’0.06βˆ’0.01 ) Γ— 10βˆ’9 +0.03+0.59+0.08 (6.18βˆ’0.03βˆ’0.33βˆ’0.08 ) Γ— 10βˆ’11 +0.03+0.60+0.03 (6.37βˆ’0.03βˆ’0.34βˆ’0.03 ) Γ— 10βˆ’11 +0.04+0.36+0.05 (3.79βˆ’0.04βˆ’0.20βˆ’0.05 ) Γ— 10βˆ’12 βˆ’12 (3.50+0.02+1.98+0.06 βˆ’0.02βˆ’0.97βˆ’0.06 ) Γ— 10 +0.04+2.35+0.11 (4.16βˆ’0.04βˆ’1.15βˆ’0.10 ) Γ— 10βˆ’13 +0.01+0.81+0.03 (1.44βˆ’0.01βˆ’0.40βˆ’0.03 ) Γ— 10βˆ’10 +0.01+0.58+0.10 (1.03βˆ’0.01βˆ’0.28βˆ’0.10 ) Γ— 10βˆ’11 +0.03+3.29+1.72 (5.83βˆ’0.03βˆ’1.61βˆ’1.50 ) Γ— 10βˆ’13 βˆ’9 (3.82+0.01+0.36+0.11 βˆ’0.01βˆ’0.20βˆ’0.11 ) Γ— 10 βˆ’10 (2.00+0.01+0.19+0.10 βˆ’0.01βˆ’0.11βˆ’0.09 ) Γ— 10 +0.01+0.20+0.06 (2.12βˆ’0.01βˆ’0.11βˆ’0.06 ) Γ— 10βˆ’10 +0.01+0.11+0.06 (1.14βˆ’0.01βˆ’0.06βˆ’0.05 ) Γ— 10βˆ’11 +0.01+0.61+0.04 (1.08βˆ’0.01βˆ’0.30βˆ’0.04 ) Γ— 10βˆ’11 βˆ’12 (8.10+0.04+4.56+0.50 βˆ’0.04βˆ’2.25βˆ’0.48 ) Γ— 10 βˆ’11 (1.92+0.01+1.08+0.10 βˆ’0.01βˆ’0.53βˆ’0.10 ) Γ— 10 +0.01+0.67+0.07 (1.19βˆ’0.01βˆ’0.33βˆ’0.07 ) Γ— 10βˆ’12 +0.01+2.30+0.24 (4.09βˆ’0.01βˆ’1.14βˆ’0.23 ) Γ— 10βˆ’10

(3) Due to the relatively small decay width and relatively large space phases for πœ‚π‘ (2𝑆) decay, branching ratios for πœ‚π‘ (2𝑆) weak decay are some five (ten) or more times as large as those for πœ‚π‘ (1𝑆) weak decay into the same 𝐷𝑃 (𝐷𝑉) final states. (4) Among πœ“(1𝑆, 2𝑆) and πœ‚π‘ (1𝑆, 2𝑆) mesons, πœ‚π‘ (1𝑆) has a maximal decay width and a minimal mass resulting in a small phase space, while 𝐽/πœ“(1𝑆) has a minimal decay width. These facts lead to the smallest [or the largest] branching ratio for πœ‚π‘ (1𝑆) [or 𝐽/πœ“(1𝑆)] weak decay among πœ“(1𝑆, 2𝑆), πœ‚π‘ (1𝑆, 2𝑆) weak decays into the same final states.

Advances in High Energy Physics

7

Table 6: Branching ratios for the nonleptonic two-body πœ“(2𝑆), πœ‚π‘ (1𝑆), and πœ‚π‘ (2𝑆) weak decays, where the uncertainties come from the CKM parameters, the renormalization scale πœ‡ = (1 Β± 0.2)π‘šπ‘ , and hadronic parameters including decay constants and Gegenbauer moments, respectively. Case 1-a 1-b 1-b 1-c 2-b 2-c 2-a

1-a 1-b 1-b 1-c 2-b 2-b 2-b 2-c 2-a

Final states π·π‘ βˆ’ πœ‹+ π·π‘ βˆ’ 𝐾+ π·π‘‘βˆ’ πœ‹+ π·π‘‘βˆ’ 𝐾+ 0 𝐷𝑒 πœ‹0 0 0 𝐷𝑒 𝐾 0 0 𝐷𝑒 𝐾 0 𝐷𝑒 πœ‚ 0 σΈ€  𝐷𝑒 πœ‚ π·π‘ βˆ’ 𝜌+ π·π‘ βˆ’ πΎβˆ—+ π·π‘‘βˆ’ 𝜌+ π·π‘‘βˆ’ πΎβˆ—+ 0 𝐷𝑒 𝜌0 0 𝐷𝑒 πœ” 0 𝐷𝑒 πœ™ 0 βˆ—0 𝐷𝑒 𝐾 0 βˆ—0 𝐷𝑒 𝐾

πœ“(2𝑆) decay +0.01+0.48+0.03 (5.07βˆ’0.01βˆ’0.27βˆ’0.02 ) Γ— 10βˆ’10 +0.02+0.33+0.04 (3.43βˆ’0.02βˆ’0.18βˆ’0.04 ) Γ— 10βˆ’11 +0.01+0.26+0.01 (2.76βˆ’0.01βˆ’0.15βˆ’0.01 ) Γ— 10βˆ’11 +0.02+0.18+0.02 (1.90βˆ’0.02βˆ’0.10βˆ’0.02 ) Γ— 10βˆ’12 βˆ’12 (1.51+0.01+0.85+0.02 βˆ’0.01βˆ’0.42βˆ’0.02 ) Γ— 10 +0.02+1.17+0.05 (2.07βˆ’0.02βˆ’0.57βˆ’0.05 ) Γ— 10βˆ’13 +0.01+4.04+0.17 (7.15βˆ’0.01βˆ’1.98βˆ’0.16 ) Γ— 10βˆ’11 +0.03+3.02+0.54 (5.35βˆ’0.03βˆ’1.48βˆ’0.50 ) Γ— 10βˆ’12 +0.03+3.18+1.68 (5.63βˆ’0.03βˆ’1.56βˆ’1.46 ) Γ— 10βˆ’13 +0.01+0.15+0.05 (1.67βˆ’0.01βˆ’0.09βˆ’0.05 ) Γ— 10βˆ’9 +0.05+0.89+0.46 (9.59βˆ’0.05βˆ’0.50βˆ’0.45 ) Γ— 10βˆ’11 +0.05+0.83+0.26 (8.99βˆ’0.05βˆ’0.47βˆ’0.26 ) Γ— 10βˆ’11 +0.06+0.48+0.25 (5.15βˆ’0.05βˆ’0.27βˆ’0.24 ) Γ— 10βˆ’12 +0.02+2.44+0.15 (4.36βˆ’0.02βˆ’1.21βˆ’0.15 ) Γ— 10βˆ’12 +0.02+1.84+0.20 (3.28βˆ’0.02βˆ’0.91βˆ’0.19 ) Γ— 10βˆ’12 βˆ’12 (9.40+0.05+5.28+0.52 βˆ’0.05βˆ’2.61βˆ’0.50 ) Γ— 10 +0.05+2.86+0.31 (5.09βˆ’0.05βˆ’1.42βˆ’0.30 ) Γ— 10βˆ’13 +0.01+0.98+0.11 (1.74βˆ’0.01βˆ’0.49βˆ’0.10 ) Γ— 10βˆ’10

Table 7: Classification of the nonleptonic charmonium weak decays. Case 1-a 1-b 1-c 2-a 2-b 2-c

Parameter π‘Ž1 π‘Ž1 π‘Ž1 π‘Ž2 π‘Ž2 π‘Ž2

CKM factor |𝑉𝑒𝑑 π‘‰π‘π‘ βˆ— | ∼ 1 βˆ— |𝑉𝑒𝑑 𝑉𝑐𝑑 |, |𝑉𝑒𝑠 π‘‰π‘π‘ βˆ— | ∼ πœ† βˆ— |𝑉𝑒𝑠 𝑉𝑐𝑑 | ∼ πœ†2 βˆ— |𝑉𝑒𝑑 𝑉𝑐𝑠 | ∼ 1 βˆ— |𝑉𝑒𝑑 𝑉𝑐𝑑 |, |𝑉𝑒𝑠 π‘‰π‘π‘ βˆ— | ∼ πœ† βˆ— |𝑉𝑒𝑠 𝑉𝑐𝑑 | ∼ πœ†2

(5) Compared with πœ“(1𝑆, 2𝑆) β†’ 𝐷𝑉 decays, the corresponding πœ“(1𝑆, 2𝑆) β†’ 𝐷𝑃 decays, where 𝑃 and 𝑉 have the same flavor structures, are suppressed by the orbital angular momentum and so have relatively small branching ratios. There are some approximative relations Bπ‘Ÿ(𝐽/πœ“(1𝑆) β†’ 𝐷𝑉) β‰ˆ 3Bπ‘Ÿ(𝐽/πœ“(1𝑆) β†’ 𝐷𝑃) and Bπ‘Ÿ(πœ“(2𝑆) β†’ 𝐷𝑉) β‰ˆ 3Bπ‘Ÿ(πœ“(2𝑆) β†’ 𝐷𝑃). (6) According to the CKM factors and parameters π‘Ž1,2 , nonleptonic charmonium weak decays could be subdivided into six cases (see Table 7). Case β€œi-a” is the Cabibbo-favored one, so it generally has large branching ratios relative to cases β€œi-b” and β€œi-c.” The π‘Ž2 dominated charmonium weak decays are suppressed by a color factor relative to π‘Ž1 -dominated ones. Hence, the charmonium weak decays into 𝐷𝑠 𝜌 and 𝐷𝑠 πœ‹ final states belonging to case β€œ1-a” usually have relatively large branching ratios; the charmonium weak decays 0 into the 𝐷𝑒 πΎβˆ—0 final states belonging to case β€œ2c” usually have relatively small branching ratios. In

πœ‚π‘ (1𝑆) decay +0.01+0.69+0.04 (7.35βˆ’0.01βˆ’0.39βˆ’0.04 ) Γ— 10βˆ’12 +0.03+0.48+0.06 (4.97βˆ’0.03βˆ’0.27βˆ’0.06 ) Γ— 10βˆ’13 +0.02+0.41+0.02 (4.39βˆ’0.02βˆ’0.23βˆ’0.02 ) Γ— 10βˆ’13 +0.03+0.29+0.04 (3.04βˆ’0.03βˆ’0.16βˆ’0.04 ) Γ— 10βˆ’14 βˆ’14 (2.41+0.01+1.36+0.04 βˆ’0.01βˆ’0.67βˆ’0.04 ) Γ— 10 +0.04+1.89+0.09 (3.35βˆ’0.04βˆ’0.93βˆ’0.08 ) Γ— 10βˆ’15 +0.01+0.65+0.03 (1.16βˆ’0.01βˆ’0.32βˆ’0.03 ) Γ— 10βˆ’12 +0.04+4.89+0.88 (8.66βˆ’0.04βˆ’2.40βˆ’0.82 ) Γ— 10βˆ’14 +0.04+4.32+2.28 (7.66βˆ’0.04βˆ’2.12βˆ’1.98 ) Γ— 10βˆ’15 βˆ’12 (5.28+0.01+0.50+0.15 βˆ’0.01βˆ’0.28βˆ’0.15 ) Γ— 10 +0.01+0.11+0.06 (1.18βˆ’0.01βˆ’0.06βˆ’0.06 ) Γ— 10βˆ’13 βˆ’13 (4.32+0.02+0.41+0.12 βˆ’0.02βˆ’0.23βˆ’0.12 ) Γ— 10 +0.01+0.13+0.07 (1.38βˆ’0.01βˆ’0.07βˆ’0.07 ) Γ— 10βˆ’14 βˆ’14 (2.38+0.01+1.35+0.08 βˆ’0.01βˆ’0.66βˆ’0.08 ) Γ— 10 +0.01+0.98+0.11 (1.74βˆ’0.01βˆ’0.48βˆ’0.10 ) Γ— 10βˆ’14 +0.04+4.84+0.47 (8.57βˆ’0.04βˆ’2.38βˆ’0.45 ) Γ— 10βˆ’15 +0.02+0.85+0.08 (1.50βˆ’0.02βˆ’0.42βˆ’0.08 ) Γ— 10βˆ’15 βˆ’13 (5.20+0.01+2.94+0.29 βˆ’0.01βˆ’1.44βˆ’0.28 ) Γ— 10

πœ‚π‘ (2𝑆) decay βˆ’11 (3.90+0.01+0.37+0.02 βˆ’0.01βˆ’0.21βˆ’0.02 ) Γ— 10 +0.01+0.27+0.04 (2.87βˆ’0.01βˆ’0.15βˆ’0.04 ) Γ— 10βˆ’12 +0.01+0.20+0.01 (2.13βˆ’0.01βˆ’0.11βˆ’0.01 ) Γ— 10βˆ’12 +0.02+0.15+0.02 (1.58βˆ’0.02βˆ’0.08βˆ’0.02 ) Γ— 10βˆ’13 +0.01+0.66+0.02 (1.16βˆ’0.01βˆ’0.32βˆ’0.02 ) Γ— 10βˆ’13 +0.02+0.97+0.04 (1.73βˆ’0.02βˆ’0.48βˆ’0.04 ) Γ— 10βˆ’14 +0.01+3.37+0.14 (5.96βˆ’0.01βˆ’1.65βˆ’0.14 ) Γ— 10βˆ’12 +0.02+2.57+0.46 (4.55βˆ’0.02βˆ’1.26βˆ’0.43 ) Γ— 10βˆ’13 +0.03+3.40+1.79 (6.02βˆ’0.03βˆ’1.67βˆ’1.56 ) Γ— 10βˆ’14 +0.01+0.68+0.21 (7.24βˆ’0.01βˆ’0.38βˆ’0.21 ) Γ— 10βˆ’11 +0.02+0.33+0.17 (3.47βˆ’0.02βˆ’0.18βˆ’0.16 ) Γ— 10βˆ’12 +0.02+0.39+0.12 (4.13βˆ’0.02βˆ’0.22βˆ’0.12 ) Γ— 10βˆ’12 +0.02+0.19+0.10 (2.02βˆ’0.02βˆ’0.11βˆ’0.10 ) Γ— 10βˆ’13 +0.01+1.27+0.08 (2.24βˆ’0.01βˆ’0.62βˆ’0.08 ) Γ— 10βˆ’13 +0.01+0.94+0.10 (1.67βˆ’0.01βˆ’0.46βˆ’0.10 ) Γ— 10βˆ’13 βˆ’13 (3.28+0.02+1.85+0.18 βˆ’0.02βˆ’0.91βˆ’0.17 ) Γ— 10 +0.02+1.23+0.12 (2.18βˆ’0.02βˆ’0.60βˆ’0.12 ) Γ— 10βˆ’14 +0.01+4.27+0.42 (7.57βˆ’0.01βˆ’2.10βˆ’0.40 ) Γ— 10βˆ’12

addition, the branching ratio of case β€œ2-a” (or β€œ2-b”) is usually larger than that of case β€œ1-b” (or β€œ1-c”) due to |π‘Ž2 /π‘Ž1 | β‰₯ πœ†. (7) Branching ratios for the Cabibbo-favored πœ“(1𝑆, 0 βˆ—0 2𝑆) β†’ π·π‘ βˆ’ 𝜌+ , π·π‘ βˆ’ πœ‹+ , 𝐷𝑒 𝐾 decays can reach up to 10βˆ’10 , which might be measurable in the forthcoming days. For example, 𝐽/πœ“(1𝑆) production cross section can reach up to a few πœ‡π‘ with the LHCb and ALICE detectors at LHC [7, 8]. Therefore, over 1012 𝐽/πœ“(1𝑆) samples are in principle available per 100 fbβˆ’1 data collected by LHCb and ALICE, corresponding to a 0 βˆ—0 few tens of 𝐽/πœ“(1𝑆) β†’ π·π‘ βˆ’ 𝜌+ , π·π‘ βˆ’ πœ‹+ , 𝐷𝑒 𝐾 events for about 10% reconstruction efficiency. (8) There is a large cancellation between the CKM factors βˆ— and 𝑉𝑒𝑠 π‘‰π‘π‘ βˆ— , which results in a very small 𝑉𝑒𝑑 𝑉𝑐𝑑 branching ratio for charmonium weak decays into 𝐷𝑒 πœ‚σΈ€  state. (9) There are many uncertainties in our results. The first uncertainty from the CKM factors is small due to high precision on the Wolfenstein parameter πœ† with only 0.3% relative errors now [12]. The second uncertainty from the renormalization scale πœ‡ could, in principle, be reduced by the inclusion of higher order 𝛼𝑠 corrections. For example, it has been shown [34] that tree amplitudes incorporating with the NNLO corrections are relatively less sensitive to the renormalization scale than the NLO amplitudes. The third uncertainty comes from hadronic parameters, which is expected to be cancelled or reduced with the relative ratio of branching ratios.

8

Advances in High Energy Physics (10) The numbers in Tables 5 and 6 just provide an order of magnitude estimate. Many other factors, such as the final state interactions and π‘ž2 dependence of form factors, which are not considered here, deserve many dedicated studies.

0

A (πœ“ 󳨀→ 𝐷𝑒 πœ‚π‘ž ) = 𝐺𝐹 π‘šπœ“ (πœ–πœ“ β‹… π‘πœ‚π‘ž ) πœ“β†’π·π‘’

β‹… π‘“πœ‚π‘ž 𝐴 0

0

A (πœ“ 󳨀→ 𝐷𝑒 πœ‚π‘  ) = √2𝐺𝐹 π‘šπœ“ (πœ–πœ“ β‹… π‘πœ‚π‘  ) πœ“β†’π·π‘’

β‹… π‘“πœ‚π‘  𝐴 0

4. Summary With the anticipation of abundant data samples on charmonium at high-luminosity heavy-flavor experiments, we studied the nonleptonic two-body πœ“(1𝑆, 2𝑆) and πœ‚π‘ (1𝑆, 2𝑆) weak decays into one ground-state charmed meson plus one ground-state light meson based on the low energy effective Hamiltonian. By considering QCD radiative corrections to hadronic matrix elements of tree operators, we got the effective coefficients π‘Ž1,2 containing partial information of strong phases. The magnitude of π‘Ž1,2 agrees comfortably with those used in previous works [14–17]. The transition form factors between the charmonium and charmed meson are calculated by using the nonrelativistic wave functions with isotropic harmonic oscillator potential. Branching ratios for πœ“(1𝑆, 2𝑆), πœ‚π‘ (1𝑆, 2𝑆) β†’ 𝐷𝑀 decays are estimated roughly. It is found that the Cabibbo-favored πœ“(1𝑆, 2𝑆) β†’ π·π‘ βˆ’ 𝜌+ , π·π‘ βˆ’ πœ‹+ , 0 βˆ—0 𝐷𝑒 𝐾

βˆ’10

decays have large branching ratios ≳ 10 promisingly detected in the forthcoming years.

, which are

βˆ— 𝑉𝑐𝑑 𝑉𝑒𝑑 π‘Ž2 ,

π‘‰π‘π‘ βˆ— 𝑉𝑒𝑠 π‘Ž2 ,

0

0

A (πœ“ 󳨀→ 𝐷𝑒 πœ‚) = cos πœ™A (πœ“ 󳨀→ 𝐷𝑒 πœ‚π‘ž ) βˆ’ sin πœ™ 0

β‹… A (πœ“ 󳨀→ 𝐷𝑒 πœ‚π‘  ) , 0

0

A (πœ“ 󳨀→ 𝐷𝑒 πœ‚σΈ€  ) = sin πœ™A (πœ“ 󳨀→ 𝐷𝑒 πœ‚π‘ž ) + cos πœ™ 0

β‹… A (πœ“ 󳨀→ 𝐷𝑒 πœ‚π‘  ) , A (πœ“ 󳨀→ π·π‘ βˆ’ 𝜌+ ) = βˆ’π‘–

𝐺𝐹 𝑓 π‘š π‘‰βˆ— 𝑉 π‘Ž {(πœ–πœŒβˆ— β‹… πœ–πœ“ ) √2 𝜌 𝜌 𝑐𝑠 𝑒𝑑 1

πœ“β†’π·π‘ 

πœ“β†’π·

β‹…

2𝐴 2 𝑠 2π‘‰πœ“β†’π·π‘  βˆ’ π‘–πœ–πœ‡]𝛼𝛽 πœ–πœŒβˆ—πœ‡ πœ–πœ“] π‘πœŒπ›Ό π‘πœ“π›½ }, π‘šπœ“ + π‘šπ·π‘  π‘šπœ“ + π‘šπ·π‘ 

A (πœ“ 󳨀→ π·π‘ βˆ’ πΎβˆ—+ ) = βˆ’π‘–

Appendices A. The Amplitudes for πœ“ β†’ 𝐷𝑀 Decays

+ (πœ–πœŒβˆ— β‹… π‘πœ“ ) (πœ–πœ“ β‹… π‘πœŒ )

β‹… (π‘šπœ“ + π‘šπ·π‘  ) 𝐴 1

𝐺𝐹 √2 πœ“β†’π·π‘ 

βˆ— β‹… π‘“πΎβˆ— π‘šπΎβˆ— π‘‰π‘π‘ βˆ— 𝑉𝑒𝑠 π‘Ž1 {(πœ–πΎ βˆ— β‹… πœ–πœ“ ) (π‘šπœ“ + π‘šπ· ) 𝐴 1 𝑠

Consider A (πœ“ 󳨀→ π·π‘ βˆ’ πœ‹+ ) = √2𝐺𝐹 π‘šπœ“ (πœ–πœ“ β‹… π‘πœ‹ ) πœ“β†’π·π‘ 

β‹… π‘“πœ‹ 𝐴 0 A (πœ“ 󳨀→

π‘‰π‘π‘ βˆ— 𝑉𝑒𝑑 π‘Ž1 ,

π·π‘ βˆ’ 𝐾+ )

πœ“β†’π·π‘ 

π·π‘‘βˆ’ πœ‹+ )

πœ“β†’π·π‘‘

β‹… π‘“πœ‹ 𝐴 0

= √2𝐺𝐹 π‘šπœ“ (πœ–πœ“ β‹… 𝑝𝐾 )

π‘‰π‘π‘ βˆ— 𝑉𝑒𝑠 π‘Ž1 ,

β‹… 𝑓𝐾 𝐴 0 A (πœ“ 󳨀→

= √2𝐺𝐹 π‘šπœ“ (πœ–πœ“ β‹… π‘πœ‹ )

βˆ— 𝑉𝑐𝑑 𝑉𝑒𝑑 π‘Ž1 ,

A (πœ“ 󳨀→ π·π‘‘βˆ’ 𝐾+ ) = √2𝐺𝐹 π‘šπœ“ (πœ–πœ“ β‹… 𝑝𝐾 ) πœ“β†’π·π‘‘

β‹… 𝑓𝐾 𝐴 0

βˆ— 𝑉𝑐𝑑 𝑉𝑒𝑠 π‘Ž1 ,

0

A (πœ“ 󳨀→ 𝐷𝑒 πœ‹0 ) = βˆ’πΊπΉ π‘šπœ“ (πœ–πœ“ β‹… π‘πœ‹ ) πœ“β†’π·π‘’

β‹… π‘“πœ‹ 𝐴 0

A (πœ“ 󳨀→

βˆ— 𝑉𝑐𝑑 𝑉𝑒𝑑 π‘Ž2 ,

0 𝐷𝑒 𝐾 0 )

πœ“β†’π·π‘’

β‹… 𝑓𝐾 𝐴 0

0

= √2𝐺𝐹 π‘šπœ“ (πœ–πœ“ β‹… 𝑝𝐾 )

βˆ— 𝑉𝑐𝑑 𝑉𝑒𝑠 π‘Ž2 ,

πœ“β†’π·π‘’

βˆ—πœ‡

𝛼 𝛽 βˆ’ π‘–πœ–πœ‡]𝛼𝛽 πœ–πΎβˆ— πœ–πœ“] 𝑝𝐾 βˆ— π‘πœ“

A (πœ“ 󳨀→ π·π‘‘βˆ’ 𝜌+ ) = βˆ’π‘–

π‘‰π‘π‘ βˆ— 𝑉𝑒𝑑 π‘Ž2 ,

πœ“β†’π·

2𝐴 2 𝑠 π‘šπœ“ + π‘šπ·π‘ 

2π‘‰πœ“β†’π·π‘  }, π‘šπœ“ + π‘šπ·π‘ 

𝐺𝐹 𝑓 π‘š π‘‰βˆ— 𝑉 π‘Ž {(πœ–πœŒβˆ— β‹… πœ–πœ“ ) √2 𝜌 𝜌 𝑐𝑑 𝑒𝑑 1

πœ“β†’π·π‘‘

β‹… (π‘šπœ“ + π‘šπ·π‘‘ ) 𝐴 1

+ (πœ–πœŒβˆ— β‹… π‘πœ“ ) (πœ–πœ“ β‹… π‘πœŒ )

πœ“β†’π·

β‹…

2𝐴 2 𝑑 2π‘‰πœ“β†’π·π‘‘ βˆ’ π‘–πœ–πœ‡]𝛼𝛽 πœ–πœŒβˆ—πœ‡ πœ–πœ“] π‘πœŒπ›Ό π‘πœ“π›½ }, π‘šπœ“ + π‘šπ·π‘‘ π‘šπœ“ + π‘šπ·π‘‘

A (πœ“ 󳨀→ π·π‘‘βˆ’ πΎβˆ—+ ) = βˆ’π‘–

𝐺𝐹 √2 πœ“β†’π·π‘‘

βˆ— βˆ— 𝑉𝑒𝑠 π‘Ž1 {(πœ–πΎ β‹… π‘“πΎβˆ— π‘šπΎβˆ— 𝑉𝑐𝑑 βˆ— β‹… πœ–πœ“ ) (π‘šπœ“ + π‘šπ· ) 𝐴 1 𝑑

βˆ— + (πœ–πΎ βˆ— β‹… π‘πœ“ ) (πœ–πœ“ β‹… π‘πΎβˆ— )

0

A (πœ“ 󳨀→ 𝐷𝑒 𝐾 ) = √2𝐺𝐹 π‘šπœ“ (πœ–πœ“ β‹… 𝑝𝐾 ) β‹… 𝑓𝐾 𝐴 0

βˆ— + (πœ–πΎ βˆ— β‹… π‘πœ“ ) (πœ–πœ“ β‹… π‘πΎβˆ— )

βˆ—πœ‡

𝛼 𝛽 βˆ’ π‘–πœ–πœ‡]𝛼𝛽 πœ–πΎβˆ— πœ–πœ“] 𝑝𝐾 βˆ— π‘πœ“

πœ“β†’π·

2𝐴 2 𝑑 π‘šπœ“ + π‘šπ·π‘‘

2π‘‰πœ“β†’π·π‘‘ }, π‘šπœ“ + π‘šπ·π‘‘

Advances in High Energy Physics 0

A (πœ“ 󳨀→ 𝐷𝑒 𝜌0 ) = +𝑖

πœ“β†’π·π‘’

β‹…

π‘šπœ“ + π‘šπ·π‘’ 0

=𝑖

+ (πœ–πœŒβˆ— β‹… π‘πœ“ ) (πœ–πœ“ β‹… π‘πœŒ )

βˆ’ π‘–πœ–πœ‡]𝛼𝛽 πœ–πœŒβˆ—πœ‡ πœ–πœ“] π‘πœŒπ›Ό π‘πœ“π›½

A (πœ“ 󳨀→ 𝐷𝑒 πœ”) = βˆ’π‘–

A (πœ‚π‘ 󳨀→ π·π‘ βˆ’ 𝐾+ )

𝐺𝐹 𝑓 π‘š π‘‰βˆ— 𝑉 π‘Ž {(πœ–πœŒβˆ— β‹… πœ–πœ“ ) 2 𝜌 𝜌 𝑐𝑑 𝑒𝑑 2

β‹… (π‘šπœ“ + π‘šπ·π‘’ ) 𝐴 1 πœ“β†’π· 2𝐴 2 𝑒

9

A (πœ‚π‘ 󳨀→ π·π‘‘βˆ’ πœ‹+ )

πœ“β†’π·π‘’

2𝑉 }, π‘šπœ“ + π‘šπ·π‘’

=𝑖

𝐺𝐹 𝑓 π‘š π‘‰βˆ— 𝑉 π‘Ž {(πœ–πœ”βˆ— β‹… πœ–πœ“ ) 2 πœ” πœ” 𝑐𝑑 𝑒𝑑 2

πœ“β†’π·π‘’

β‹… (π‘šπœ“ + π‘šπ·π‘’ ) 𝐴 1

=𝑖

+ (πœ–πœ”βˆ— β‹… π‘πœ“ ) (πœ–πœ“ β‹… π‘πœ” )

πœ“β†’π·

A (πœ“ 󳨀→

πœ“β†’π·π‘’

0

= βˆ’π‘–

0

+ (πœ–πœ™βˆ— β‹… π‘πœ“ ) (πœ–πœ“ β‹… π‘πœ™ )

=𝑖

2𝐴 2 𝑒 2π‘‰πœ“β†’π·π‘’ βˆ—πœ‡ βˆ’ π‘–πœ–πœ‡]𝛼𝛽 πœ–πœ™ πœ–πœ“] π‘πœ™π›Ό π‘πœ“π›½ }, π‘šπœ“ + π‘šπ·π‘’ π‘šπœ“ + π‘šπ·π‘’ 0

A (πœ“ 󳨀→ 𝐷𝑒 πΎβˆ—0 ) = βˆ’π‘–

0

𝐺𝐹 √2

=𝑖

πœ“β†’π·

βˆ—πœ‡

=𝑖

0

βˆ—0

0

2𝑉 }, π‘šπœ“ + π‘šπ·π‘’

=𝑖

𝐺𝐹 √2

0

0

= cos πœ™A (πœ‚π‘ 󳨀→ 𝐷𝑒 πœ‚π‘ž )

πœ“β†’π·π‘’

0

βˆ’ sin πœ™A (πœ‚π‘ 󳨀→ 𝐷𝑒 πœ‚π‘  ) ,

πœ“β†’π·

2𝐴 2 𝑒 β‹… π‘πœ“ ) (πœ–πœ“ β‹… π‘πΎβˆ— ) π‘šπœ“ + π‘šπ·π‘’ βˆ—πœ‡

𝛼 𝛽 βˆ’ π‘–πœ–πœ‡]𝛼𝛽 πœ–πΎβˆ— πœ–πœ“] 𝑝𝐾 βˆ— π‘πœ“

𝐺𝐹 πœ‚ →𝐷 2 (π‘šπœ‚2𝑐 βˆ’ π‘šπ· ) π‘“πœ‚π‘  𝐹0 𝑐 𝑒 𝑉𝑒𝑠 π‘‰π‘π‘ βˆ— π‘Ž2 , 𝑒 √2

A (πœ‚π‘ 󳨀→ 𝐷𝑒 πœ‚)

βˆ— β‹… π‘“πΎβˆ— π‘šπΎβˆ— π‘‰π‘π‘ βˆ— 𝑉𝑒𝑑 π‘Ž2 {(πœ–πΎ βˆ— β‹… πœ–πœ“ ) (π‘šπœ“ + π‘šπ· ) 𝐴 1 𝑒

βˆ— + (πœ–πΎ βˆ—

𝐺𝐹 πœ‚ →𝐷 2 βˆ— ) π‘“πœ‚π‘ž 𝐹0 𝑐 𝑒 𝑉𝑒𝑑 𝑉𝑐𝑑 π‘Ž2 , (π‘šπœ‚2𝑐 βˆ’ π‘šπ· 𝑒 2

A (πœ‚π‘ 󳨀→ 𝐷𝑒 πœ‚π‘  )

πœ“β†’π·π‘’

A (πœ“ 󳨀→ 𝐷𝑒 𝐾 ) = βˆ’π‘–

𝐺𝐹 πœ‚ →𝐷 2 (π‘šπœ‚2𝑐 βˆ’ π‘šπ· ) 𝑓𝐾 𝐹0 𝑐 𝑒 𝑉𝑒𝑑 π‘‰π‘π‘ βˆ— π‘Ž2 , 𝑒 √2

A (πœ‚π‘ 󳨀→ 𝐷𝑒 πœ‚π‘ž )

2𝐴 2 𝑒 β‹… π‘πœ“ ) (πœ–πœ“ β‹… π‘πΎβˆ— ) π‘šπœ“ + π‘šπ·π‘’

𝛼 𝛽 βˆ’ π‘–πœ–πœ‡]𝛼𝛽 πœ–πΎβˆ— πœ–πœ“] 𝑝𝐾 βˆ— π‘πœ“

0

0

πœ“β†’π·π‘’

+

𝐺𝐹 πœ‚ →𝐷 2 βˆ— (π‘šπœ‚2𝑐 βˆ’ π‘šπ· ) 𝑓𝐾 𝐹0 𝑐 𝑒 𝑉𝑒𝑠 𝑉𝑐𝑑 π‘Ž2 , 𝑒 √2

A (πœ‚π‘ 󳨀→ 𝐷𝑒 𝐾 )

βˆ— βˆ— β‹… π‘“πΎβˆ— π‘šπΎβˆ— 𝑉𝑐𝑑 𝑉𝑒𝑠 π‘Ž2 {(πœ–πΎ βˆ— β‹… πœ–πœ“ ) (π‘šπœ“ + π‘šπ· ) 𝐴 1 𝑒

βˆ— (πœ–πΎ βˆ—

𝐺𝐹 πœ‚ →𝐷 2 βˆ— ) π‘“πœ‹ 𝐹0 𝑐 𝑒 𝑉𝑒𝑑 𝑉𝑐𝑑 π‘Ž2 , (π‘šπœ‚2𝑐 βˆ’ π‘šπ· 𝑒 2

A (πœ‚π‘ 󳨀→ 𝐷𝑒 𝐾0 )

πœ“β†’π·

β‹…

𝐺𝐹 πœ‚ →𝐷 2 βˆ— (π‘šπœ‚2𝑐 βˆ’ π‘šπ· ) 𝑓𝐾 𝐹0 𝑐 𝑑 𝑉𝑒𝑠 𝑉𝑐𝑑 π‘Ž1 , 𝑑 √2

A (πœ‚π‘ 󳨀→ 𝐷𝑒 πœ‹0 )

𝐺 = βˆ’π‘– 𝐹 π‘“πœ™ π‘šπœ™ π‘‰π‘π‘ βˆ— 𝑉𝑒𝑠 π‘Ž2 {(πœ–πœ™βˆ— β‹… πœ–πœ“ ) √2

β‹… (π‘šπœ“ + π‘šπ·π‘’ ) 𝐴 1

𝐺𝐹 πœ‚ →𝐷 2 βˆ— (π‘šπœ‚2𝑐 βˆ’ π‘šπ· ) π‘“πœ‹ 𝐹0 𝑐 𝑑 𝑉𝑒𝑑 𝑉𝑐𝑑 π‘Ž1 , 𝑑 √2

A (πœ‚π‘ 󳨀→ π·π‘‘βˆ’ 𝐾+ )

2𝐴 2 𝑒 2π‘‰πœ“β†’π·π‘’ β‹… βˆ’ π‘–πœ–πœ‡]𝛼𝛽 πœ–πœ”βˆ—πœ‡ πœ–πœ“] π‘πœ”π›Ό π‘πœ“π›½ }, π‘šπœ“ + π‘šπ·π‘’ π‘šπœ“ + π‘šπ·π‘’ 0 𝐷𝑒 πœ™)

𝐺𝐹 πœ‚ →𝐷 2 (π‘šπœ‚2𝑐 βˆ’ π‘šπ· ) 𝑓𝐾 𝐹0 𝑐 𝑠 𝑉𝑒𝑠 π‘‰π‘π‘ βˆ— π‘Ž1 , 𝑠 √2

0

A (πœ‚π‘ 󳨀→ 𝐷𝑒 πœ‚σΈ€  )

2π‘‰πœ“β†’π·π‘’ }. π‘šπœ“ + π‘šπ·π‘’

0

= sin πœ™A (πœ‚π‘ 󳨀→ 𝐷𝑒 πœ‚π‘ž ) (A.1)

B. The Amplitudes for the πœ‚π‘ β†’ 𝐷𝑀 Decays

0

+ cos πœ™A (πœ‚π‘ 󳨀→ 𝐷𝑒 πœ‚π‘  ) , A (πœ‚π‘ 󳨀→ π·π‘ βˆ’ 𝜌+ ) πœ‚ →𝐷𝑠

Consider A (πœ‚π‘ 󳨀→ π·π‘ βˆ’ πœ‹+ ) =𝑖

𝐺𝐹 πœ‚ →𝐷 2 (π‘šπœ‚2𝑐 βˆ’ π‘šπ· ) π‘“πœ‹ 𝐹0 𝑐 𝑠 𝑉𝑒𝑑 π‘‰π‘π‘ βˆ— π‘Ž1 , 𝑠 √2

= √2𝐺𝐹 π‘šπœŒ (πœ–πœŒβˆ— β‹… π‘πœ‚π‘ ) π‘“πœŒ 𝐹1 𝑐

𝑉𝑒𝑑 π‘‰π‘π‘ βˆ— π‘Ž1 ,

A (πœ‚π‘ 󳨀→ π·π‘ βˆ’ πΎβˆ—+ ) πœ‚ →𝐷𝑠

βˆ— 𝑐 = √2𝐺𝐹 π‘šπΎβˆ— (πœ–πΎ βˆ— β‹… π‘πœ‚ ) π‘“πΎβˆ— 𝐹 1 𝑐

𝑉𝑒𝑠 π‘‰π‘π‘ βˆ— π‘Ž1 ,

10

Advances in High Energy Physics A (πœ‚π‘ 󳨀→ π·π‘‘βˆ’ 𝜌+ ) πœ‚ →𝐷𝑑

= √2𝐺𝐹 π‘šπœŒ (πœ–πœŒβˆ— β‹… π‘πœ‚π‘ ) π‘“πœŒ 𝐹1 𝑐

βˆ— 𝑉𝑒𝑑 𝑉𝑐𝑑 π‘Ž1 ,

A (πœ‚π‘ 󳨀→ π·π‘‘βˆ’ πΎβˆ—+ ) πœ‚ →𝐷𝑑

βˆ— 𝑐 = √2𝐺𝐹 π‘šπΎβˆ— (πœ–πΎ βˆ— β‹… π‘πœ‚ ) π‘“πΎβˆ— 𝐹 1 𝑐

βˆ— 𝑉𝑒𝑠 𝑉𝑐𝑑 π‘Ž1 ,

0

A (πœ‚π‘ 󳨀→ 𝐷𝑒 𝜌0 ) πœ‚ →𝐷𝑒

= βˆ’πΊπΉ π‘šπœŒ (πœ–πœŒβˆ— β‹… π‘πœ‚π‘ ) π‘“πœŒ 𝐹1 𝑐

βˆ— 𝑉𝑒𝑑 𝑉𝑐𝑑 π‘Ž2 ,

0

A (πœ‚π‘ 󳨀→ 𝐷𝑒 πœ”) πœ‚ →𝐷𝑒

= 𝐺𝐹 π‘šπœ” (πœ–πœ”βˆ— β‹… π‘πœ‚π‘ ) π‘“πœ” 𝐹1 𝑐

βˆ— 𝑉𝑒𝑑 𝑉𝑐𝑑 π‘Ž2 ,

0

A (πœ‚π‘ 󳨀→ 𝐷𝑒 πœ™) πœ‚ →𝐷𝑒

= √2𝐺𝐹 π‘šπœ™ (πœ–πœ™βˆ— β‹… π‘πœ‚π‘ ) π‘“πœ™ 𝐹1 𝑐

𝑉𝑒𝑠 π‘‰π‘π‘ βˆ— π‘Ž2 ,

0

A (πœ‚π‘ 󳨀→ 𝐷𝑒 πΎβˆ—0 ) πœ‚ →𝐷𝑒

βˆ— 𝑉𝑒𝑠 𝑉𝑐𝑑 π‘Ž2 ,

πœ‚ →𝐷𝑒

𝑉𝑒𝑑 π‘‰π‘π‘ βˆ— π‘Ž2 .

βˆ— 𝑐 = √2𝐺𝐹 π‘šπΎβˆ— (πœ–πΎ βˆ— β‹… π‘πœ‚ ) π‘“πΎβˆ— 𝐹 1 𝑐 0

βˆ—0

A (πœ‚π‘ 󳨀→ 𝐷𝑒 𝐾 ) βˆ— 𝑐 = √2𝐺𝐹 π‘šπΎβˆ— (πœ–πΎ βˆ— β‹… π‘πœ‚ ) π‘“πΎβˆ— 𝐹 1 𝑐

(B.1)

Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment The work is supported by the National Natural Science Foundation of China (Grants nos. 11547014, 11275057, 11475055, U1232101, and U1332103).

References [1] V. Novikov, L. Okun, M. Shifman et al., β€œCharmonium and gluons,” Physics Reports, vol. 41, no. 1, pp. 1–133, 1978. [2] S. Okubo, β€œSome consequences of unitary symmetry model,” Physics Letters. B, vol. 4, pp. 14–16, 1963. [3] G. Zweig, β€œCERN-TH-401, 402, 412,” 1964. [4] J. Iizuka, β€œA systematics and phenomenology of meson family,” Progress of Theoretical Physics Supplement, vol. 37-38, pp. 21–34, 1966. [5] http://bes3.ihep.ac.cn/datasets/datasets.htm. [6] H. Li and S. Zhu, β€œMini-review of rare charmonium decays at BESIII,” Chinese Physics C, vol. 36, no. 10, pp. 932–940, 2012. [7] R. Aaij, B. Adeva, M. Adinolfi et al., β€œMeasurement of forward 𝐽/πœ“ production cross-sections in pp collisions at βˆšπ‘† = 13 TeV,” Journal of High Energy Physics, vol. 2015, no. 10, article 172, 2015.

[8] G. Aad, B. Abbott, J. Abdallah et al., β€œMeasurement of the differential cross-sections of inclusive, prompt and non-prompt 𝐽/πœ“ production in proton–proton collisions at βˆšπ‘  = 7 TeV,” Nuclear Physics B, vol. 850, no. 3, pp. 387–444, 2011. [9] V. Khachatryan, A. Apresyan, A. Bornheim et al., β€œMeasurement of 𝐽/πœ“ and πœ“(2𝑆) Prompt Double-Differential Cross Sections in pp Collisions at βˆšπ‘  = 7 TeV,” Physical Review Letters, vol. 114, no. 19, Article ID 191802, 2015. [10] M. Ablikim, M. N. Achasov, X. C. Ai et al., β€œSearch for the rare 0 βˆ—0 decays 𝐽/πœ“ β†’ 𝐷 𝐾 ,” Physical Review D, vol. 89, no. 7, Article ID 071101, 2014. [11] M. A. Sanchis-Lozano, β€œOn the search for weak decays of heavy quarkonium in dedicated heavy-quark factories,” Zeitschrift fΒ¨ur Physik C Particles and Fields, vol. 62, no. 2, pp. 271–279, 1994. [12] K. A. Olive, K. Agashe, C. Amsler et al., β€œReview of particle physics,” Chinese Physics C, vol. 38, no. 9, Article ID 090001, 2014. [13] Y. Shen and Y. Wang, β€œπ½/πœ“ weak decays in the covariant lightfront quark model,” Physical Review D, vol. 78, no. 7, Article ID 074012, 2008. [14] Y. Wang, H. Zou, Z.-T. Wei, X.-Q. Li, and C.-D. LΒ¨u, β€œWeak decays of 𝐽/πœ“: the non-leptonic case,” The European Physical Journal C, vol. 55, no. 4, pp. 607–613, 2008. [15] R. C. Verma, A. N. Kamal, and A. Czarnecki, β€œHadronic weak decays of πœ“,” Physics Letters B, vol. 252, no. 4, pp. 690–694, 1990. [16] K. K. Sharma and R. C. Verma, β€œRare decays of πœ“ and Ξ₯,” International Journal of Modern Physics A, vol. 14, no. 6, pp. 937– 945, 1999. [17] R. Dhir, R. C. Verma, and A. Sharma, β€œEffects of flavor dependence on weak decays of 𝐽/πœ“ and Ξ₯,” Advances in High Energy Physics, vol. 2013, Article ID 706543, 12 pages, 2013. [18] M. Wirbel, B. Stech, and M. Bauer, β€œExclusive semileptonic decays of heavy mesons,” Zeitschrift fΒ¨ur Physik C: Particles and Fields, vol. 29, no. 4, pp. 637–642, 1985. [19] M. Beneke, G. Buchallab, M. Neubertc, and C. T. Sachrajdad, β€œQCD factorization for exclusive non-leptonic B-meson decays: general arguments and the case of heavy-light final states,” Nuclear Physics B, vol. 591, no. 1-2, pp. 313–418, 2000. [20] H. Cheng and C. Chiang, β€œTwo-body hadronic charmed meson decays,” Physical Review D, vol. 81, Article ID 074021, 2010. [21] Y. Wang, H. Zou, Z.-T. Wei, X.-Q. Li, and C.-D. LΒ¨u, β€œThe transition form factors for semi-leptonic weak decays of 𝐽/πœ“ in QCD sum rules,” The European Physical Journal C, vol. 54, pp. 107–121, 2008. [22] T. Feldmann, P. Kroll, and B. Stech, β€œMixing and decay constants of pseudoscalar mesons,” Physical Review D, vol. 58, no. 11, Article ID 114006, 1998. [23] P. Ball and G. W. Jones, β€œTwist-3 distribution amplitudes of πΎβˆ— and πœ™ mesons,” Journal of High Energy Physics, vol. 2007, no. 3, p. 69, 2007. [24] P. Ball, V. M. Braun, and A. Lenz, β€œHigher-twist distribution amplitudes of the K meson in QCD,” Journal of High Energy Physics, vol. 2006, no. 5, article 004, 2006. [25] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, β€œWeak decays beyond leading logarithms,” Reviews of Modern Physics, vol. 68, no. 4, pp. 1125–1244, 1996. [26] G. P. Lepage and S. J. Brodsky, β€œExclusive processes in perturbative quantum chromodynamics,” Physical Review D, vol. 22, article 2157, 1980.

Advances in High Energy Physics [27] G. Valencia, β€œAngular correlations in the decay 𝐡 β†’ 𝑉𝑉 and CP violation,” Physical Review D, vol. 39, no. 11, pp. 3339–3345, 1989. [28] G. Kramer and W. F. Palmer, β€œBranching ratios and CP asymmetries in the decay 𝐡 β†’ VV,” Physical Review D, vol. 45, no. 1, pp. 193–216, 1992. [29] G. Legage, L. Magnea, C. Nakhleh, U. Magnea, and K. Hornbostel, β€œImproved nonrelativistic QCD for heavy-quark physics,” Physical Review D, vol. 46, no. 9, p. 4052, 1992. [30] G. Bodwin, E. Braaten, and G. Legage, β€œRigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” Physical Review D, vol. 51, no. 3, p. 1125, 1995. [31] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, β€œEffective-field theories for heavy quarkonium,” Reviews of Modern Physics, vol. 77, no. 4, pp. 1423–1496, 2005. [32] A. Kamal, Particle Physics, Springer, Berlin, Germany, 2014. [33] B. Xiao, X. Qin, and B. Ma, β€œThe kaon form factor in the lightcone quark model,” The European Physical Journal A, vol. 15, pp. 523–527, 2002. [34] M. Beneke, T. Huber, and X.-Q. Li, β€œNNLO vertex corrections to non-leptonic B decays: tree amplitudes,” Nuclear Physics B, vol. 832, no. 1-2, pp. 109–151, 2010.

11

Hindawi Publishing Corporation http://www.hindawi.com

The Scientific World Journal

Journal of

Journal of

Gravity

Photonics Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Advances in Condensed Matter Physics

Soft Matter Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Aerodynamics

Journal of

Fluids Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

International Journal of

Optics

Statistical Mechanics Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Journal of

Thermodynamics Journal of

β€ŠComputationalβ€Š β€ŠMethodsβ€Šinβ€ŠPhysics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Solid State Physics

Astrophysics

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Physics Research International

Advances in

High Energy Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Superconductivity Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Atomic and Molecular Physics

Journal of

Biophysics Hindawi Publishing Corporation http://www.hindawi.com

Advances in

Astronomy

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014