Widely-tunable, passively Q-switched erbium-doped ... - OSA Publishing

0 downloads 0 Views 3MB Size Report
H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode ... C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. C. Wen, and D. Y. Tang, ...
Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber Yizhong Huang,1 Zhengqian Luo,1,∗ Yingyue Li,1 Min Zhong,1 Bin Xu,1 Kaijun Che,1 Huiying Xu,1 Zhiping Cai,1 Jian Peng,2 and Jian Weng2,3 1 Department 2 Department

of Electronic Engineering, Xiamen University, Xiamen, 361005, China of Biomaterials, College of Materials, Xiamen University, 361005, China 3 [email protected][email protected]

Abstract: We propose and demonstrate a MoS2 -based passively Qswitched Er-doped fiber laser with a wide tuning range of 1519.6-1567.7 nm. The few-layer MoS2 nano-platelets are prepared by the liquid-phase exfoliation method, and are then made into polymer-composite film to construct the fiber-compatible MoS2 saturable absorber (SA). It is measured at 1560 nm wavelength, that such MoS2 SA has the modulation depth of ∼2% and the saturable optical intensity of ∼10 MW/cm2 . By further inserting the filmy MoS2 -SA into an Er-doped fiber laser, stable Q-switching operation with a 48.1 nm continuous tuning from S- to C-waveband is successfully achieved. The shortest pulse duration and the maximum pulse energy are 3.3 μ s and 160 nJ, respectively. The repetition rate and the pulse duration under different operation conditions have been also characterized. To the best of our knowledge, it is the first demonstration of MoS2 Q-switched, widely-tunable fiber laser. © 2014 Optical Society of America OCIS codes: (060.3510) Lasers, fiber; (160.4236) Nanomaterials; (140.3540) Lasers, Qswitched.

References and links 1. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, and R. Moncorge, “Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27, 1980–1982 (2002). 2. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). 3. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on sesam technology: New horizons and applications,” New J. Phys. 6, 177 (2004). 4. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29, 1581–1583 (2004). 5. F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. White, W. I. Milne, and A. C. Ferrari, “Widebandtuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008). 6. D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett. 22, 9–11 (2010). 7. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009). 8. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” Acs Nano 4, 803–810 (2010).

#220774 - $15.00 USD Received 11 Aug 2014; revised 24 Sep 2014; accepted 25 Sep 2014; published 8 Oct 2014 (C) 2014 OSA 20 October 2014 | Vol. 22, No. 21 | DOI:10.1364/OE.22.025258 | OPTICS EXPRESS 25258

9. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009). 10. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010). 11. J. Liu, S. Wu, Q.H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36, 4008–4010 (2011). 12. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010). 13. Y. H. Lin, C. Y. Yang, J. H. Liou, C. P. Yu, and G. R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave modelocking of fiber laser,” Opt. Express 21, 16763–16777 (2013). 14. G. Lin and Y. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive modelocking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–885 (2011). 15. Z. Q. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. P. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35, 3709–3711 (2010). 16. H. Ahmad, M. Zulkifli, F. Muhammad, A. Zulkifli, and S. Harun, “Tunable graphene-based Q-switched erbiumdoped fiber laser using fiber bragg grating,” J. Modern Opt. 60, 202–212 (2013). 17. G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100, 161109 (2012). 18. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, “Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber,” Appl. Phys. Lett. 101, 241106 (2012). 19. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2 Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014). 20. C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012). 21. Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu, and G. R. Lin, “Soliton compression of the erbiumdoped fiber laser weakly started mode-locking by nanoscale p-type Bi2 Te3 topological insulator particles,” Laser Phys. Lett. 11, 055107 (2014). 22. Z. Q. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 μ m Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2 Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013). 23. Z.-C. Luo, M. Liu, H. Liu, X.-W. Zheng, A.-P. Luo, C.-J. Zhao, H. Zhang, S.-C. Wen, and W.-C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013). 24. J. Lee, J. Koo, Y.-M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2 Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014). 25. Z. Yu, Y. Song, J. Tian, Z. Dou, H. Guoyu, K. Li, H. Li, and X. Zhang, “High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2 Se3 film,” Opt. Express 22, 11508–11515 (2014). 26. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photon. 7, 842–845 (2013). 27. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2 : A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010). 28. J. Zheng, H. Zhang, S. Dong, Y. Liu, C. T. Nai, H. S. Shin, H. Y. Jeong, B. Liu, and K. P. Loh, “High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide,” Nat. Commun. 5, 2995 (2014). 29. K. Wang, J. Wang, J. Fan, M. Lotya, A. Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, and Q. Zhao, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013). 30. H. Zhang, S. Lu, J. Zheng, J. Du, S. Wen, D. Tang, and K. Loh, “Molybdenum disulfide (MoS2 ) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014). 31. H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014). 32. R. I. Woodward, E. J. Kelleher, T. Runcorn, S. V. Popov, F. Torrisi, R. T. Howe, and T. Hasan, “Q-switched fiber laser with MoS2 saturable absorber,” CLEO SM3H.6 (2014). 33. H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2 ) saturable absorber,” Opt. Express 22, 17341–17348 ( 2014). 34. B. Radisavljevic, A. Radenovic, J. Brivio, and V. Giacometti, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147 (2011). 35. Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2 Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013). 36. E. Garmire, “Resonant optical nonlinearities in semiconductors,” IEEE J. Sel. Top. Quantum Electron. 6, 1094– 1110 (2000). 37. Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator

#220774 - $15.00 USD Received 11 Aug 2014; revised 24 Sep 2014; accepted 25 Sep 2014; published 8 Oct 2014 (C) 2014 OSA 20 October 2014 | Vol. 22, No. 21 | DOI:10.1364/OE.22.025258 | OPTICS EXPRESS 25259

passively Q-switched double-clad fiber laser at 2 μ m wavelength,” IEEE J. Sel. Top. Quantum Electron. 20, 0902708 (2014). 38. T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17, 2358–2363 (2009). 39. D. Popa, Z. P. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011). 40. G. Spuhler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).

1.

Introduction

Passively Q-switched fiber lasers (PQFLs) [1] have been widely applied in material processing, range findings, telecommunications and medicine. In particular, wide wavelength tunability is a key feature of PQFL, and is highly desirable in some specific applications such as WDM technology, spectroscopy and biomedical research. The key element for obtaining widely-tunable PQFL is a broadband saturable absorber (SA). At present, semiconductor saturable absorber mirrors (SESAMs) [2] are thought as one of the most mature and commercial SAs, but SESAMs are expensive for fabrication and have narrow operation bandwidth (typically few-tens nm [3]), which possibly limits the broadband tunable Q-switching operation. Therefore, the low-cost, broadband and high-performance SAs are in high demand. In the past decade, the considerable attention has been given to nanomaterial-based SAs such as single-wall carbon nanotubes (SWNTs) [4-7], graphene [8-18] and topological insulators (TIs) [19-25], mainly due to their advantages such as broadband operation, easy-fabrication and low-cost. However, SWNTs usually require the broad tube-diameter distribution for obtaining the broadband operation, leading to high additional loss. Graphene is an intrinsic ultra-broadband SA, but its modulation depth is often low (typically